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Abstract—The wheel–rail interaction during rolling along a straight railroad track section with and without
the rail f lattening effect is modeled. Rail f lattening is used to describe a defect that occurs in the area of a
welded rail joint. The model takes into account an increase in the load during dynamic impactless interaction
in the region of welded joints, change in the configuration of the contact region, and existence of stick and
slip subregions during rolling. The contact characteristics and stress states of the rail are compared for differ-
ent relative longitudinal slip and in the presence and absence of track f lattening of two characteristic sizes. An
analysis of internal stresses shows that an increase in the relative longitudinal slip leads to an increase in the
maximal tangential stresses near the surface. The results of analyzing contact pressures and tangential stresses
show that, with an increase in the f lattening depth, the depth wise distribution of maximal tangential stresses
becomes more uniform.
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INTRODUCTION
An important role in predicting the durability of

rolling stock wheel pairs is played by the calculation of
the accumulation of contact-fatigue failures [1]. The
passing of wheel pairs over railroad irregularities
increases the loads and changes the conditions of the
wheel-rail contact, which encourages the cyclic
change in the stress state in the contact zone and accu-
mulation of fatigue damage [2].

Welded rail bond defects are generated over time
during the passing of rolling stock. Such defects are
most often shaped as saddles [3] and are caused by
local rail head crushing during exposure to contact
stresses due to the existence of low-hardness sections
in the welded joint area [3].

As shown by analyzing dynamic loads and change
in the longitudinal rail profile in the welded joint f lat-
tening area depending on passed tonnage [2], longitu-
dinal saddling length L changes much slower with an
increase in passed tonnage in comparison with sad-
dling depth h0. Typical saddling dimensions are h0 =
1–3 mm and L = 200–250 mm. That said, according
to [2], at saddling depth h0 = 1.6 mm the vertical load
increased by 12.3%.

The dynamic load during the passing of a wheel pair
over railroad irregularities is computed by both, modeling
in commercial and specialized software suites [4, 5] and
using approximate analytical models [6].

The modeling of the accumulation of contact-
fatigue damage includes the computation of the stress
state in the wheel–rail contact; this state is defined by
distributions of contact pressures and tangential
stresses. For these purposes, the FASTSIM algorithm
[7] and its upgraded models are broadly applied. The
numerical solution of the elastic body rolling problem
in the spatial formulation, considering slip and spin-
ning, is shown in [8, 9]. This solution is necessary for
calculating the stress state.

The generation of contact-fatigue failures of rails
and freight car wheels is modeled in [1, 10, 11]. The
maximal tangential stresses, depending on external
load and configuration of the wheel–rail contact
region, are used as one of the damage criteria.

Objective—To simulate the wheel–rail interaction
to compare the contact characteristics and stress state
without track f lattening and considering the weld joint
flattening defect.

DETERMINATION 
OF CONTACT CHARACTERISTICS 

IN THE WHEEL–RAIL SYSTEM
Calculation in the Absence of Track Irregularities
Let us consider the contact of a wheel and a rail

during the motion along a straight track section with-
out irregularities as a contact of elastic bodies with
128
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Fig. 1. Scheme of the wheel–rail interaction during the
passage of a defect shaped as a saddle.
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equal elastic material constants, that is, Young’s mod-
ulus E and Poisson’s ratio ν (the respective E and ν of
steel are 210 GPa and 0.3).

The contact pressure distribution is calculated
using the Hertz solution of the two-bodies contact
problem [12]:

(1)

(2)

where  and  are the semiaxes of the elliptical con-
tact region,  is the highest contact pressure, P is the

full normal wheel load, ; i = 1
corresponds to the wheel, and i = 2 corresponds to the
rail. Coefficients A and B are determined as

(3)

(4)

where  and  are the main wheel curvature radii, 
and  are the main rail curvature radii, and  is the
angle between the normal planes with curvature radii
R1 and R2.

Calculation in Case of a Saddling Defect 
in the Welded Joint Region

 The longitudinal profile of a f lattening in the
welded rail bond region is described by the following
dependence corresponding to an irregularity without
sharp edges [2]:

(5)

where h0 and L are the saddling depth and length,
respectively.

A wheel passes over a rail with a saddling defect at
longitudinal speed V in two possible dynamic modes,
that is, impact and impactless. In the impact mode the
wheel hits the defect edge at a certain angle usually
determined by experiments [13]. In the impactless
mode the wheel rolls over the saddle (Fig. 1). Consid-
ering the small h0/L ratio typical of measured saddles
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[2], let us consider that the wheel–rail interaction in
the saddle zone is impactless.

To calculate the additional dynamic component of
vertical load, let us consider the equations of the wheel
motion at the interaction with the rail in the saddling
region [13]. If we ignore the rail mass, dampening, and
contact stiffness smaller than the vertical stiffnesses of
the wheel suspension and the rail as elements of the
elastic system, the equation of the relative motion of a
sprung wheel is written as

(6)

where t is the time; с is the spring stiffness in the
equivalent wheel–rail system; m is the unsprung parts
mass; and (.) is for the time derivative. The equivalent
spring stiffness can be tentatively calculated proceed-
ing from static wheel load P and static wheel deflection
δ: с = P/δ. The value of δ is regulated depending on the
type of railroad car and truck model [13].

