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Abstract—The calculation scheme for determining the temperature mode of the disc brake taking into
account the change of the contour contact area during braking was proposed. For this purpose, the exact solu-
tions of the initial problem of motion and the corresponding heat problem of friction were obtained. On their
basis, formulas were obtained in the analytical forms for calculating the evolution of the sliding speed, specific
power and work of friction, and the mean temperature on the contact area. The thermal sensitivity of the fric-
tion pair materials was taken into account by introducing into the calculation the values of the thermal con-
ductivity and the specific heat capacity at the volumetric temperature. Numerical analysis was performed for
a brake with discs made from Termar-ADF carbon composite friction material. The values of such character-
istics as speed, braking duration, and maximum and volumetric temperatures, found with and without taking
into account the change in the contour contact area, were compared. The performed comparison analysis
allowed us to determine the influence the contour friction area has on the evolution of mean temperature
during braking. It was found that the level of the temperature calculated with consideration of the friction
contour surface increases during braking is higher. Despite the fact that the average contact area is equal and
the compared braking processes take place at practically the same time. During analysis, the influence of the
change of the apparent contact surface area on the temperature time profile was also examined. It was noticed
that a larger apparent area of contact causes a decrease in the value of the maximum temperature achieved
and the time of reaching it.
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INTRODUCTION
The friction surfaces of the working elements of the

disc brake are not perfectly smooth. Due to waviness
and roughness, their contact interaction is discrete
and occurs in three areas: nominal, due to the size of
the rubbing surface of the lining; contour, formed at
the points of contact of waves and macrodeviations;
actual, consisting of a set of contacts of microrough-
nesses within the contour area of contact [1]. Accord-
ing to the hypothesis of summation of temperatures of
A.V. Chichinadze, the maximum temperature of the
friction surface is equal to the sum of the average tem-
perature of the nominal contact area and the tempera-
ture of the actual contact area (temperature f lash) [2].
The calculation of the average temperature of the fric-
tion surface is usually performed with a constant value
of the area of the nominal contact area [3–6]. When a
temperature f lash is found, the areas of the contour
and actual contact areas changing during deceleration
are used [7, 8].

Objective—development of an analytical model for
calculating the average temperature of the friction sur-

face of a disc brake, taking into account the relation-
ship between the contour and nominal areas. Study on
this basis of the evolution of speed, specific friction
power, and temperature of a multi-disc brake with
rubbing elements made of a carbon friction composite
material (CFCM).

CALCULATION MODEL

For a given initial value of kinetic energy , a
decrease in velocity  with time  from initial value 
at  to zero at the moment of stop  describes
the relationship [3]:

(1)

where friction force  acting in the contour area with
area  has form
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Taking into account the monotonic increase in pres-
sure  from zero to nominal value :

(3)

and relations [9, 10]:

(4)

after integration from formulas (1), (2) we obtain:

(5)

(6)

The duration of braking was determined numerically
from condition of stop .

We present the change in the specific power of fric-
tion in form:

(7)

where the time profiles of pressure  and velocity
 were determined by formulas (3)–(6), respec-

tively. We look for the specific friction work in form:

(8)

Substituting function  (7) under the integral sign
in formula (8), we find

(9)

To determine the temperature of the contour
region, we will use the design scheme of the thermal
contact of two semi-bounded bodies, taking into
account frictional heat generation. The evolution of
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the average temperature of the contact surface of such
a tribosystem is determined by formulas [11, 12]:

(10)

(11)

(12)

,  are the effective depths of
heat penetration. Hereinafter, all values related to the
disc and the pad are provided with subscripts  and

, respectively.
Substituting under the integral sign in formula (11)

function  (7), taking into account relations (3)
and (5), we obtain:

(13)

Designating:

(14)

integral (13) can be written in form
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Using substitution , integrals (14) are pre-
sented as follows:
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taking into account the values of beta function
, , and 

[14], from formula (16) we obtain

(17)

For  the integrals in formula (16) can be repre-
sented in form:
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After substitution , integrals (19) can be
written as follows:
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By integrating by parts, taking into account substitu-
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(21)

(22)

Taking into account relations (21), (22), it follows
from formulas (18):

