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Abstract—The problem of the wear of an elastic coating due to a rigid body sliding over the coating surface
and heating due to contact friction has been considered. The solution of the quasi-static problem has been
constructed in the form of a series over eigenvalues. The area of unstable solutions of the problem, where the
thermoelastic instability of a sliding contact takes place, has been determined in the dimensionless parameter
space. The wear resistance of a coating has been studied for different kinds of materials depending on the fol-
lowing parameters: the relative sliding velocity of contact surfaces, the mode of the contact interaction of the
friction surfaces, the coating thickness, etc. taking into account the temperature and stresses developing at the
contact interface.
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INTRODUCTION
In mechanical engineering and other fields of

industry and transport, coatings of different applica-
tions (antifriction, anticorrosive, etc.) are widely used
to protect the working surfaces of mechanisms and
machines during operation. The key characteristic for
selecting protective coatings for working surfaces on a
sliding friction contact interface is the wear resistance.
Thus, the study of the coating wear resistance becomes
increasingly important.

In friction assemblies, at the sliding contact inter-
face, upon an increase in the relative velocity of fric-
tion surfaces, the contact stresses increase, which is
accompanied by frictional heating [1, 2] and, under
certain conditions, by a significant temperature
increase [3–9], which is often referred to as the ther-
moelastic instability (TEI) of the sliding contact.
Under these conditions, the coating wear increases
and acquires a catastrophic nature. The determination
of the conditions under which TEI occurs on sliding
friction contact interface assemblies is an important
problem for preventing wear in mechanisms and
machines. Thus, the reasons for the accelerated wear
process have been thoroughly studied, and they are
associated with the properties of a coating and a con-
tact interface, such as the hardness and the thermome-
chanics of a coating material, the friction properties of
its surface, the relative velocity of contact surfaces, the
coating thickness and the indentation resistance, the

mode and nature of the interaction of friction surfaces,
and the intensity of the supply of friction heat from a
contact interface into a coating.

The aim of this work is the theoretical study of the
dependence of the coating wear resistance on the
mechanical and thermomechanical properties of a
coating under the conditions of frictional heating. A
study of the wear resistance of the coating has been
performed using the quasi-static thermoelasticity
model [6, 9].

FORMULATION OF THE PROBLEM

The contact f lat deformation problem of the sliding
of a rigid, thermally insulated body in the form of the
half-plane I  moving at constant velocity V
over surface  of an elastic heat-conducting coat-
ing of thickness h  is considered. Coulomb
friction develops during the sliding of a contact inter-
face, which is accompanied by heating and the abra-
sive wear of the coating. The lower surface of the coat-
ing is rigidly bonded to an undeformed nonconducting
substrate in the form of half-plane II 
(Fig. 1) [6, 8, 9]. The heat f low formed on a contact
interface due to friction is directed to the elastic coat-
ing. Since the initial moment of time, the rigid body
moving along the y axis deforms the surface x = h of
the elastic coating, causing displacement along the
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direction opposite to the x axis in accordance with the
law . Before the initial moment, the coating was at
rest and its temperature was equal to zero.

It follows from the formulation of the considered
problem that the temperature, stress, and displace-
ment of the distributions in a coating do not depend on
the choice of the coordinate on the y axis, which is
parallel to the direction of the motion of a rigid body
(the half-plane I), and are functions of only the x
coordinate and time t [3–9]. In this case, the differen-
tial equations of thermoelasticity are used to describe
the quasi-static stress–strain state of the coating have
the following form:

(1)

where ,  are the Poisson’s ratio and the coefficient
of thermal expansion of coating material, u(x, t),
w(x, t) are the vertical and the horizontal displace-
ments, and T(x, t) is the temperature in a coating. The
temperatures T(x, t) in the coating are described using
the differential equation of thermal conductivity

(2)

where  is the thermal diffusivity of the coating.

