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Abstract—The purpose of this research is to justify the feasibility of using digital intelligent technologies in
forecasting the development of net blotch in winter barley. The developed AI solution is a binary decision tree
that can predict scenarios of net blotch development: depressive, moderate, and epiphytotic development. To
configure the algorithm parameters, we carried out field and laboratory experiments at the Federal Scientific
Center for Biological Plant Protection from 2021 to 2023. The preparation of data involved several stages,
including setting up of field plots to create an artificial infection background as well as the preparation of an
inoculum, sowing of highly susceptible and resistant winter barley varieties, and artificial inoculation. The
selected input factors included the observed degree of leaf damage, type of variety resistance, vegetation phase
at the time of primary infection, and average relative air humidity during the vegetation phase of infection.
The total sample size was 144 observations. The trained model has demonstrated a high classification accu-
racy on both the training and test datasets at an accuracy rate of more than 96%. Based on the statistical esti-
mate of the significance of the factors influencing the development of net blotch in barley, it is shown that the
most influential factor is the current degree of leaf infection (74.3%), followed by the average relative air
humidity (11.9%), the resistance of the variety to the disease (10.4%), and the development stage during
which infection occurred (3.4%). The proposed solution has a significant practical importance since it pro-
vides new opportunities for the diagnostic process of net blotch in winter barley, including high diagnostic
rate, accuracy in forecast predictions, and applicability in field conditions.
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INTRODUCTION
Grain production is the largest subsector of agri-

culture; its stable development plays a critical role in
achieving food security in the country and is strategi-
cally important in solving a number of problems,
including the supply with safe, high-quality, and
affordable agricultural products for the country’s pop-
ulation, the creation of jobs in rural areas, the develop-
ment of agricultural infrastructure, strengthening of
the country’s economic position in world markets, etc.
Grain crops, such as wheat, barley, rice, and corn,
provide a steady f low of products for both domestic
consumption and export and serve as the foundation
of the world food market.

Despite the steady increase in the gross grain har-
vest over the past 5 years (from 113.3 million t in 2018
to 157.7 million t in 2022) [1] and the confident cross-
ing of the established threshold value of the proportion
of domestically produced grain (95% according to the
Food Security Doctrine of the Russian Federation)

(in 2022, the level of self-sufficiency exceeded 150%)
[2], the industry faces new and increasingly serious
challenges, the most significant of which is threat to
the phytosanitary state of crops.

Among the main factors of mass spread of diseases
and pests in grain crops, the following factors are deci-
sive:

(1) Deterioration of weather and climate condi-
tions, including an increase in average annual tem-
peratures in most grain-producing regions, unex-
pected and prolonged precipitation in later growing
seasons, and extreme weather events (droughts,
f loods, and abnormal temperatures), which contrib-
ute to the spread of diseases and pests.

(2) Frequent and untimely use of chemical plant
protection products, which leads to the development
of resistance of pathogens to agents used, makes con-
ventional control methods less effective, and requires
more integrated approaches.

(3) Monoculture, which promotes the accumula-
tion of pathogens and pests in soil, thereby increasing
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the risk of disease spread and aggravating phytosani-
tary problems.

(4) Insufficient attention to the system of monitor-
ing activities that are performed as part of production
activities and crucial for detecting, predicting, and
monitoring the phytosanitary state of crops.

There is no doubt that it is impossible to solve one
of the main problems in grain production (mass spread
of diseases and pests) without transition to innovative
methods of production. Today, artificial intelligence is
coming to the forefront of all innovative solutions; it
determines the core of such innovations and has enor-
mous potential for digital transformation.

The development of intelligent solutions opens up
new opportunities for increasing sustainability, reduc-
ing the dependence, minimizing manual labor, and,
consequently, increasing the efficiency of the entire
industry, which helps solve complex challenges and
ensure the food security of the economy, region, and
whole country [3].