(23)

(24)

(1; 0.5) 2B = (2; 0.5) 4 3B = (3; 0.5) 16 15B =

0,0 1,0

2
2,0

4( ) 2 , ( ) ,
3

16( ) .
15

I I

I

τ ττ = τ = τ
π π

ττ = τ
π

1,2n =

0, 0, 1, 0, 2,
2

2, 0, 2, 4,

( ) ( ), ( ) ( ) ( ),

( ) ( ) 2 ( ) ( ),
n n n n n

n n n n

I J I J J

I J J J

τ = τ τ = τ τ − τ
τ = τ τ − τ τ + τ

2

,
0

2( ) , 0,2,4.i in nxl
l nJ e x e dx l

τ
− τ τ ττ = =

π 

2
iy nx= τ

( 1) 2
( 1) 2

,
0

1( ) ,

0,2,4, 1,2.

i

i

nl
n l yi

l nJ e y e dy
n

l n

τ τ+
− τ τ −τ τ =  

 π
= =



s y=

0,

2, 0,

4, 2,

( ) ,

1( ) ( ) ,
2
3( ) ( ) ,
2

n
i

i
n n

i
n n

J D n

J J
n

J J
n

 ττ = τ  τ 
τ  ττ = − τ π 
τ  ττ = τ − τ π 

2
2

0

2( ) .
xx

seD x e ds
x

−
=

π 

0,

1, 0,

( ) ,

( ) ( ) ,
2

n
i

i i
n n

nI D

I I
n n

 ττ = τ  τ 
τ τ τ τ = + τ τ −  π 

2
2, 0,

3( ) ( )
4

3 , 1,2.
2

i i
n n

i i

I I
n n

n
n n

τ τ   τ = + τ + τ τ     
τ τ τ − + τ =  π 
JOURNA
Substituting functions Im,n(τ) (17), (23), (24) to the
right side of solution (15), we get:

(25)

When calculating function  (22) in solution (25)
we used expansions [15]:

Knowing the time profile of dimensionless tem-
perature (25), using formulas (10), (12), we find the
temperature change during deceleration.

The volumetric temperature, averaged over the
braking time, of the brake elements is determined by
formulas [3]:
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where ,  are coefficients of distribu-
tion of heat f lows,  are correction factors taking into
account the temperature decrease due to heat propa-
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in applications. The first of these is constant contact
pressure at the contour site. Passing in formulas (3),
(5), (7), (9), (25), and (28) to limit , we obtain

and from the stop condition we find braking time
.

The second case concerns the determination of the
characteristics of the braking process at a constant
value of contour area ( ). With monotonically
increasing pressure  (3) time profiles of speed,
specific power and work of friction, as well as tem-
perature and volumetric temperature have form [16]:
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NUMERICAL ANALYSIS

Investigated the characteristics of the braking sys-
tem, consisting of three identical discs made of CFCM
Termar-ADF. Due to the geometric and force symme-
try, the temperature regime of such a system can be
determined using the analytical two-element model
proposed above. The values of the input parameters
are as follows [16]: MPa, m/s,

kJ, cm2, ,  s
with, kg/m3, and , . Then,
from formulas (6) and (8) we find MW/m2,

MJ/m2. Calculations are made taking into
account the change in contour area  (4) (variant 1)
and at a constant, averaged over deceleration time

 (variant 2). The thermal sensitivity of the
disc material was taken into account by using in the
calculations instead of the values of the thermophysi-
cal properties  W/(m K), J/(kg K)
at initial temperature , their values at bulk
temperature ,  (26), (28), and (32) equal to

 (variant 1) and  (variant 2). Using exper-
imental data in the form of curves of the dependence
of thermal conductivity coefficients and the specific
heat capacity of Termar-ADF on temperature [9], it was
found that  W/(m K), J/(kg K), and

.