The relation between the normal  and the
tangential  stresses; the displacements u(x, t),
w(x, t); and temperature T(x, t) are determined by the
Duhamel–Neumann relations

(3)

where  is the shear modulus.
The boundary conditions of the considered prob-

lem of the coating wear resistance are as follows:
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for the temperature properties ( ),

(8)

(9)

where f is the coefficient of friction, K is the thermal
conductivity, k is the heat transfer coefficient, and

 is the deepening of the half-plane I due to the
coating wear. The abrasive wear is described using the
model that determines the deepening  of a rigid
body (the half-plane I) due to the coating wear by the
following formula (Archard’s law):

(10)

where  is the normal compression stress on a
contact interface and K* is the coefficient of propor-
tionality between the work of friction forces and the
amount of material.

The initial conditions of the problem are zero so
that the following equalities are kept:

(11)

As a result, the considered problem of the coating
wear is reduced to solving the system of differential
equations (1), (2) under the boundary (5)–(10) and
initial conditions (11). The vertical displacements
u(x, t), the normal stress , and the tempera-
ture  in the coating are determined regardless of
the horizontal displacements w(x, t). After the deter-
mination of the normal stress , the horizontal
displacements w(x, t) are determined from the second
differential equation (4) and the boundary (5), (7), (8)
and initial conditions (11).

SOLUTION OF THE PROBLEM

The solution of the formulated problem of the
coating wear is determined using the integral Laplace
transform [10]. As a result of the inversion of the
Laplace transform, the solution of the problem (the
temperature T(x, t), displacements u(x, t), and stresses
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Fig. 1. Formulation of the problem on the wear resistance
of the coating. Points denote sliding contact interface with
friction and coating wear.
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 in a coating) is written in the form of the
Laplace convolutions

(12)

(13)

(14)

(15)

(16)

(17)

 (18)

(19)

(20)

(21)

where  in (21) is given after (15). In the quadratures
(13), (17), (20), the integrands are regular on infinity

, while the extraintegral terms in the formu-
las for u(x, t) (16) and  (19) are regular compo-
nents of the obtained generalized solutions. To calcu-
late the quadratures (13), (17), (20), where the inte-
grands are meromorphic in the complex plane, the
methods of the complex analysis are used. Under the
assumption that the poles of integrands in (13), (17),
(20) are known in the complex plane and single, these
quadratures are calculated using the residue theorem.
Substituting the resulting formulas for , ,  in
(12), (16), (19), then calculating the convolution inte-
grals yields the new formulas for , ,
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 in the form of series for poles  of the inte-
grands from (13), (17), (20)
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In (25), the formula for calculating  is
given, where index a is substituted for T, u, ; func-
tions , ,  are given in (14),
(18), (21); and the derivative  is denoted by .

The horizontal displacements w(x, t) in the coating
are determined by the following formula:

where  is from (24).

POLES OF INTEGRANDS 

The poles of the integrands  ,
according to which the solutions of the problem (22)–
(24) are constructed, are the roots of the equation

 in the complex plane, where  is from
(15). The poles  depend on three dimensionless
parameters , , and  contained in R(z), which
influence their location in the complex plane. In
Fig. 2, for , Bi = 100, and different , the
trajectories   are given as follows: 
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, then the solutions (22)–(24) are unstable
because, in this case,  (if

Im(ζk) = 0) or do not exist . If
, then solutions (22)–(24) are stable. In

the space of the dimensionless parameters of the prob-
lem , , , the regions of stable solutions and
unstable solutions of the problem have been devel-
oped. In Fig. 3, the regions of stable and unstable solu-
tions of the problem in the plane  are shown for
different values Bi. As mentioned above, the unstable
solutions of the problem are characterized by the
unlimited increase in the amplitudes , 
at . This property of the unstable solutions on a
contact interface is often called the TEI of the sliding
contact interface. Note that, upon an increase in ,

( )Re 0kζ >
{ }lim ( , ), ( , )t xxT x t x t→∞ σ = ∞

( )( )ζ ≠if Im 0k

( )Re 0kζ <

V̂ wk Bi
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the region of stable solutions is widened while the
unstable one narrows (Fig. 3).