An intelligent diagnosis of net blotch of barley
caused by the fungus Pyrenophora teres Drechsler, one
of the dominant pathogens in the cultural cenosis both
in the south of Russia and throughout the world, was
previously carried out. Annual crop losses due to its
impact range from 15 to 50% and the frequency of epi-
phytoties is five times every 10 years. Under the favor-
able combination of factors (weather, variety suscepti-
bility, and vegetation phase), the prevalence of the dis-
ease can reach 100% and develop to 50–90% [4, 5].

The relevance of digital diagnostics of net blotch is
determined by the low effectiveness of classical meth-
ods of combating this disease, including agrotechno-
logical methods, seed treatment, and cultivation of
resistant varieties. The reliable preservation of crops
can be achieved only using effective fungicides. In this
case, the control point in the production process is
making a decision on the advisability of their use in a
specific period of time.

To support these decisions, models were previously
developed based on artificial intelligence (AI models),
which made it possible to solve problems of detection
and classification of Pyrenophpra teres with respect to
other types of diseases with similar symptoms [6] as
well as problems of localization of affected areas and
determination of the degree of damage to leaves [7],
which serves as one of the main signals for using
chemical agents.

However, along with the above-listed tasks, where
AI solutions have already shown good results both as a
result of the reduction in diagnostic time and as a
result of an increase in the proportion of accurate pre-
dictions, issues related to the prediction of disease
development are of high practical value and relevance.
It is important not only to diagnose the disease and
state the degree of damage to plants at the current
moment but also to forecast the disease progression.

The purpose of this research is to justify the feasi-
bility of using digital intelligent technologies in the pre-
diction of the development of net blotch in winter barley.
RUSSIAN 
MATERIALS AND METHODS

To achieve the set goal, we carried out field and
laboratory studies at the sites of the Federal Scientific
Center for Biological Plant Protection in 2021–2023,
which involved the infection of plants with a popula-
tion of Pyrenophora teres, and monitored primary
manifestations and development dynamics. The
research involved three winter barley varieties (Vivat,
Rubezh, and Romans), which are sown in the south of
Russia and differ in the resistance to net blotch patho-
gens (resistant and susceptible varieties). During the
experiments, we used classical phytopathological
methods and approaches. P. teres was identified using
the key of V.I. Bilai [8]. The production of fungal inoc-
ulum and inoculation in the full tillering phase under
field conditions were based on standard methods [9].
Records were carried out starting from the primary
manifestation of the disease to the phase of milky-
waxy grain ripeness at an interval of 10–12 days. The
degree of damage to leaves and other organs by net blotch
was determined according to the Heschele scale.

As input model factors, which are recorded during
the implementation of the experiment and influence
the degree of net blotch development, we used the
observed degree of leaf damage (%), type of variety
resistance (R = resistant and S = susceptible), vegeta-
tion phase at the time of primary infection (tillering,
booting, and flag leaf phase), and average relative air
humidity in the vegetation phase at the time of infec-
tion (%).

The output target variable is the degree of develop-
ment of the disease in the phase of early milky ripeness
with the following possible values: D, depression, M,
moderate development, and E, epiphytoty. The class
marks of the resulting variable were selected based on
[10], the authors of which predicted the phytosanitary
state of wheat crops.

The total sample size was 144 observations corre-
sponding to different combinations of the desired fea-
tures. Among them, 115 objects were randomly used as
a training set and 29 objects for the final assessment of
the model quality. Splitting a sample into a training set
and a test set is an important stage in the methodology
of machine learning and applied statistics; its purpose
is to assess the performance of the model and its gen-
eralization ability. The main idea behind this splitting
is to “hide” part of the data from the algorithm that are
used during the configuration of the model parameters
to be used for checking the quality at the necessary
stage. If the model can make accurate predictions on the
test part of the data that were not previously input, its use
makes it possible to generalize and apply the knowledge
gained during the training process to new data.

During the analysis of the applicability of different
models for predicting the development of net blotch in
winter wheat, the family of decision tree algorithms
was chosen as a basic family. The final model deter-
mining sample objects for different classes of net
blotch development was trained according to generally
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accepted machine-learning methods (stochastic gra-
dient descent, error backpropagation, etc.).

