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Abstract—The problem of heat generation during induction heating of process equipment has been analyzed
using the example of ferromagnetic plates used for assembling hydraulic-frame presses. We present a mathe-
matical model of induction heating that includes the equations of the electromagnetic field and heat transfer
in a three-dimensional formulation. The calculation of three-dimensional fields of eddy currents in ferro-
magnetic bodies is associated with the large computer time consumption for the solution of Maxwell’s equa-
tions. In addition, the engineering methods used do not provide the required accuracy since they do not take
into account the features of the geometry of the object. A technique has been proposed for calculating three-
dimensional fields of eddy currents in ferromagnetic bodies using linear differential equations, which makes
it possible to reduce the computation time by more than an order of magnitude. This simplification of the
mathematical model of induction heating is based on the assumption that the magnetic permeability of the
plate material is constant during the process of heating. Solving the nonlinear equations of the electromag-
netic field in the two-dimensional formulation, we have determined the magnetic permeability correspond-
ing to the magnetization curve (in terms of active power) as a function of the characteristics of the inductor
and its location. The finite-element method is implemented with the ANSYS software is used. The results
obtained can be used in the design of induction heating plants that should satisfy special requirements for the
temperature-field configuration.
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For implementation of interrelated technological
processes of pressure treatment and heating of prod-
ucts, press equipment with metal plates of induction
heating is used. Such electrothermal plants should
provide heating of processed articles to 150–250°C for
polymers and elastomers, and up to 350–550°C for
metals and special compositions. As a rule, in a single
operation cycle of the plant, several articles are
treated, placed in the molds between the working sur-
faces of the plates. Therefore, such presses are charac-
terized by a relatively high energy consumption (from
4 to 20 kW per plate) and material consumption (the
plates can have a length and a width of more than 1 m
and a thickness of 50–80 mm).

To reduce the costs of material in the design, man-
ufacture, and operation of equipment, improve its
technological characteristics, it is necessary to opti-
mize the design of the heating plate to provide a tem-
perature field of the required configuration on the
working surface. Mathematical description of the pro-
cesses of induction heating is associated with the for-
malization of associated non-stationary electromag-

netic and thermal processes in the volume of the plate.
As a rule, for heating the plates of presses, low-fre-
quency electromagnetic fields are used, being efficient
only when heating ferromagnetic materials. The non-
linear dependence of the magnetic field induction on
the field strength in ferromagnetic bodies greatly com-
plicates the calculation of heat generation. Current
methods for calculating induction electrotechnical
plants have the following drawbacks:

—methods of calculation based on solving linear
Maxwell’s equations in a one-dimensional formula-
tion with the use of empirical data do not allow to
obtain and analyze the distribution of energy release in
ferromagnetic bodies with complex shape;

—simplified mathematical models of the heating
process, which do not take into account the nonlinear-
ity of characteristics of ferromagnetic materials, can
lead to significant errors in calculating the heat gener-
ation due to eddy currents; and

—the approximation of electric heaters by the bod-
ies of canonical form leads to large errors in most prac-
tical problems [1].
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Thus, it is necessary to develop effective
approaches for the mathematical description of elec-
tromagnetic processes and solve the equations of
mathematical models. These approaches must take
into account all the features of processes under con-
sideration, but they should not lead to an excessive
volume of calculations.

MATHEMATICAL MODEL OF INDUCTION 
HEATING OF A SINGLE PLATE

The mathematical model of induction heating of a
single plate of the hydraulic press contains the rela-
tionships for calculating heat generation from eddy
currents in the volume of the plate and the heat-trans-
fer equation taking into account the heat loss in the
environment. Mathematical simulation of eddy cur-
rents is based on the allocation of two regions in the
volume of the plate and in the surrounding airspace:

—regions of existence of eddy currents with non-
zero electric conductivity (Ω1); and

—regions without eddy currents that can contain
currents from an external source (Ω2).

When considering the problem of induction heat-
ing of the plates, region Ω1 is represented by the mate-
rial of the plates and region Ω2 contains inductors and
the surrounding airspace.

We make the following assumptions:
—Maxwell displacement current is absent (low-

frequency fields in a conducting medium are consid-
ered);

—magnetic hysteresis is absent (the processes in
strong electromagnetic fields are considered); and

—the properties of materials are isotropic.
Then, in domain Ω1, the differential equations of

the electromagnetic field (Maxwell’s equations) have
the form

(1)

(2)

divB = 0, (3)
where H is the magnetic-field strength, A/m; E is the
electric-field strength, V/m; γ is the specific electric
conductivity, Ω–1 m–1; B is the magnetic-field induc-
tion, T; and t is the time in seconds.