Velocity change over time , specific power of fric-
tion , and specific friction work  as well as tempera-
ture  for variants 1 (solid curves) and 2 (dashed
curves) are shown in Fig. 1. When calculating accord-
ing to variant 2, we used formulas (29)–(32). With the
constant value of the contour area equal to 0.65Aa,
braking occurs with constant deceleration and lasts
19.13 s (Fig. 1a). Linear increase of  in the process of
braking leads to the appearance of nonlinearity in the
time profile of the velocity and insignificant reduction
of the stop time up to the 18.95 s. The time profile of
the specific power of friction with a maximum after
the start of the process (Fig. 1b) is characteristic of
rational braking modes [2]. The specific work of friction
monotonically increases with the deceleration time,
reaching maximum values  MJ/m2 (variant 1) and

 MJ/m2 (variant 2) at the moment of stop
(Fig. 1c). The evolution of the temperature of the con-
tour area depends on the time profile of the specific
power of friction. Its characteristic feature in a rational
braking mode is the presence of a temperature maxi-
mum, which is reached, depending on the pressure
rise time, approximately in the middle of the braking
time (Fig. 1d). In the case under consideration, maxi-
mum temperature values  (variant 1) and 
(variant 2) were achieved respectively after  and

 from the start of braking. At the moment of stop,
the temperature was  (variant 1) and 
(variant 2).
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Fig. 1. Changes during braking of the: (a) sliding velocity ; (b) specific power of friction ; (c) specific work of friction ; and
(d) temperature  calculated with (solid lines) and without (dashed lines) consideration of the contour contact area variations.
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The results presented in Fig. 1 were obtained at a
fixed value of the nominal contact area with a variable
(variant 1) or constant (variant 2) contour area. Taking
previously used value mm2 for the base,
Fig. 2 shows the change in maximum temperature

, the time to reach it , and the duration of brak-
ing  for values , . When the nominal
contact area is halved compared to the baseline, the
maximum temperature rises to  and , the
time to reach it increases to  and  s, and the brak-
ing process continues for  and  s when calcu-
lating according to variants 1 and 2, respectively. With
an increase in the nominal contact area, all of the
above characteristics monotonically decrease and for
value  equal:  and ,  and

 s,  and  s.

2212aA =

maxT maxt
st aAλ 0.5 2≤ λ ≤

1007 733 C°
21 19

37.6 37.8

2 aA =max 507T 376 C° max 5.6t =
5.19 9.6st = 9.8
JOURNA
CONCLUSIONS
An exact solution to the thermal problem of friction

for a disc brake is obtained, taking into account the
linear increase with time of the contour contact area
and the thermal sensitivity of materials. The calcula-
tions were performed for a friction pair consisting of
two identical discs made of Termar-ADF CFCM. The
change in the process of deceleration of the sliding
speed, power and work of friction, as well as tempera-
ture at a changing (variant 1) and constant, averaged
over time (variant 2), the contour contact area is inves-
tigated. It is shown that the temperature obtained in
the calculations according to variant 1 is always
slightly higher than that found according to variant 2.
In this case, the relative difference between the corre-
sponding maximum temperatures does not exceed
10%. An increase in the contour contact area leads to
L OF FRICTION AND WEAR  Vol. 42  No. 4  2021
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Fig. 2. Dependences on the nominal area of friction contact  of the: (a) maximum temperature ; (b) the time of its reaching

 and stopping time  calculated with (solid lines) and without (dashed lines) consideration of the contour contact area vari-

ations.
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an insignificant, not more than 1%, reduction in the
duration of braking. Consequently, the calculation of
the temperature regime of the tribosystem under con-
sideration can be performed with sufficient accuracy
at a constant value of the contour area.

Additionally, the influence of the dimensions of
the nominal friction surface on some characteristics of
the braking process has been studied. In both design
variants, it was found that an increase in the nominal
contact area leads to a reduction in the braking time, a
decrease in the maximum temperature, and a decrease
in the time to reach it.

NOTATION

nominal contact area

contour contact area

averaged contour area

specific heat

friction force

coefficient of friction

thermal conductivity

contact pressure

nominal contact pressure

specific power of friction

nominal value of specific friction power

temperature

ambient temperature

maximum temperature

time

aA

cA

cA
c
F
f
K
p

0p
q

0q
T

aT

maxT
t
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time of pressure increase

time of braking

velocity

initial velocity

initial kinetic energy

specific work of friction

nominal value of specific friction work

volumetric temperature

density

Subscripts:

disc

pad
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