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INTRODUCTION

In some cases during the operation of heavy�duty
brakes, temperature gradients in the friction members
lead to a substantial increase in local thermal stresses on
their working surfaces [1]. In particular, high tempera�
ture gradients in zones of the real contact of the brake
pad with a brake disk induce sharp thermal shocks and
the appearance of thermal�damage spots, over the
boundaries of which thermal cracks rapidly propagate
after even a few brakings [2]. Moreover, thermal stresses
result in the warping of disks, which reduces the contour
and apparent areas of contact, as well as increases the
local thermal loading and the local wear of the working
surfaces [3]. Therefore, the study of the thermal stress
state based on the known temperature distribution is an
important stage of calculating the thermal operating
conditions of brake systems [4].

State�of�the�art of works on methods of determin�
ing thermal stresses in disk brakes are presented in
reviews [5, 6]. We note that the majority of the works are
devoted to studying frictional heating during single
intermittent or long�term brakings. The thermal stress
state of a brake disk during repeated intermittent brak�
ing is less well understood. This mode of braking is “a
series of successive brakings after each of which the
temperature of sliding contact and the temperature of
volumes of the brake members increase and reach a
steady value” [7]. This mode of braking is typical of car
brakes during city and mountain driving. When model�
ing the thermal state of a disk, which is heated during
repeated intermittent brakings, the convection cooling
of the working surfaces of the disk should be taken into
account [8]. 

The aim of the work was to study the effect of heat
transfer from the free surfaces of the disk during

repeated brakings on the distributions of the tempera�
ture and thermal stresses in the disk.

FORMULATION OF THE PROBLEM

Let us consider a brake disk with thickness 2δ and
an inner radius rd and outer radius Rd, which rotates at
a constant angular velocity ω0 (Fig. 1a). At the initial
moment of time t = 0, two pads with angular lengths
θ0, inner radii rp, and outer radii Rp = Rd are pressed to
the end surfaces of the disk by pressure p0; here and
below, all variables and parameters related to the disk
and pad are designated by the subscripts d and p,
respectively. Because of friction, the angular velocity
of the disk linearly decreases to the zero value at the
moment it stops, t = ts, and heat is generated in the
zones of the contact between the pads and the disk.
Upon stopping, the pads immediately depart from the
surfaces of the disk, which again accelerates to the ini�
tial velocity ω0 for the time t = tc after which new brak�
ing begins. The total number of breakings and acceler�
ations of the disk is n and the duration of each cycle is
tsc = ts + tc. Upon completing the last nth cycle, the sta�
tionary disk undergoes convection heating for the time
t = tcn. Thus, the total duration of the process of the
heating and cooling of the disk end surfaces is tend =
ntsc – tc + tcn. During this time, convection heat trans�
fer to the environment occurs on the free surfaces of
the disc with the constant coefficient of heat transfer h.
Because of the axial symmetry of the thermal load,
when determining the temperature and thermal
stresses, it is sufficient to consider the heating and
cooling of a disk of the thickness δ, which is related to
the cylindrical system of coordinates rθz (Fig. 1a).
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The temperature field T(r, z, t) in the disk can be
determined from solving the following axisymmetric
boundary heat�conduction problem:
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where, in accordance with the accepted mode of brak�
ing, the intensity of the frictional heat flow directed
into the disk along the normal to the friction surface
can be written as follows:
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Here, γ = θ0/(2π) is the overlapping factor [9] and

 is the heat�partitioning
factor [10].

If the temperature distribution is known, the com�
ponents σr, σθ, σz, and σrz of the stress tensor can be
determined from solving the following quasistatic
boundary thermoelasticity problem:
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where u = {ur, uz} is the displacement vector and  is the
Hamiltonian in the cylindrical system of coordinates.
The stresses and displacements in Navier equation (10)
and homogeneous boundary conditions (11)–(14) are
related by the following Duhamel–Neumann rela�
tions:

(15)
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NUMERICAL SOLUTION AND ANALYSIS

Boundary heat�conduction problem (1)–(9) and
boundary thermoelasticity problem (10)–(17) were
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Fig. 1. Schematics of (a) contact of pad with disk and (b) heating and convection cooling of disk with FEM network.
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successively solved using the FEM, which was imple�
mented in the MSC.Patran software package and the
MSC.Nastran computation module [11]. The calcula�
tion model consisted of 33193 nodes and 65243 axi�
symmetric triangle CTRIAX6 elements. The density
of the elements near the zone of frictional heating in
which high gradients of the temperature and the ther�
mal stresses occurred was increased (Fig. 1b). The
minimum size of an element was 0.02 mm, while the
maximum size was 0.2 mm. The numerical solution of
the heat�conduction problem (1)–(9) was found with
the step Δt = 0.001 s during braking and Δt = 0.01 s
during the acceleration of the disk. The obtained val�
ues of the temperature at the nods of the spatial net�
work were used as the input data for solving thermoelas�
ticity problem (10)–(17). The calculations took a long
time since, during the determination of the temperature
field at every tenth time step, 7860 boundary ther�
moelasticity problems of type (11)–(17) had to be suc�
cessively solved in order to achieve the time tend. There�
fore, in order to automate the process of recording
temperature values at the nods of the finite�element
network at each time step and to subsequently use
these values as the input parameters for the numerical
solution of the thermoelasticity problem, the
MSC.Nastran module was added with a program writ�
ten in Python language. One more author program
written in the same language admitted to carry out
simultaneous computations for four time steps, while
the third program made it possible to process the
results obtained at each time step in separate files.

