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INTRODUCTION

A serious problem in manufacturing engineering
when producing precise parts with high wear resis�
tance and surface quality is improving performance by
reducing the number of manufacturing steps and
selecting reasonable production methods [1]. An effi�
cient way to solve this problem is the plastic smoothing
of rough surfaces after the removal of basic tolerance
using a high�performance cutting tool and the elimi�
nation of labor�consuming additional finish steps [1, 2].
Taking into account strict requirements for the preci�
sion and roughness of surfaces, high performance is
especially topical in the machining of parts made of
up�to�date high�temperature chromium–nickel
alloys.

A plastic smoothing tool should have high rigidity,
precision, and wear resistance; its surface quality
should be by an order of magnitude better than that of
the part under machining. To this end, the plasma
deposition of wear�resistant coatings is efficient [3]. 

Plastic smoothing belongs to processes of the sur�
face plastic deformation (SPD) of metal parts aimed at
improving the wear resistance and quality of their sur�
faces. In the majority of SPD processes, plastic defor�
mation propagates to a depth that substantially
exceeds the height of microasperities. The modeling of
stationary SPD processes during the sliding and roll�
ing of tools with various shapes is considered in works
[4, 5]. These results are of interest from the viewpoint
of estimating process parameters of SPD and studying
problems of rolling and sliding friction under heavy
loads [6].

The difference of plastic smoothing from SPD
consists of a decrease in the surface roughness due to

the deformation of microasperities. During the hori�
zontal sliding of a tool, discrete contacts continuously
change, the area of the contact expands, the contact
pressure increases, surface valleys become filled with
the material, and the surface roughness decreases.

In this work, we carry out the modeling of the pro�
cess of the plastic smoothing during the sliding of a
rigid tool with a circular profile over a rough surface
with a periodic shape of asperities and valleys, which is
determined by the machining parameters. At high
plastic deformations of asperities of the surface being
machined, the model of a perfectly plastic solid can be
used [7–9]. The tool with the circular�shaped working
surface is assumed to be rigid and to have a roughness
negligibly small as compared to that of the surface
being machined. The Prandtl contact friction stress is
taken into account. The ultimate deformation of
asperities of the original roughness of the surface
under machining is limited by a high Prandtl contact
pressure; when the contact pressure begins to exceed�
ing this pressure, plastic deformation propagates deep
into the surface layer following the mechanisms con�
sidered in works [4, 5].

PROBLEM FORMULATION 
AND BASIC EQUATIONS

Figure 1 shows the plastic deformation of the rough
surface by the rigid tool with the circular contact sur�
face. The roughness of the tool surface is assumed to
be negligibly small as compared to the roughness of the
part surface, which, after machining, has the periodic
shape with straight boundaries of the asperities and
valleys. 
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The height of asperities with regard to the line of
valleys is taken to be the characteristic linear dimen�
sion RA = 1. The dimensionless half�length L between
and the asperities and the valleys is related to the half�
angle β at asperity summits and valleys by the formula
L = tanβ. The discrete plastic deformation of the
asperities occurs during the horizontal sliding of the
tool over the surface under machining with the veloc�
ity V and the vertical displacement Δ0 < 1/2 of the low�
est point of the circular profile of the tool with the
radius R0. The zone of discrete contacts is determined
by the angle α0 at the intersection of the boundary of
the tool with the line of valleys. Under the condition
R0  1, the angle α0 and the number of the discrete
contacts Nc are determined by the following formulas:

α0 = (1)

Nc = int(R0α0/2L) + 1. (2)

During the sliding of the tool, the asperity that is
offset by 2L(Nc – 1) from the origin of coordinates O
is first to come into contact. Plastic deformation
ceases at the asperity with the number Nc at x = 0.
Under the condition αi  1, the distances xi, the angles
of slope of the tangent to the profile of the tool αi, and
the vertical deformations Δi of the deformed asperities
with the numbers i = 1, 2, … , Nc are determined by the
following formulas:

  (3)

Because the angles αi are small, we take the shape
of the boundary of the tool when the asperities with the
numbers i are deformed to be straight with the angles
of slope to the x axis αi and consider the plane plastic
deformation of a perfectly plastic solid [7–9]. 

