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Abstract—The numerical solution for the system of equations of heat friction dynamics (HFD) is obtained for
the pad-disc tribosystem for use in intermittent braking mode (RST). The system of HFD equations is for-
mulated, considering the temperature dependence of mechanical and thermal physical properties of materi-
als, as well as the friction coefficient. The pattern of the perfect thermal contact of two sliding layers with fric-
tional heat generation taken into account is chosen as a calculation model. The numerical analysis of the
metal ceramic pad-cast iron disc friction pair is made. The RST mode consisting of three full (braking-accel-
eration) cycles and one incomplete (braking) cycles is studied. The change at each braking in the intercon-
nected flashpoint, average temperature of the friction region, volumetric and maximal temperatures of the
tribosystem, sliding speed, specific power, and friction coefficient is investigated.
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INTRODUCTION
An intermittent brake operation mode is character-

ized by recurrent braking-acceleration (heating-cool-
ing) cycles. The characteristics of a friction pair used
in intermittent mode are designed by solving the sys-
tem of heat friction dynamics (HFD) equations [1]. In
this case, the initial motion problem and the thermal
friction problem as the system’s main components are
solved either in sequence (divided pattern) or synchro-
nously (complementary pattern). In the former case,
the first step is to determine the time profiles of fric-
tion velocity and specific friction power, which is fol-
lowed by using them in thermal brake design. If there
are available data on the frictional resistance tests of
the target pair that allow recording the functional
dependence of the friction coefficient on temperature,
the calculations will be made according to the comple-
mentary pattern, taking into account the velocity-
temperature correlation [2].

The complementary pattern of solving the system
of HFD equations, considering the relation among the
average, the volumetric temperature, and the f lash-
point of the brake used in intermittent mode was first
implemented in the works written by professor
A.V. Chicinadze and his disciples [2]. In our proposed
design technique, the frictional heat generation in the
actual disk-pad system was replaced with the linear
problem of the separate heating of two different layers
by heat f lows at an intensity pro rata with the specific
friction power. The changes in the mechanical and

thermal physical properties of the pad’s and the disk’s
material at each braking were considered by using the
values of those properties calculated for the average
integral volume temperature of the tribosystem from
the respective test curves. To calculate the disk’s max-
imal temperature in intermittent braking mode by the
FEM, we considered the current, temperature-depen-
dent coefficient of friction and heat conduction, and
the Brinell hardness of the rubbing pair’s materials
[14]. We exposed the pad and the disk to separate fric-
tional heatings, in which the thermal fields of those
elements were interconnected through the heat f lows
partition coefficient.

This article is aimed at modifying the unidimen-
sional nonlinear complementary system of HDF
equations for one-time braking [15] in intermittent
disk brake operation mode, considering the sliding
speed-temperature ratio at each braking and using the
derived numerical solution of this system to study the
influence of the braking number on the change in such
characteristics such as temperature, speed, specific
capacity, and friction coefficient.

FORMULATION OF THE PROBLEM
Braking Pattern 

Let us consider a disk brake’s intermittent opera-
tion mode consisting in the gradual completion of

 full cycles and an th interrupted cycle. Each of
the full cycles consists from two phases. In the first
( 1)n − n
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phase (braking), linear sliding velocity  decreases
from initial value  to zero for a period of

 Then, when the brake is
switched off, the second phase starts and continues for

 when the velocity increases to initial value .
Thus, the time needed for completing the full cycles is

, where  and  is
the cycle’s duration. In the last interrupted cycle per-
formed with the brake switched on, velocity  again
drops from initial value  to zero at stopping instant

. The overall period of this operation mode is
.

Approximating Test Data

In the disk brake’s single and, even more so, inter-
mittent, heavy thermal operation mode, not only the
surface temperature but also the volume temperature
exceeds  [16]. Thus, the thermal physical prop-
erties of the disk and pad materials before the braking
and at stopping may significantly differ. Elevated tem-
peratures also affect the friction coefficient value.
Thus, we assume that heat conduction coefficient ,
specific heat capacity , and density  of the friction
pair materials, as well as friction coefficient , are
functions of temperature  and recorded as

(1)

(2)

(3)

(4)

(5)

(6)

where , , , , ;  are the
approximation coefficients of the respective test data
resulting from the frictional heat resistance tests of the
materials [2]. All of the quantities applied to the disk
and the pad hereafter have subscripts  and ,
respectively.
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Maximal Temperature
We shall use the temperature summation hypothe-

sis to record the change in maximal braking tempera-
ture  [1] as

(7)

Average Temperature of the Contact’s Nominal Region
The system of the frictional contact of two hetero-

geneous layers  (disk) and  (pad)
that slide at relative speed , as well as are
compressed at a normal pressure, are used as the
design geometric pattern for determining :

(8)

Nonstationary temperature field  of this tribo-
system is initiated by the frictional heat generation at
braking and found by solving the following thermal
friction problem:

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Temperature of the Contact’s Actual Region