The calculations were carried out for a ChNMKh
cast�iron disk and an FMK�11 metal�ceramic pad.
The thermal and mechanical characteristics of
ChNMKh cast iron were as follows [2]: Kd = 51 W/(m K),
kd = 14.4 m2/s, αd = 0.108 × 10–6 K–1, Ed = 99.97 GPa,
and νd = 0.29. In the accepted calculation model, the
effect of the temperature and, therefore, thermal
stresses in the disk was taken into account by introduc�
ing the heat�partitioning factor η; that factor could be
calculated if the thermal characteristics of the FMK�
11 material were known, which were taken as follows
[2]: Kp = 34.4 W/(m K) and kp = 14.64 m2/s. The
dimensions of the disk and the pad were taken the
same as those in [8], i.e., rd = 66 mm, rp = 76.5 mm,
Rd = Rp = 113.5 mm, δ = 5.5 mm, and θ0 = 64.5°. The
remaining input parameters were as follows: p0 =
1.47 MPa, ω0 = 88.46 s–1, f = 0.5, ts = 3.96 s, tc = 10 s,
tcn = 300 s, and n = 10.

A total duration of ten cycles of frictional heating in
the course of braking and cooling in the course of sub�
sequent acceleration, including the duration of the
convective cooling of the disk after the last (10th) stop,
was tend = 10(3.96 s + 10 s) – 10 s + 300 s = 429.6 s. In
accordance with this sequence of the cooling and

heating of the disk, the time variations in dimension�
less pressure p*(t) (8) and angular velocity ω*(t) (9), as
well as of their product ω*(t)p*(t), which describes the
time profile of intensity of the frictional heat flow
qd(r, t) (7), are shown in Fig. 2.

The variations of the temperature and thermal
stresses at the inner (r = rd) and the outer (r = Rd) edges
of the working surface of the disk (z = 0) with time t
were studied. In accordance with the aim of this work,
the calculations were carried out for the values of the
coefficient of heat transfer h that varied from zero in
the case of the thermal insulation of the free surfaces
of the disk to the maximum value of 100 W/(m2 K) in
the case of the forced air cooling of those surfaces.

With an increase in the number of brakings, the
temperature of the surface of the disk increases
(Fig. 3). The time profiles of the temperature for the
selected values of the radial variable are different. At
h = 0, the temperature of the inner edge of the disk
increases nearly monotonously with time and reaches
the steady value of 583°C after the last (10th) braking.
The temperature of the outer edge of the disk at this
value of the coefficient of heat transfer fluctuates; i.e.,
it increases during each braking and decreases during
the subsequent acceleration of the car to a value that
somewhat exceeds the initial value and eventually
reaches the same steady value of 583°C obtained at the
inner edge. In the case of the thermally insulated free
surfaces of the disk, the maximum value of the tem�
perature of 624°C is achieved during the last braking.
The consideration of convective cooling (h =
100 W/(m2 K)) leads to a general decrease in the tem�
perature of the disk and to fluctuations in the temper�
ature at its inner edge. In this case, the maximum tem�
perature at the outer edge of the disk during the last
cycle is equal to 441.6°C, while the minimum temper�
ature, which is achieved at the end of the time interval
under consideration (at t = tend), is equal to 77.3°C.

The variations in the maximum temperature Tmax

and the temperature Tend achieved at the moment of
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Fig. 2. Variations in dimensionless (1) pressure p*(t),
(2) angular velocity ω*(t) and (3) intensity of frictional
heat flow p*(t)ω*(t) with time t.
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time t = tend with an increasing coefficient of heat
transfer h from 0 to 100 W/(m2 K) are shown in Fig. 4.
Since at a constant value of h the specific friction
power reaches the maximum value at the outer edge of
the disk (at r = Rd), the temperature at this edge also
takes on the maximum value. The sharpest drop in the
temperature with intensifying convection cooling
occurs at the last moment of time t = tend; the temper�
ature drops from 583°C in the case of the thermal
insulation of the free surfaces of the disk to 77.3°C in
the case of h = 100 W/(m2 K).