NUMERICAL ANALYSIS 
OF OBTAINED SOLUTIONS

The obtained solutions are used to study the wear
resistance of the coating materials during the sliding of
a rigid body (half-plane I) over the coating surfaces of
different materials often used in practice. Let the law
of the indentation  of a rigid body into a coating
consists of the active phase in  and the pas-
sive phase in  of indentation, e.g.,

(27)

where  is the time of the end (or the dura-
tion) of the active phase of the indentation and  is
the maximum level of the deepening (indentation) of
the rigid body (half-plane I) into a coating. The study
of the wear resistance of the coating considers three
coating materials, i.e., nickel alloy, nodular cast iron,
and aluminum alloy, whose parameters are shown in
Table 1.

In Fig. 4, the graphs of the change in the tempera-
ture T(h, t) calculated according to the formula (22);
the wear  according to the formulas (23), (4); and
the contact stress  according to for-
mula (24) are shown, which occur and develop over
time on a sliding thermal friction contact interface
between a rigid body (the half-plane I) and a coating
made of materials shown in Table 1. The values of
thermomechanical and geometric characteristics of a
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contact interface are as follows: k = 105 W/(m2 K), h =
5 mm, V = 1.6 mm/s,  = 0.1h = 0.5 mm,  =
0.0154 s−1,  = 45 s. The values of the dimensionless
parameters , , and Bi from (15) are shown in
Table 2. It is assumed that the wear of the coating sur-
face of the value  ends at  when the
stresses turn to zero . The time
of coating wear  to the preset value  characterizes
the wear resistance of the coating at fixed  and other
parameters of the friction contact interface. The val-
ues of  according to the calculation results for the
materials from Table 1 are shown in Table 2. The the-
oretical wear resistance of the coating  made of nod-
ular cast iron is several times higher than the coating
wear resistance made of other materials, although it is
achieved at the maximum values of temperature and
stresses on a contact interface.

In Fig. 5, the graphs of the change in the tempera-
ture  (22); the wear  (23), (4); and the con-
tact stress  (24) for a coating made of
aluminum alloy at three different values of the sliding

0Δ ε
tε

wk V̂

0 0.1hΔ = wt t=
( ( ) ( , ) 0)w xx wp t h t= −σ =

wt 0Δ
tε

wt
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velocity V are shown, i.e., 0.8, 1.6, and 2.4 mm/s. The
dimensionless parameter  acquires values of 0.0430,
0.0861, and 0.1291, respectively, while the time of wear

 = 159.2, 99.7, and 79.8 s, respectively. Note that,
upon an increase in the sliding velocity V, the tem-
perature on the contact interface increases insignifi-
cantly, while the stresses decrease.

The dependence of the thickness h of aluminum
alloy coating on the process of its wear to the fixed
depth  = 0.5 mm is demonstrated in Fig. 6, which
shows the graphs of the change in  (22), 
(23), (4),  (24) on the contact inter-
face for three values of h, namely 5, 10, and 20 mm.
The time of wear  of a coating to the same value =
0.5 mm for different thicknesses of the coating h dif-
fers significantly. For h = 5 mm, the time of wear is
159.3 s; for h = 10 mm, it is 268.2 s; and, for h =
20 mm, it is 469.9 s. It is noteworthy that the wear of
the thin coating (h = 5 mm) occurs at a maximum
contact pressure p(t), which indicates a higher resis-
tance to the indentation of a rigid body.
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0Δ
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Table 1. Parameters of coating materials