The evolution of f lashpoint  was calculated by
the empirical formulas for the contact pattern of the
microasperities of rubbing surfaces [17] as

(17)

where ,  are the coefficients determined by
experiment.
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Average Volume Temperature
The average volume temperature of the disk-pad

friction pair before the start of the th braking was cal-
culated by the formulas from [2] as

(18)

(19)

(20)

(21)

whereas the formulas used after the th braking were

(22)

Initial Motion Problem

A drop in speed  at the th braking
was found by solving the initial motion problem [15] as

(23)

(24)

where rated specific friction power  and dimension-
less time profile of friction force  are shown in the
form of (16). The duration of each braking was deter-
mined from the halt condition as

(25)
In the acceleration phases, the speed linearly
increased with time as

(26)
Correlations (1)—(26) are determined as the math-

ematical recorded system of HFD equations for the
considered intermittent braking mode. Such key ele-
ments of this system, as the boundary problem of heat
conduction, considering the heat generation by fric-
tion in (9)—(16), f lashpoint calculation formulas (17),
volume temperature formulas (18)—(22), and initial
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motion problem (22)—(26) are interrelated through
friction coefficient  (16) dependent from maximal
temperature  (7).

Solving the System of HFD Equations

We shall switch to the dimensionless variables and
parameters recorded below as

and thus record formulas and equations (7)—(17),
(23)—(25) as
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(36)

(37)

The boundary problem of heat conduction (27)—
(37) is essentially nonlinear since it contains both
internal (in differential operators (28) and (29)) and
external (in boundary conditions (30), (32), and (33))
nonlinearities. We shall solve this problem by integral
interpolative discretization from [18] and introduce
the following lattices in tribocoupling elements:
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and record
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(40)

Considering formulas (36)—(40) after the respective
transformations made to replace the differential oper-
ators by dimensionless spatial variable  with their
finite difference analogs, we shall record the nonlinear
boundary problem of heat conduction (28)—(34) as
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(45)

(46)

According to boundary condition (31), we have
, ; therefore, system

 of common differential equations (41)—
(46) contains the same number of sought-for func-

tions . The tribosystem’s dimensionless volume
temperature  included in initial condition (46)
was calculated by formulas (18)—(21). It is important
to note that initial motion problem (37) and heat con-
duction problems (41)—(46) are conjugate to each
other through the friction coefficient dependent from
maximal temperature (27). Thus, both problems were
solved synchronously in the DIFSUB suite [19]. The
maximal number of units for having a relative calcula-
tion accuracy of 0.1% was  and  for the
disk and pad, respectively.

We shall note that the speed and temperature at con-
stant friction coefficient  are no longer interde-
pendent. In this case, the divided pattern of solving the
system of HFD equations consists in solving the initial
motion problem (37) and then, at the known time profile
of speed , ,

,  [20], in determining
the temperature by solving initial problem (41)—(46).
As a result, the time profile of speed and the stop time
are equal at each braking.

Numerical Analysis

We studied the intermittent thermal operational
mode of the disk-pad tribosystem for three full cycles
and an interrupted cycle ( ) with such input
parameters, as ,  mPa, 
mps,  kJ,  s,  s,  mm,

 mm,  mm,  mm,
,  W/(m2 K), . The disk was

made from gray cast iron CHNMH (  = 52.17 W/(m К),
 J/(kg К),  kg/m3), whereas the

pad was made from ceramic metal material FMC-11
(  W/(m K),  J/(kg К),

 kg/m3) [2]. The values of coefficients ,
, , , ;  in formulas (1)—(6)

and , , in correlations (17) for the
CHNMH/ FMC-11 friction pair are provided in study
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Fig. 1. Change in time of maximal temperature Tmax, average friction surface temperature Tm, and flashpoint Tf, considering
(solid curves) and not considering (dashed curves) the temperature dependence of the friction coefficient at braking one (a),
two (b), three (c), and four (d).
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[15]. The calculations were made taking into account
the change in the friction coefficient at braking

 (variant 1, solid curves) and at
constant friction coefficient  (variant 2, dashed
curves).

The change with time of maximal temperature
, average friction surface temperature , and

flashpoint  for four brakings is shown in Fig. 1. The
highest values of these temperatures, as well as the val-
ues of average volume temperatures (18)—(22) before
start  and after completion ,  of each
braking, are shown in Table 1, where braking durations

, , are shown as well. The tribosystem’s

0 max( ) *[ ( )]f t f f T t=
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maxT mT
fT
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volume, average, and maximal temperature rises with
each braking. The maximal f lashpoint is observed in
the initial phase of each braking and rapidly decreases
with time. Thus, the maximal values of  decrease
with an increase in the number of brakings. This evo-
lution of the f lashpoint stems from the plastic strain-
ing of microasperities of the rubbing pad and disk sur-
faces, which is implied in formulas (17). The maximal
temperature at each braking, determined by the tem-
perature relation of the friction coefficient (variant 1),
is always lower than this coefficient’s constant (initial)
value (variant 2). The difference in the highest maxi-
mal temperatures determined for these two variants
increases with each subsequent braking.