RESULTS AND DISCUSSION
The choice of decision trees for predicting the

development of net blotch in winter barley is justified
by several key reasons:

(1) Tree algorithms provide clear and interpretable
results. This is especially important for agriculture,
where food producers should make forecasts without
using special software. With this algorithm, it is suffi-
cient to move from the root vertex to one of the end
vertices, check the correspondence of the conditions
at the model nodes, and forecast the disease develop-
ment.

(2). The use of a decision tree makes it possible to
relatively quickly process both small and huge volumes
of data, which ultimately makes it possible to quickly
perform a predictive function.

(3) Decision trees can be scaled to new conditions
and task requirements, which makes them suitable for
a variety of situations, in particular, for other crops
and their pathogens.

(4) Models based on decision trees can work with
categorical features that are not expressed on a numer-
ical scale, which is especially valuable for agricultural
production, where qualitative factors often serve as
predictors. In our case, two of the four factors were
categorical.

The decision tree was constructed using the recur-
sive machine-learning procedure, Induction of Deci-
sion 3 (ID3). Its most important step is searching for a
predicate (binary function) that is assigned to each
internal vertex of the tree and splits the sample into
two parts. It comes down to optimizing the branching
information criterion, a special metric that helps the
algorithm determine the feature that is best suitable to
separate data at each tree level.

This study used the most common Gini index,
which shows how many pairs of objects belonging to
the same class will simultaneously fall into the left or

right child node of the tree (the predicate values coin-
cide on these pairs):

where Xl is the training set, xi and xj are the features
(factors) of objects in the training set, β is the predi-
cate, and # is the operator that counts the number of
pairs meeting the condition.

The net blotch prediction model was built in
Python. To implement the decision tree algorithm,
determine the model parameters, and draw the model
(Fig. 1), we used the scikit-learn 1.0.2 library, which
provides extensive functionality for machine learning.
Each block of the constructed tree has the same type
of structure:

(1) The name of the factor is the feature by which
the sample is split into two subgroups. The tree node
compares the value of this feature with a certain
threshold and the data are sent to one of the tree
branches, depending on the result.

(2) The Gini index (“gini”) measures the degree of
“confusion” of classes in the node. The lower its value,
the “purer” the node.

(3) Sample size (samples) is the number of obser-
vations (specimens) in the tree node.

(4) The value contains information about the dis-
tribution of classes in the node. For example, if the
node splits the sample into two subgroups, the value
would be the number of specimens of each class in
each subgroup.

(5) Class: if the node is a leaf (end) node (i.e., if it
has no child nodes), this parameter reflects the pre-
dicted class for this leaf.

Each internal vertex of the tree reflects the feature
by which the sample is split into two sets. “Rapid cod-
ing” was previously carried out for all qualitative fea-
tures (one-hot encoding), which represents categorical
features as binary vectors, thereby making them suit-
able for use in machine-learning models, including deci-
sion trees. Thus, ordinary binary coding was performed
for the “variety resistance” factor: 0 is resistant variety
and 1 is susceptible variety. For the “vegetation phase”
factor, coding was carried out using two binary variables:

After coding, three possible vegetation phases,
which were recorded in the experiment, were pre-
sented in the form of paired combinations of values of
dummy variables ((1, 0) tillering phase; (0, 1) f lag leaf
phase; and (0, 0) booting phase) and then sent to the
input of the model.

Marks contained in the terminal (leaf) vertices
were the classification result. For assessing the quality

of the algorithm implementation on the training set, it
is sufficient to compare the distribution of the true val-
ues of the target variable for all objects included in the
leaf vertex (value vector) with the value of the pre-
dicted class. For instance, if the value vector is [0, 13,
0] in the leaf node and the model forecast produces
“Moderate development,” it can be stated that all the
13 observations were classified correctly. When the

{ }( , ) # ( , ) : , ( ) ( ) ,l
i j i j i jI X x x y y x xβ = = β = β

0, observation does not cover the tillering phase,
Tillering _ phase

1, observation covers the tillering phase.
= 


0, observation does not cover the flag leaf phase,
Flag _ leaf

1, observation covers the flag leaf phase.
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Fig. 1. Trained decision tree predicting the development of net blotch in winter barley.