Material μ, GPa ν K, W/(m K) κ, 10–6 m2/s α, 10–6 K–1 f K*, 10–12 m2/N

Nickel alloy 76.34 0.31 90.9 22.2 13.4 0.64 5
Nodular cast iron 62.8 0.25 62.8 17.94 10.4 0.16 4.5
Aluminum alloy 24.81 0.34 209.3 88.09 22.09 0.47 7.5

Fig. 4. Graphs of temperature , wear uw(t), and contact stress  for different coating materials: nickel alloy
(solid line), high-strength cast iron (dashed line), and aluminum alloy (dash-and-dot line).
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Table 2. Values of kw, , Bi, and time of wear tw for calculating the graphs in Fig. 4

Material kw Bi tw, s

Nickel alloy (1) 0.8047 0.4000 5.5006 60.4485
Nodular cast iron (2) 0.9088 0.0489 7.9618 254.9745
Aluminum alloy (3) 0.3833 0.0861 2.3889 99.6870
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Figure 7 shows the dependence of the temperature
 (22), the wear  (23), (4), and the contact

stress  (24) on a sliding friction con-
tact interface on the value of the parameter , which
characterized the duration of the active phase of
indentation of a rigid body (the half-plane I) into a
coating . The sliding velocity V = 1.6 mm/s,
the coating thickness h = 5 mm, and the indentation
depth  = 0.5 mm are fixed, while the duration of the
active phase of indentation  acquires values of 45, 90,
and 180 s. The corresponding time of wear  for the
above  is 99.6, 144.7, and 234.9 s. It can be seen from

( , )T h t ( )wu t
( ) ( , )xxp t h t= −σ

tε

0 t tε< <

0Δ
tε

wt
tε

Fig. 7 that regulating the time of indentation tε of the
rigid half-plane I can provide lower values of the tem-
perature and the stresses on a contact interface at the
same amount of wear.

CONCLUSIONS

The considered model for the wear of an elastic
coating during the sliding of a rigid body on it taking
into consideration the friction and frictional heating of
the coating was used for a theoretical study of the wear
resistance of the coating depending on the thermome-
chanical properties of the coating material, the relative

Fig. 5. Graphs of temperature , wear uw(t), and contact stress  for coating made of aluminum alloy for
V = 0.8 (solid line), 1.6 (dashed line), and 2.4 mm/s (dash-and-dot line).
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Fig. 6. Graphs of temperature , wear uw(t), and contact stress  for coating made of aluminum alloy for
h = 5 (solid line), 10 (dashed line), and 20 mm (dash-and-dot line).
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Fig. 7. Graphs of temperature , wear uw(t), and contact stress  for a coating made of aluminum alloy for
tε = 45 (solid line), 90 (dashed line), and 180 s (dash-and-dot line).
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sliding velocity of the friction surfaces at the contact
interface, the thickness of the coating material, the
time interval of the active phase of indentation of a
rigid body into an elastic coating, and other wear char-
acteristics. The resulting formulas can be used to find
the optimal modes of the coating wear in terms of tem-
perature and stresses on the contact interface.

NOTATION

Bi, , dimensionless parameters
D Laplace transform of the indentation law
f coefficient of friction
h thickness of the elastic coating
i imaginary unit
k heat transfer coefficient
K thermal conductivity

coefficient of proportionality between
the work of friction forces and the
amount of material
numerator of an integrand

R denominator of an integrand
Re real part of a complex number
Im imaginary part of a complex number
t time

duration of the active phase of inden-
tation
ratio of squared coating thickness to
thermal diffusivity
dimensionless time (time divided by )

T temperature of the coating
u, w vertical and horizontal displacements

in the coating
deepening of the half-plane I due to the
coating wear

V sliding velocity of the half-plane I
x, y coordinates
z complex integration variable

set of poles of an integrand
coefficient of thermal expansion
law of the half-plane I indentation
into a coating 
maximum indentation depth
parameter of the indentation law
thermal diffusivity of the coating

, normal and tangential stresses in the
coating

shear modulus of the coating material
Poisson’s ratio
density
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