The unit of the stress is the doubled plastic constant

2k = 1, where  taking into account high
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plastic deformations of the asperities. At the boundary
of the tool, the Prandtl contact friction stress τc < 0.5
is taken into account. Plastic flow obeys the following
differential equations of the slip lines ξ and η:

for ξ and for η, (4)

where ϕ is the angle of slope of the tangent to the slip
line ξ with the x axis by the Hencky relations for the
average stress σ and the angle ϕ 

σ – ϕ = const along ξ and σ + ϕ = const along η, (5)

and by the Geiringer relations for the projections of
the velocities Vξ and Vη on the slip lines

(6)

Equations (4) and (5) make up the system for cal�
culating coordinates of node points of the slip lines, as
well as values of σ and ϕ in these points, using numer�
ical procedures presented in work [10]. Equations (6)
determine the orthogonal reflections of the curved slip
lines ξ' and η' on the plane of the hodograph of the
velocities Vx and Vy 

(7)

which are used to calculate the velocity field on the
hodograph plane.

During the deformation of first asperities at small
displacements Δi, the geometric similarity of the
expanding plastic zone is retained. This deformation is
described by the model of the asymmetric plastic
deformation of a wedge by a sliding inclined tool. As
the asperities continue to move toward point O
(Fig. 1), the vertical displacements Δi grow to the
maximum value Δ0, the length of the discrete contacts
increases, a nonstationary plastic zone is formed, and
the valleys become filled with the material. The
assigned value Δ0 is restricted by the limiting pressure
applied to the tool, which leads to the deformation of
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Fig. 1. Plastic deformation of rough surface by sliding tool. (1)–(6) are numbers of deformed asperities.
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the core of the part and the formation of a plastic zone
with the depth exceeding the height of the asperity RA.

FIRST STAGE OF DEFORMATION

Figure 2 shows the slip lines and the velocity
hodograph of the automodeling stage of the deforma�
tion of the asperities in the coordinates x, y with the
origin O placed at the summit of an asperity in the
form of the combined unit diagram. As the unit of
the length, we take the vertical displacement Δ and, as
the unit of the velocity, we take the vertical velocity
of the embedment of the tool Vh = Vtanα. In this unit
diagram, the plastic zone and the velocity hodograph
remain unchanged because of the geometric similarity
of the expanding plastic zone. 

During the sliding of the tool, the asymmetric
deformation of the asperity occurs and the material is
displaced on the inclined boundary AB at the angle θ
to the right boundary of the asperity. The stresses in the
plastic zone ABCDE, which obey Eqs. (4) and (5) with
the boundary condition σ = –0.5 at the free boundary
AB and the condition of contact friction τc = μ at the
boundary AE, are determined by the uniform stress
state in the zones ABC and ADE, as well as the centered
spiral fan with the angle of the fan ψ at point A. The
normal pressure applied to the tool is found using the
following formula:

p = ψ + 0.5(1 + sin2γ), where γ = 0.5arccos2μ. (8)

From the equality of the areas of the triangles OEF and
ABF, as well as the condition of the plastic incom�
pressibility, the following transcendental equation for
the angle θ can be derived:

(9)
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In the small�angle approximation, the solution to
Eq. (9) can be written as follows:

 (10)

The improved value of the angle θ is found by solving
Eq. (9) using the Newton method. The length of the
boundary of the contact lc and the angle of the spiral
fan ψ are then calculated as follows:

 (11)

ψ = β + γ – (π/4 + α + θ). (12)

The forces that act on the tool increase in the linear
proportion with growing displacement Δ and are
determined by the contact stresses as follows:

(13)

The plastic deformation is determined by the
velocity hodograph cd with the break along the rigid�
plastic boundary [V] = cosα/sinγ, which gives rise to
the jump of the equivalent plastic deformation; this
jump occurs when material points cross the rigid�plas�
tic boundary. The distribution of the deformation in
the zone ACD can be found by the numerical integra�
tion of the trajectories of the movement of the material
points in the unit diagram [7, 8]. 

The ultimate value of  at which the automodel�
ing stage of the deformation of the asperity still persists
is determined by the shift of point B to the lowest point
of the valley.

SECOND STAGE OF DEFORMATION

Upon reaching the inequality Δ >  the filling of
the right valley and the plastic flow of the left boundary
of the asperity begin. Figure 3 shows the slip lines that
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Fig. 2. Slip lines and velocity hodograph at first stage of deformation. Combined unit diagram.
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are determined by the free boundaries AB and A1B1.
The angle of slope of the right boundary AB to the ini�
tial inclined boundary of the asperity θ1 = θ, the angle
ψ of the spiral fan at point A, and the pressure p at the
interface with the tool are the same as those consid�
ered at the first stage. From the condition of the con�
tinuity of the pressure p at the interface AA1, there fol�
lows an equality of the angles of the spiral fan ψ at
points A and A1 in the right and left plastic zones with
the angle of slope θ2 = θ1 + 2α of the left boundary
A1B1 to the left initial boundary of the asperity.