The equation made up by inserting the first equa-
tion of system (9) in (8) and differentiation is

(7)

Equation (10) is the induced oscillation equation
solved at z(0) = 0 and  as

(8)

where . The equation made up by integra-
ting (11) and using (9) is

(9)
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L/2. The approximate equation for estimating zmax at
small values of the pL/2V argument is calculated using
the expansion of the cosine function in the Taylor series
and leaving only the constant and the square term, that is

(10)

where χ = 2πV/pL. At large values of χ, zmax ≈ h0, that
is, the maximal spring deformation is determined only
by the saddling depth.

The load dynamic factor is η = 1 + Padd/P, where
Padd is the additional dynamic vertical wheel load that
is determined at a first approximation depending on
the saddling depth and the stiffness of the wheel–rail
system as

(11)

In the saddle center region (x = L/2) the wheel–
rail contact configuration at a first approximation cor-
responds to the interaction of two cylindrical bodies
with equal elastic constants and different curvature
radii. The contact pressure is calculated using the
Hertz solution for plane strain [12]:

(12)

(13)

where  is the half-width of the contact region in the
direction of the x-axis,  is the highest contact pres-

sure, and  is the curvature radius of the
saddle surface in its center. Since a rail irregularity is
generated by rail head crushing, its sharp edges are
smoothed, and the edge effects of contact stress distri-
bution can be neglected.

The problem of calculating tangential contact
stresses is solved by the variational method in which
the composite function is minimized that is built, con-
sidering the boundary conditions for stresses and dis-
placements in the contact interaction region [8]:

(14)

In this case, the existence of stick and slip subre-
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rolling slip velocity s(x, y) of the rolling body relative to
the base is determined as

(15)

(16)

where  are the tangent functions of the wheel
motion and the rail, respectively,  and V are the
angular and linear wheel rolling velocities, ∆x is the
tentative longitudinal slip calculated as

(17)

 is the wheel surface curvature radius.
At each point of the rail modeled by an elastic half-

space, the internal stress tensor components are calcu-
lated by the superposition principle on the basis of
Boussinesq and Cerutti solutions [12]. The maximal
tangential stresses are determined by the formula from
[14] as

(18)

where ;  are the main stresses in the
point with coordinates , determined according
to the characteristic equation:

(19)

whereby the condition fulfilled in each point of the
half-space is

(20)

CALCULATION RESULTS 
AND ANALYSIS

The geometric parameters accepted as constant in
calculating the contact pressure distribution are

, R1 = 450 mm,  , and  =
500 mm. Wheel load P was accepted equal to 122500 N
and corresponded to a railroad car weight of 50 t. In
this case, at E1 = E2 = 210 GPa and ν = 0.3, the con-
tact region has the following parameters: a = 7.5 mm,
b = 7 mm, p0 = 1120 MPa, and .

The irregularity length is determined mainly by the
initial condition of the rail material and by the param-
eters of welding and thermal processing. In this study,
it is accepted that the saddling length is 250 mm. The
irregularity depth depends not only on the initial con-
dition of the rail but also on its loading modes. This
depth changes more significantly than the saddling
length [2]. Let us consider that during wheel rolling
along the rail in the course of plastic deformation the
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Fig. 2. Distribution of contact pressure at P = 122.5 kN.
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middle part of the rail head is crushed until it borders
with the side planes. Considering the rail head geom-
etry [1], let us consider irregularities with depths h0 =
1.7 and 3 mm.

The calculations were made at train motion speed
V = 70 kph and static wheel deflection δ = 20 mm [13].
Dependences (10) and (11) allow determining that at
h0 = 1.7 mm and 3 mm load dynamic factor η = 1.085
and 1.15.

If we proceed from rail head geometry [1], the
respective half-widths of the contact region perpen-
dicular to the rolling direction are b2 = 10 and 24.5 mm
at h0 = 1.7 and 3 mm. Considering dependence (5),
Rc = 1863 mm, Padd = 132913 N,  a2 = 6.6 mm,  =
641 MPa, and  for the irregularity with h0 = 1.7 mm, L =
250 mm, and  = 1055 mm, Padd = 140875 N, a2 =
5 mm,  = 367 MPa, and  for the irregularity with
h0 = 3 mm and L = 250 mm.

The contact pressure distribution at load P =
122.5 kN on the axis of a 25 t railroad car and at vari-
ous saddling depths is shown in Fig. 2.

In case of irregularity the maximal contact pressure
decreases with an increase in the saddling depth while
the contact area increases in which case the change in

20p

20p
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Fig. 3. Distribution of tangential stresses at Δx = 0.001 and
rail without saddling (1) and at rail saddling depth h0 =
1.7 mm (2), h0 = 3 mm (3).
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the contact area width in the rolling direction is insig-
nificant.