Correspondingly, in domain Ω2, we have
rotH = Jext, (4)
divB = 0, (5)

where Jext is the density of current from an external
source, А/m2.

For quantities H, E, and B to be single-valued, the
boundary conditions for contact region Γ12 between

− γ =rot 0,H E

∂+ =
∂

rot 0,
t
EE
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domains Ω1 and Ω2 are used, as well as on a far-distant
boundary [2].

To solve Maxwell’s equations, supplementary
functions are introduced: vector magnetic potential A
(Wb/m) and scalar electric potential V (V) related to
the vectors B and E by the relations

B = rotA, (6)

(7)

Then, system of equations (1)–(3) can be written in
the form of a single equation:

(8)

where μ is the absolute magnetic permeability, H/m.
Similarly, we can write Eqs. (4), (5):

(9)
It follows from (7) that scalar electric potential V is

determined up to a constant. To eliminate this uncer-
tainty, it is sufficient to set the value of the potential V
at one point in the computational domain. According
to (6), vector magnetic potential A is determined to
within a gradient of an arbitrary scalar function. The
uniqueness of the solution is achieved by means of a
gauge condition. When calculating the fields of eddy cur-
rents, the Coulomb gauge is used most frequently [3]

divA = 0. (10)
From the computational point of view, it is

extremely difficult to satisfy condition (10) with zero
divergence when the magnetic permeability is non-
constant. The Coulomb-gauge condition in the
three-dimensional formulation was first success-
fully implemented in [2], in which “penalty func-
tion” –grad(μ–1divA) was added in the left parts of
Eqs. (8), (9) and the conditions of uniqueness of the
solution were formulated.

In this case, the modified equations within domain
Ω1 take the form

(11)

(12)

while, in domain Ω2, we have

(13)
The boundary conditions on the remote boundary

(the conditions of zero normal component of the mag-
netic induction):

B × A = 0; (14)

∂= − −
∂

grad .V
t
AE

− ∂μ + γ + γ =
∂

1rot( rot ) grad 0,V
t
AA

−μ =1
extrot( rot ) .A J

− −μ − μ
∂+ γ + γ =
∂

1 1rot( rot ) grad( div )

grad 0,V
t

A A
A

( )∂−γ + γ =
∂

div grad 0,V
t
A

− −μ − μ =1 1
extrot( rot ) grad( div ) .JA A
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(15)
where n is the unit vector of normal to the surface of
the boundary.

The boundary conditions at the boundary Γ12 of
the contact of domains Ω1 and Ω2:

A1 = A2, (16)

(17)

(18)

(19)

where subscripts 1 and 2 indicate that the characteris-
tics correspond to the appropriate regions.

In [2], it was proved that system (11)–(19) of equa-
tions and boundary conditions is equivalent to Max-
well’s system of differential equations and provides an
automatic fulfillment of Coulomb gauge (10).

To calculate the generation of heat in the volume of
the heating plate, the required total current density is

J = Jind + Jext, (20)
where Jind is the density of eddy (induced) current
(А/m2) determined by the expression

(21)

The vector of current density of an external source
is determined, in general, by the current of the induc-
tors and their design characteristics:

(22)
where Ii is the current through the ith inductor, А; G〈i〉

is the vector of construction parameters of the ith
inductor; and nind is the number of inductors in a heat-
ing plate.

The modulus of the average current density of the
inductor can be calculated by the formula

where ωi is the number of turns of the ith inductor and
bi and hi are the width and depth of the transverse slot
behind the ith inductor (in meters).

The direction of current is expressed via the basis
vectors of the coordinate system, depending on the
shape of the inductor. The design characteristics of the
most common rectangular inductors can be repre-
sented as the vector

where di is the wire diameter, m);  and  are the
coordinates of the center of the ith inductor, m; and li
and si are the length and width of the inductor (m).

−μ =1div 0,A

− −μ × + μ × =1 1
1 1 1 2 2 2rot div 0,A n A n

− −μ − μ =1 1
1 1 2 2rot div 0,A A
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It should be noted that the currents of the external
source and eddy currents do not intersect, and equa-
tion (20) describing the merger of regions Ω1 and Ω2 is
necessary to correctly write the relations characteriz-
ing the heat propagation in the bulk of the plate.