It follows from the condition of plastic incompress�
ibility that the area S0 of the triangle EFO1

S0 = Δ2cot β/(cot2 β – tan2α) (14)

is equal to the sum of the area S1 of the quadrangle
ABDF on the right face and the area S2 of the triangle
A1B1E on the left face of the deformed asperity. If the
coordinates of point A are known, the coordinates of
point B can be found at the intersection of the straight
lines AB and BD. Therefore, the area S1 is the function
of the coordinate xA of point A. The area S2 is deter�
mined by the coordinates of points A1 and E, as well as
point B1, which lies at the intersection of the straight
line A1B1 with the left inclined boundary of the asper�
ity. The calculation of the area S2 yields a quadratic
equation for the coordinate xA1 point A1. Since S2 =
S0 – S1(xA), the coordinate xA1 is also a function of the
coordinate xA.

The conjugation of the right and left plastic zones
at point C leads to the following transcendental equa�
tion for the coordinate xA:

l1(xA) + l2(xA) – (xA – xA1(xA))  = 0, (15)
where l1 and l2 are the lengths of the free boundaries AB

and A1B1 of the right and left plastic zones. At Δ = 
the left plastic zone is contracted to point E and the
coordinate xA is the same as that considered at the first

stage of deformation. At the value of Δ >  close to

 the initial approximation for xA is taken to be equal

to the value of xA at Δ =  The solution of Eq. (15)
using the Newton iteration method yields the value of

2 sin cosγ α
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xA at Δ >  and the coordinate xA1. The length of the
boundary of the contact is then determined as follows:
lc = (xA – xA1)/cosα. The contact pressure p, as well as
the forces Qx and Qy, are found using formulas (8),
(12), and (13). 

The velocity hodographs of the right and left plastic
zones are determined by the jump of the velocity along
the rigid�plastic boundaries and have the same form as
the velocity hodographs considered at the first stage of
deformation. The second stage of deformation ceases

upon reaching the displacement  at which the coor�
dinates y of points B and B1 coincide.

THIRD STAGE OF DEFORMATION

Upon reaching the inequality Δ >  the valleys to
the right and to the left of the deformed asperity
become filled with the material, which leads to a
decrease in the lengths of the free boundaries of the
right and left plastic zones, as well as to an increase in
the pressure applied to the tool. The slip lines and the
distribution of the contact pressure at the third stage of
the deformation of the asperity are shown in Fig. 4. 

The asymmetry of plastic flow, which comes from
the preceding stage, is retained. As the displacement Δ
increases and the angle α decreases when approaching
the exit of the asperity from the plastic deformation
zone, this asymmetry becomes less pronounced. At
point D, plastic flow is divided. We determine the
asymmetry of plastic flow by the relation ac = A1D/AD.
The displaced areas S1 and S2 on the right and left faces
of the asperity are related as follows: ac = S2/S1. The
condition of plastic incompressibility and the use of for�
mula (14) for the area S0 lead to the following equation:

(1 + ac)S1 = Δ2cotβ/(cot2β – tan2α). (16)

The calculation of the area S1 and the substitution
of the obtained value into (16) yield a quadratic equa�
tion for the coordinate xA of point A. The calculation
of the area S2 and the use of the relation S2 = acS1 in
which S1 is known after the calculation of the coordi�
nate xA lead to a quadratic equation for determining
the coordinate xA1 and the length of the boundary of
the contact lc.
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Fig. 3. Slip lines at second stage of deformation.
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The slip lines in the zones ABC and A1B1C1 are
determined by the lengths l1 and l2 of the free bound�
aries AB and A1B1, as well as the angle of the fan ψ. The
slip lines in the zones BCD and B1C1D1 can be found by
the numerical integration of Eqs. (4) and (5) taking
into account the friction at the boundaries of the con�
tact CD and C1D. From the conditions of the continu�
ity of the normal pressure at point D, the inequality of
the angle ψ1 of the centered spiral fan at points B and
B1 follows. In the numerical solution, the length s1 of
the section CD and the length s2 of the section C1D are
functions of the angle ψ1, which can be found from the
following equation if the length of the boundary of the
contact lc is known: 

 (17)

Equation (17) is determined by calculating the slip
lines, as well as the functions s1(ψ1) and s2 (ψ1), at a
stepwise increase in the angle ψ1 with a small step. The
range of the angles (ψ1)i and (ψ1)i + 1 in which the
function f (ψ1) changes its sign is found. The value of
the angle ψ1 within this range can be found using linear
interpolation. 