The tangential stress distribution for a constant
longitudinal slip and contact regions corresponding to
the contact pressure distribution (see Fig. 2) is shown
in Fig. 3.

With an increase in the saddling depth, the tangen-
tial stresses decrease; that said, at y = 0 the slippage
subregion in the contact region cross-section shrinks.

The influence of relative longitudinal slip on the
distribution of tangential stresses for various contact
region configurations is illustrated in Fig. 4.

During rolling along a straight section with a two-
fold increase in longitudinal slip, the slip subregion in
the cross section at y = 0 increases by 90%. During
rolling in the central part of the saddle of 3 mm in
depth the subregion increases by 80%.

The dependences of maximal tangential stresses on
the z coordinate in the elastic half-space for various
longitudinal slip during rolling along a straight track
section (solid lines) and at f lattenings with h0 =
1.7 mm (dashes) and h0 = 3 mm (dot-and-dash lines)
are shown in Fig. 5.

The isocurves of the maximal tangential stresses in
the contact region cross section at y = 0 during wheel
 2022

Fig. 4. Distribution of tangential stresses at relative slip
Δx = 0.001 (1, 1'), Δx = 0.002 (2, 2') without saddling (1, 2)
and at rail saddling depth h0 = 3 mm (1', 2').
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Fig. 5. Dependence of the maximal tangential stresses on the distance to the surface at Δx = 0.001 (1, 1 ', 1 ''), Δx = 0.002 (2, 2 ', 2 ''),
Δx = 0.003 (3, 3 ', 3 ''), for rails without irregularity (1–3), and at rail irregularity depth h0 = 1.7 mm (1 '–3 '), h0 = 3 mm (1 ''–3 '').
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Fig. 6. Dependence of the maximal tangential stresses on the distance to the surface without rail irregularity (a) and at rail irreg-
ularity depth h0 = 3 mm (b).
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rolling along a rail in a straight section and in the irreg-
ularity center are shown in Fig. 6.

According to Figs. 5 and 6, there are two maxima of
the function of maximal tangential stresses observed
during wheel rolling along the rail. These maxima are
surface and subsurface. With an increase in the irreg-
ularity depth, both maxima decrease in which case
the depth-wise distribution of maximal tangential
stresses with irregularity is more even than without
irregularity.

At cyclic loads in the wheel-rail system the material
of the rail near the rail surface has some initial damage
due to the cold-hardening of the surface in the sad-
JOURNA
dling region [15]. Considering a more even depth-wise
distribution of maximal tangential stresses, contact-
fatigue cracking is more likely near the surface than at
depth.

CONCLUSIONS

The wheel–rail interaction during rolling along a
straight railroad track section has been modeled with
and without the rail f lattening. The saddling is used for
describing a defect generated in the welded rail joint
region. The contact characteristics and stress state of
the rail are compared for various relative longitudinal
L OF FRICTION AND WEAR  Vol. 43  No. 2  2022
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slip and with and without track irregularities of various
depths.

It was found that, with an increase in relative longi-
tudinal slip, the maximum tangential stress on the sur-
face increases. At greater relative slip, the maximum
tangential stress function on the surface becomes
larger than the subsurface stress, which affects the
accumulation of fatigue damage.

The results of analyzing contact pressures and tan-
gential stresses show that, with an increase in the irreg-
ularity depth, the maximum contact pressure and tan-
gential stress decrease, and the depth-wise distribu-
tion of maximal tangential stresses becomes more
uniform. Thus, the considered dimensions of track
defects in the region of welded joints in the typical
load-speed mode of rolling stock do not lead to an
increase in the concentration of subsurface stresses
under the wheel–rail contact area in impactless inter-
action mode.

NOTATION
L is the longitudinal saddling length
h0 is the saddling depth
E is Young’s modulus
ν is Poisson’s ratio

, are the semiaxes of the elliptical
contact region
is the maximum contact pressure
in case of an elliptical contact area

P is for the full normal wheel load
, are the main curvature radii of the

wheel

, are the main curvature radii of the
rail
is the angle between the normal
planes containing curvature radii

, 
, V are the angular and linear rolling

speed of the wheel
t is time
с is the stiffness of the spring equiva-

lent to the wheel–rail system
m is the mass of the unsprung parts
δ is the static deflection of the wheels
zmax is the additional deformation of the

equivalent spring
η is the load dynamic factor
Padd is the additional dynamic vertical

load on the wheel
is the half-width of the contact
area in the direction of the x-axis
during the rolling over the rail
irregularity
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b2 is half-width of the contact area in
the direction perpendicular to the
rolling direction
is the maximum contact pressure at
the rolling over the rail irregularity
is the curvature radius of the rail
irregularity surface in its center
is the longitudinal slip velocity

are the tangential displacements of
the wheel and rail

∆x is the relative longitudinal slip
are the maximum tangent stresses

, are the principal stresses
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