To describe the process of heat transfer in the plate,
the heat-conduction equation is used with allowance
for the internal heat sources:

(23)

where T =  is the temperature (°C) in the
point of the volume of the plate with coordinates x, y,
z at moment τ; q =  is the specific heat pro-
duction (W/m3); a =  is the thermal-diffusivity
coefficient (m2/s) of the material of the plate; and c, ρ,
and λ are the specific heat capacity (J/(kg K)), density
(kg/m3), and thermal conductivity (W/(m K)).

The steady-state average specific heat generation in
the volume of the plate is determined by the Joule–
Lenz law,

(24)

where f is the frequency of current, Hz); J is the total
current-density modulus (see (20)); and τsi is the con-
ditional stabilization time of electromagnetic pro-
cesses after which the changes in the amplitude values
of the current density can be neglected (c).

The initial condition for Eq. (23) is

(25)

where T is the temperature of a surrounding air, °C.
In the absence of thermal insulation, heat transfer

from the working surface of the cover and the ends of
the heating plate is described by the boundary condi-
tions of the third kind,

(26)

where  is the rth surface of the heating plate, m2;
αr is the heat conductivity of the surface of this plate,
W/(m2 K), determined from the criteria equation
according to [4]; and Tr is the average temperature of
the rth surface of the plate, °C.

To calculate the temperature field of heating plates
in the mode of thermal stabilization with the help of a
two-position controller, the following expression is
proposed:

(27)

∂ = ∇ +
∂τ ρ

2 ,qT a T
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where 

is the state of the heaters (1 is “on,” 2 is “off”); Ts(τ) is
the temperature of the plate at the location of a reference
thermocouple, °C; and Td and Tu are the lower and upper
operation thresholds of the regulator, °C.

Thus, the mathematical model of the process of
induction heating and automatic stabilization of the
working surface temperature of a single plate of
hydraulic press is described by the system of equations
(11)–(27).

THE METHOD OF SOLVING EQUATIONS
OF THE MATHEMATICAL MODEL

To solve Eqs. (11)–(27) of the model, the ANSYS
system of finite-element analysis was used. It was
shown in [5] that electromagnetic and thermal analysis
should be carried out consecutively using the SOLID97
and SOLID70 finite-element software, respectively.
The specific electric conductivity of the plate material
declines in the process of heating. Therefore, the pro-
cedure of electromagnetic analysis should be repeated
to clarify the heat generation.

Solving three-dimensional nonlinear equations (11)–
(13) with the use of the finite-element method (FEM)
requires a significant expenditure of computer time
due to the slow convergence of iterations and the non-
stationarity of the electromagnetic processes.

Assuming that the external source of current is
sinusoidal and the magnetic permeability of the plate
material is constant, relations (11)–(13) are simplified
to linear quasi-stationary equations in complex repre-
sentation

where j is the imaginary unit (j2 = –1).
Boundary conditions (14)–(19) are simplified sim-

ilarly, and the calculation of heat generation in this
case is carried out by the formula

where |J| =  is the modulus of ampli-
tude of the complex density of current.

The time spent on solving Eqs. (11')–(13') can be
reduced by more than an order of magnitude com-
pared with the solution of original equations (11)–
(13). However, the necessary condition of the mag-
netic-permeability constancy being equivalent to the

τ <⎧τ = ⎨ τ >⎩

1, if ( )
( )

0, if ( )
s d

sw
s u

T T
I

T T
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magnetization curve for the mean value of the active
power per period hinders the direct use of these equa-
tions when calculating eddy-current fields in ferro-
magnetic materials.

To solve this problem, a technique was developed
based on solving two-dimensional nonlinear electro-
magnetic-field equations, since in this case the math-
ematical model becomes substantially simpler. If vec-
tor Jext of the external current is perpendicular to the
XY plane, then the vector magnetic potential has only
one component Az. Therefore, the Coulomb gauge
condition is automatically satisfied and it is not neces-
sary to introduce the scalar electric potential [6]. Tak-
ing into account the characteristics of ferromagnets in
the two-dimensional formulation is not a serious
problem. Therefore, two-dimensional models can be
used very effectively in cases in which this does not
lead to a distortion of the description of physical pro-
cesses.