Figure 5 presents the velocity hodograph on the
plane Vx, Vy, which is determined by the jump of the
velocity [V] = sinα/sinγ at point D (Fig. 4) at the ver�
tical velocity of the tool Vh = tanα. The rigid�plastic
boundaries are shown in the hodograph by the arcs of
circles with the angles of the centered fans ψ and ψ1.
The plastic zones are represented in the hodograph by
the curves ξ' and η' orthogonal to the slip lines, which
have been found during the numerical solution of
Eqs. (7). At small angles α, the slip lines and the veloc�
ity hodographs of the right and left plastic zones
become symmetric.
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FINAL STAGE OF DEFORMATION

At the final stage of the deformation of the asperity,
when α = 0 in the lowest point of the tool profile and
the displacement Δ0 has the maximum value, the con�
tact pressure applied to the instrument has also the
maximum value, but no increase in the plastic defor�
mation of the material occurs, since the vertical veloc�
ity of the sliding tool is equal to zero. The value Δ0 <
1/2 determines the final filling of the valleys between
the asperities with the residual depth δ with regard to
the boundary of the contact with the tool (Fig. 6).
From the condition of symmetry at α = 0 and the con�
dition of plastic incompressibility, the following rela�
tions can be derived:

(18)

δ = lcos(β – θ), (19)

lc = 2[L – lsin(β – θ)], (20)
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Fig. 4. Slip lines and contact pressure at third stage of deformation.

A1B1

ψ

B1

ξ

AC

η'
Vy

B

η' η'

ψ1

Vh

ψ
Vx

ψ1

α DA1C1

AB

ξ'
ξ'

D

Fig. 5. Velocity hodograph of plastic zone shown in Fig. 4.



298

JOURNAL OF FRICTION AND WEAR  Vol. 36  No. 4  2015

NEPERSHIN

where l and θ are the length of the free boundary AB
and the angle of slope of this boundary to the initial
lateral boundary of the asperity shown in Fig. 6 by the
dashed lines.

Figure 7 shows the slip lines for the left half of the
symmetric plastic zone, which depends on Δ0 and δ.
The angle ψ of the centered spiral fan at point A is
determined by formula (12) at α = 0. Upon reaching
the ultimate value ψ1 = π/2 + θ – β of the angle ψ1 of
the centered spiral fan at point B, the plastic zone
propagates deep into the material along the symmetry
lines x = ± L. The distribution of the pressure p at the
boundary of the contact is determined by the values of
σ at the node points at the boundary of the contact
with account for friction μ as follows:

p = –σ + 0.5sin2γ, where γ = 0.5arcos2μ. (21)

NUMERICAL MODELING

The numerical modeling of the plastic deformation
of the rough surface by a circular tool was carried out
using the software package in FORTRAN language to
calculate the entire process and the separate stages of
the deformation of microasperities.

Figure 1 shows the deformation of the rough sur�
face with the parameters RA = 15 μm, 2L = 100 μm,
and Δ0 = 6.72 μm by the tool with the radius R0 =
20 mm at μ = 0.05. The point of the intersection of the
tool contour with the line of asperity summits is deter�
mined by the angle α0 = 0.026 and the coordinate x0 =
518.4 μm in the deformation of six asperities. The
deformation of the first and second asperities follows
the model for the first stage of deformation. For the
third, fourth, and fifth asperities, the asymmetric plas�
tic flow occurs following the model for the third stage
of deformation, which transits to symmetric plastic
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flow during the deformation of the sixth asperity, when
x = 0 and α = 0. The final depth of the valley δ at the
exit from the plastic deformation zone is equal to
5.47 μm. 

Table 1 presents the angles of slope of the surface of
contact α, as well as the dimensionless values of the
vertical displacement Δ, the length of the contact lc,
the average pressure q, and the forces that act on dis�
crete contacts of the tool with the asperities on the
rough surface. The total dimensionless values of the
horizontal and vertical forces applied to the tool are
equal to 1.181 and 39.07, respectively.