True False

Degree of infection ≤ 5.5
gini = 0.644

samples = 115
value = [25, 49, 41]

class = M

flag leaf phase ≤ 0.5
gini = 0.137

samples = 27
value = [25, 2, 0]

class = D

gini = 0.0
samples = 19

value = [19, 0, 0]
class = D

Degree of infection ≤ 20.5
gini = 0.498

samples = 88
value = [0, 47, 41]

class = M

gini = 0.0
samples = 2

value = [0, 2, 0]
class = M

gini = 0.0
samples = 6

value = [6, 0, 0]
class = D

gini = 0.0
samples = 29

value = [0, 29, 0]
class = M

Humidity ≤ 59.165
gini = 0.375
samples = 8

value = [6, 2, 0]
class = D

Degree of infection ≤ 14.5
gini = 0.298

samples = 55
value = [0, 45, 10]

class = M

Humidity ≤ 62.5
gini = 0.48

samples = 5
value = [0, 2, 3]

class = E

Susceptibility ≤ 0.5
gini = 0.473

samples = 26
value = [0, 16, 10]

class = M

Degree of infection ≤ 24.5
gini = 0.114

samples = 33
value = [0, 2, 31]

class = E

gini = 0.0
samples = 28

value = [0, 0, 28]
class = E

gini = 0.0
samples = 13

value = [0, 13, 0]
class = M

gini = 0.355
samples = 13

value = [0, 3, 10]
class = E

gini = 0.0
samples = 2

value = [0, 2, 0]
class = M

gini = 0.0
samples = 3

value = [0, 0, 3]
class = E

Fig. 2. Modelling results: (a) algorithm error matrix; (b) significance of factors in modeling.
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value is [0, 3, 10] and the model predicts “Epiphytotic
development,” the algorithm made an error three
times by classifying three observations with the mod-
erate development of net blotch as the most pessimis-
tic scenario. In our studies (see Fig. 1), this case of
RUSSIAN 
misclassification was detected in one single end vertex.
The percentage of correct answers of the algorithm
(accuracy) on the training set was 98.2%.

Naturally, assessment of the quality of modeling
using the training set alone may be insufficiently
AGRICULTURAL SCIENCES  Vol. 50  No. 2  2024



AI SOLUTIONS FOR DIGITAL DIAGNOSTICS OF GRAIN CROP DISEASES 211
informative. This is determined by the phenomenon
called overfitting (when the model overfits the training
data and is poorly effective on new test sets).

A detailed examination of the error matrix of the
algorithm on the test set (Fig. 2a) suggests that the
trained model correctly classified most of the objects
based on new data and made an error on just one
observation. This indicates its ability to generalize
data, the absence of overfitting, and its suitability for
practical use.

Information about the significance (weights) of
factors (Fig. 2b) used by the model during decision
making shows the extent to which each feature influ-
ences the forecast. The development of net blotch in
barley is most significantly influenced by leaf damage
(74.3%). The proportions of variety resistance and rel-
ative humidity were at the level of 10% and the “vege-
tation phase” of barley proved to be the least signifi-
cant feature.

The presented results have a number of important
practical and scientific applications:

(1) With account for the scaling feature of decision
trees and the collected data on other crops and dis-
eases, the presented AI solutions may become a tool
for making management decisions since they provide
a quick and objective assessment of the degree of their
development.

(2) The use of the model contributes to a more effi-
cient distribution of time and material resources,
which is ultimately reflected in the efficiency of pro-
duction activities (owing to the reduction of produc-
tion costs).

CONCLUSIONS

Based on modern machine-learning methods, an
AI model was developed for predicting the develop-
ment of net blotch in winter barley. A decision tree was
chosen as the basic algorithm. The model built
according to the training set demonstrated a high pre-
dictive capacity on test data: the proportion of correct
answers was 98% on the training set and 97% on the
delayed set.

The main factors influencing the development of
net blotch in barley are the current degree of leaf infec-
tion (the contribution is 74.3%), average relative air
humidity (11.9%), variety resistance to the disease
(10.4%), and the vegetation phase at the time of infec-
tion (3.4%).
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