The dependence of the equivalent magnetic per-
meability on the characteristics of the inductor and
its location was studied by solving systems of equa-
tions (11)–(13) and (11')–(13') for an axisymmetric
system including a ferromagnetic disk and an inductor
(Fig. 1). The radius of location of the inductor, the
number of its coil turns, the current, the filling factor
(the fraction of “pure” wire in the volume of the slot),
and the position of the inductor relative to the outer
surfaces of the disk altered alternately. For each com-
bination of these parameters, we carried out a “refer-
ence” nonlinear calculation and a series of linear cal-
culations in which the magnetic permeability was
determined. In the course of the conducted numerical
experiments, we found that:

—the magnetic permeability is most affected by the
dimensions of the cross section of the inductor and its
magnetomotive force (MDS);

—if the radius of the inductor location exceeds the
inductor width by more than two times, its influence
can be neglected;

—the distance from the inductor to the outer sur-
faces of the disk significantly affects eddy currents if it
is less than twice the depth of the electromagnetic-
wave penetration into the body of the disk;

—the filling factor of the slot of the inductor with
the wire affects only the heat dissipation of the induc-
tor (ohmic heating); and

—the inductor location inside the slot and the gaps
between the inductor and the walls of the slot do not
affect the induced eddy currents due to screening.

These conclusions made it possible to propose a
method to determine the equivalent magnetic perme-
ability, a block diagram of which is shown in Fig. 2.
The solution is continued until the active powers of the
. 3  2018
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Fig. 1. Axisymmetrical model of a disk with an inductor.

Air

Ω2

Inductor

Ω2

Ω1

ΩB

Ω12

Ferromagnetic 

disk

Fig. 2. Block diagram of the algorithm for determining the
equivalent magnetic permeability.
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Yes
inductor in the linear and nonlinear calculations (Plin
and Pnlin) differ by more than allowable inaccuracy ε.

Using this technique, we calculated and approxi-
mated by power functions the dependence of the
equivalent magnetic permeability of structural ferro-
magnetic steel of the MDS inductor with cross-sec-
tional dimensions of 25 × 25 mm when connected to
an ideal current generator (Fig. 3, curve 1) and to an
ideal voltage generator (Fig. 3, curve 2).

The differences are caused by the use of a linear
description of electromagnetic processes. In fact, har-
monic curves with nonlinear distortions, characteris-
tic of ferromagnetic materials, are replaced by equiva-
lent sinusoidal curves. In this case, the active power
released in the form of heat is determined in different
ways: the values of the power coefficient do not coin-
cide. We note that for the vast majority of industrial
presses, voltage generators are applied, that is, curve 2
is used in the calculations.

A similar approach to solving three-dimensional
nonlinear electromagnetic-field equations for a ferro-
magnetic parallelepiped with a regular mesh of finite
elements is presented in [1]. In contrast to the method
used, the magnetic permeability is here determined for
the regions of the body sensing the electromagnetic
radiation. These domains are divided onto border
RUSSIAN E
blocks of finite elements taking into account the
geometry of the design scheme for which one-dimen-
sional calculations are performed. In this case, a
three-dimensional model is used in the iteration pro-
cess. On one hand, such an approach should provide a
high accuracy since the magnetic permeability is not
averaged over the volume of the ferromagnetic and, in
fact, the field of magnetic permeability is determined.
On the other hand, a large amount of computation is
unavoidable when solving real tasks.

The proposed methodology seems to be a compro-
mise: it ensures an acceptable accuracy of the solution,
it does not require the large amount of calculations,
and it is simple in implementation.

To verify the adequacy of model (11')—(13'), (14)—
(23), (24'), (25)—(27) and the applied methodology in
determining the magnetic permeability, we used the
results of measuring the temperature field of the
heated plate with dimensions of 500 × 410 mm having
four rectangular inductors obtained as a result of
experiment [7] (in these temperature measurements,
we used five thermocouples mounted in the center and
in the corners of the working surface, as well as a con-
trol thermocouple). Figure 4 compares the experi-
mental and calculated data for the point of location of
the reference thermocouple. The average absolute
deviation was 2.6°C, and the relative deviation was
LECTRICAL ENGINEERING  Vol. 89  No. 3  2018
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Fig. 3. Dependence of the magnetic permeability on the
magnetomotive force of the inductor: (1) when connected
to a current generator; (2) when connected to a voltage
generator.
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0.7%. For this plate, a finite-element model contain-

ing more than 800 thousand SOLID97 elements was

developed. The calculation time on a computer with a

performance of 18 GFlops was 25 h.

Earlier, in [8], a method for optimization of con-

structional characteristics of a press heating plate was

proposed on the basis of an empirical method for cal-
RUSSIAN ELECTRICAL ENGINEERING  Vol. 89  No
culating heat generation. The use of Eqs. (11')—(13'),

(24') and a method for determining the equivalent

magnetic permeability allows us to describe the elec-

trothermal processes in the plates on a qualitatively

new level (with allowance for the parameters of the

electrical network, the magnetization curve of the

heated material, and the relative dislocation of induc-

tors) and to increase the efficiency of the optimization

technique.
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