The fluctuations in the temperature during
repeated intermittent braking (Fig. 3) lead to the fluc�
tuations in the thermal stresses at both inner and outer
edges of the heated surface of the disk (Fig. 5). In
accordance with boundary conditions (11), the radial
σr and the circumferential σθ components of the stress
tensor take on nonzero values on the working surface
of the disk. The positive radial stress σr at the inner
edge of the disk has only a pronounced value when the
intensive cooling of the free surfaces of the disk occurs
(Fig. 5a). At the outer edge of the disk, the sign of the
stress σr changes from negative during braking to pos�
itive during the acceleration of the disk. The absolute
value of the radial stress during the entire ten cycles
does not exceed 1.2 MPa. At the same time, the cir�
cumferential stress σθ has the positive sign at the inner
and the negative sign at the outer edges of the heated
surface of the disk (Fig. 5b). The maximum values of
|σθ| increase with an increasing number of brakings
and reach the extreme values during the last (10th)
cycle. Convection heating has no pronounced effect
on the value of σθ > 0 at r = rd and leads to an increase

in the value of |σθ| at the outer edge of the disk (at r =
Rd) by ~30%. Upon completing the last cycle, the cir�
cumferential stress at the inner edge of the disk
monotonously decreases with time, but continually
remains tensile. During this period of time, the sign of
the stress σθ at the outer edge of the disk changes from
negative to positive; i.e., a high tensile circumferential
stress arises. The stress state of the working surface of
the disk was assessed using the generalized Huber–
Mises–Henky stress (the stress intensity)

 At h = 0, the maximum
value of this stress σHMH = 73 MPa is achieved at the
inner edge of the disk at the end of the last (10th) cycle,
i.e., at moment of time t = 128.54 s (Fig. 5c). The
maximum values of the stress σHMH achieved in each
cycle increase during a few initial cycles and then
reach a steady value. Thus, an increase in the number
of cycles of the braking and acceleration of the disk
does lead to a monotonous rise in the stress intensity in
contrast with the temperature.

Figure 6 shows the effect of the intensity of the
cooling of the disk on the stress intensity. The graphs
are plotted for the maximum values of the stress σHMH

and the values of this stress achieved at the moment of
time t = tend at the inner (r = rd) and the outer (r = Rd)
edges of the working surface of the disk. With an
increase in the coefficient of heat transfer, the maxi�
mum stresses at the inner (outer) edges of the disk
somewhat increase (decrease) from 73 MPa
(54.1 MPa) at h = 0 to 74.3 MPa (46.2 MPa). The
effect of the parameter h on the stress intensity σHMH

at t = tend is more pronounced, but the values of this
stress do not exceed 2 MPa.
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Fig. 4. Dependences of (1, 2) maximum temperature and
(3, 4) temperature achieved at t = tend at inner (r = rd) and
outer (r = Rd) edges of heated surface (z = 0) of disk on
coefficient of hear transfer h.
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CONCLUSIONS

The numerical solutions to the axisymmetric heat
frictional problem for the pad–disk system and the
corresponding quasistatic thermoelasticity problem

have been obtained using the FEM. The temperature
field and the thermal stress state of the disk during
repeated intermittent braking have been calculated for
the FMK�11 metal�ceramic pad–ChNMKh cast iron
disk friction pair. The effect of the coefficient of heat
transfer from the free surfaces of the disk on the evolu�
tion of the temperature and the thermal stresses during
ten cycles of the braking and the subsequent accelera�
tion of the disk has been studied. It has been found that
each new cycle leads to an increase in the maximum
temperature of the working surface of the disk. At the
end of the last (tenth) cycle, the maximum tempera�
ture at the outer edge of the disk is equal to 624°C. The
intensification of convective cooling leads to a
decrease in the temperature, which is sharpest at the
end of the time interval under consideration. The fluc�
tuations in the temperature during each cycle deter�
mine the time variations in the thermal stresses. Near
the inner edge of the friction surface of the disk, high
(≈70 MPa) tensile circumferential stresses arise, which
have a decisive effect on the value and character of the
changes in the stress intensity (the Huber–Mises–
Henky stress). This conclusion agrees with the experi�
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Fig. 6. Dependences of Huber–Mises–Henky stress
σHMH at inner (r = rd) and outer (r = Rd) edges of heated
surface (z = 0) of disk on coefficient of hear transfer h:
(1, 2) maximum value and (3, 4) value achieved at t = tend.
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mental data obtained in work [12], in which it is shown
that the origination of radial cracks is only possible
near the inner edge of the disk, which leads to the
deterioration of the frictional characteristics of the
brake. The free convection cooling of the disk has no
pronounced effect on the thermal stress intensity.
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NOTATION

f coefficient of friction 
E modulus of elasticity 
h coefficient of heat transfer 
K thermal conductivity
k thermal diffusivity 
n number of cycles 
p0 pressure 

r radial coordinate
rp, d inner radius

Rp, d outer radius

t time 
ts duration of braking 

tc duration of acceleration

tcn duration of cooling of disk upon 
completing last cycle 

tend total duration of process 

T temperature 
T0 initial temperature

ur, uz displacements 

z axial coordinate
α coefficient of linear thermal expansion 
δ thickness
ν Poisson’s ratio
θ angular coordinate
θ0 angle of contact

σ stress
ω angular velocity
ω0 initial angular velocity

Subscript 

p means values related to pad
d means to disk
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