fT
 2020
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Fig. 2. Time profiles of speed V (a), friction coefficient f (b), and specific friction power q (c), considering (solid curves) and not
considering (dashed curves) the temperature dependence of the friction coefficient, at each of the four brakings.
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The duration of individual brakings extends with an
increase in the number of brake actuations (variant 1)
or remains unchanged (variant 2). The duration of
four brakings was t4 = 10.16 and 6.22 s for variants 1

and 2, respectively. The overall brake operation dura-
tion is tb = 25.16 (variant 1) and 21.22 s (variant 2).

The changes with time in speed of advance , fric-

tion coefficient , and specific friction power  are
shown in Fig. 2. The speed decreases linearly but for
the short period after the start of braking (Fig. 2а).
The first braking is the shortest one, and the stop
duration increases with each subsequent braking
phase (variant 1). Since the frictional heat resistance
curve for the considered friction pair is an almost lin-
early decreasing function of temperature, the friction

V
f q
JOURNA
coefficient evolves (Fig. 2b) in the manner contrary to

the evolution of the change in the maximal tempera-

ture with time (Fig. 1). A reduction in  occurs with

the start of each braking, which continues up to the

moment coinciding with the moment reaching the

highest value of . The friction coefficient rises in

the subsequent period of a minor drop in  until

stopping. The most and least significant reduction in

 are observed at the first and fourth braking, respec-

tively (variant 1). The results presented in Fig. 2b were

used to determine average friction coefficient , its

stability , fluctuation , and

braking efficiency ,  (Table 2).

All of the brakings are highly stable, although the first

f

maxT
maxT

f

mf
maxs mf f f= min maxff f f=

2

eff ks sf f t= 1,2,3,4k =
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Table 1. Duration of  and maximal values of , ,

, ,  at each braking ( )

Property Variant
k

1 2 3 4

1 2.16 2.4 2.66 2.94

2 1.53 1.53 1.53 1.53

1
20 168 297 420

2

1
185 320 441 560

2

1 187 129 94 70

2 177 120 85 62

1 366 498 614 725

2 434 582 711 834

1 442 545 644 744

2 491 615 731 847

kst
( )

0
kT ( )k

sT

fT mT maxT 1,2,3,4k =

, s
kst

( )
0 , C

kT °

( )
, C

k
sT °

, CfT °

, CmT °

max, CT °

Table 2. Parameters of brake performance efficiency at four
brakings

k 1 2 3 4

fm 0.359 0.359 0.357 0.355

fs 0.782 0.783 0.779 0.775

ff 0.663 0.677 0.688 0.699

feff, s
–2 0.168 0.136 0.11 0.0896
braking was the most efficient one for the chosen fric-
tion pair. The braking efficiency decreases with an
increase in the number of brake actuations.

The timeline of specific friction power  (16) cor-
responds to rational braking characterized by the max-
imum within the braking range (Fig. 2c). The areas
under all of the curves are equal, which indicates that
the equality conditions in full friction effort at each
braking are fulfilled.

CONCLUSIONS

We have formulated and derived the numerical
solution of the nonlinear single-dimension system of
HFD equations for the disk-pad tribosystem used in
intermittent mode. The calculations for the cast iron disk
(CHNMKH) and the ceramic metal pad (FMC-11)
have been made based on the material’s thermal sensi-
tivity and friction coefficient. The influence of the
number of brakings on the evolution of temperature,
speed, specific power, and coefficient of friction has
been studied. The volumetric and the maximal tem-
perature rise with each subsequent braking, as well as
at halt (the latter increases from 2.16 s at the first

q

JOURNAL OF FRICTION AND WEAR  Vol. 41  No. 6 
braking to 2.94 at the fourth (quadruple) braking).
The time profile of the friction coefficient is pretty

much stable ( ), whereas its efficiency

decreases from 0.168 to 0.0896 with an increase in the
number of brakings.

NOTATION

is heat capacity ratio

is layer thickness

is friction coefficient

is rated friction coefficient

is friction force

is the coefficient of heat exchange between
the buildup’s free surface and the environment

is the heat conduction coefficient

is the number of brakings

is the number of nodes in the partitioning mesh

is pressure

is rated pressure

is specific friction power

is rated specific friction power

is internal radius

is external radius

is temperature

is ambient temperature

is maximal temperature

is the average temperature of the nominal
region of contact

is the temperature of the actual region of

contact (f lashpoint)

is the volume temperature before the start of

the th braking

is the volume temperature after the th braking

is time

is the duration of acceleration

is the duration of the th braking

is the pressure increment time

is velocity

is initial velocity

is the initial kinetic energy of the tribosystem

is the spatial coordinate

is density

is the pad expansion angle

The respective subscripts for the disk and the pad

are  and 
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