Figures 2 and 3 show the slip lines for the first and
second stages of the deformation of the asperities on
the rough surface plotted for the parameters presented
in Fig. 1. Figures 4 and 5 show the slip lines with the
distribution of the contact pressure and the velocity
hodograph for the third stage of the deformation of the
fifth asperity presented in Fig. 1.

Figures 6 and 7 shows the distribution of the con�
tact pressure and the slip lines for the final stage of
deformation, which have been calculated for the
parameters of the deformation of the rough surface
presented in Fig. 1 at Δ0 = 0.484. In this case, the
length of the contact and the average pressure decrease
to lc = 5.623 and q = 2.639 with decreasing δ to the
value of 0.2045 (3.067 μm) as compared to the case
when Δ0 = 0.448 in Fig. 1. Table 2 presents the changes
in the values of q and δ with increasing Δ0 at the final
stage of deformation for the parameters presented in
Table 1.

At Δ0 → 1/2 and δ → 0, the contact pressure q rap�
idly increases. At the pressure q = 1 + π/2, which is
equal to the pressure applied to a smooth Prandtl
punch, the plastic deformation propagates to a depth
of the order of the length of the contact and substan�
tially exceeds the height RA of the asperities on the
rough surface. In this case, the plastic deformation of
the surface layer can be calculated without taking into
account the effect of the surface roughness [8–13]. 

The value of the pressure q = 1 + π/2 can be con�
sidered as the ultimate value for the presented model
of the deformation of the rough surface by the sliding

tool. The calculation dependences of q on Δ0 and δ can
be used to select the process parameters when a finite
value of δ is assigned.

CONCLUSIONS

The modeling of the plastic deformation of the
rough surface with the periodic shape of microasperi�
ties by the sliding tool with the circular profile
describes the nonstationary processes of plastic defor�
mation, which are accompanied by transformations of
discrete contacts of the surface with the tool, as well as
changes in the plastic deformation and pressure. The
modeling of the entire process and its separate stages is
implemented based on the theory of the plane defor�
mation of a perfectly plastic solid using the software
package in FORTRAN language. 

If the vertical displacement of the tool is less than
the half�height of a microasperity, the plastic deforma�
tion of the material at the exit from the zone of contact
propagates to a depth of the order of the height of the
asperity. The heaviest pressure arises in the contact of
the asperity with the tool in the vicinity of the lowest
point of the tool. With an increase in the contact pres�
sure, the residual depth of the valleys between the
deformed asperities decreases. 

Table 1. Plastic smoothing of rough surface at RA = 15 μm, 2L = 100 μm, Δ0 = 6.72 μm, R0 = 20 mm, and μ = 0.05

Asperity no. α Δ lc q Qx Qy

1 0.025 0.031 0.276 2.124 0.028 0.585

2 0.020 0.181 1.596 2.124 0.148 3.400

3 0.015 0.298 2.628 2.135 0.215 5.608

4 0.010 0.381 3.487 2.150 0.275 8.269

5 0.005 0.431 4.504 2.249 0.276 10.13

6 0.000 0.448 4.770 2.323 0.239 11.08

ΣQx =1.181, ΣQy = 39.07

 
Table 2. Final stage of deformation for parameters pre�
sented in Table 1 with increasing Δ0

Δ0 q δ

0.4757 2.536 0.2519

0.4793 2.574 0.2324

0.4826 2.616 0.2134

0.4853 2.662 0.1960

0.4876 2.710 0.1801

0.4895 2.761 0.1656

0.4911 2.813 0.1524

0.4925 2.866 0.1403

0.4936 2.921 0.1293

0.4954 3.035 0.1099
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The ultimate vertical displacement of the tool and
the minimum residual depth of the valley at the exit
from the zone of contact are limited by the pressure
applied to the plane Prandtl punch at which the plastic
deformation propagates to a depth that substantially
exceeds the initial height of the asperity. 

The developed software makes it possible to carry
out an analysis of the contact loads applied to the tool
and the plastic deformations of the surface layer,
which propagate to a depth of the order of the initial
height of the surface asperity, depending on the
assigned final depth of the valley between the
deformed asperities.
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NOTATION

R0—radius of tool; RA—height of microasperity,
unit of length; 2L—peak and valley spacing; β—half�
angle at summit of asperity; V—horizontal velocity of
sliding of tool, unit of velocity; α—angle of slope of
tangent to profile of tool in contact with deformed
asperity; θ—angle of slope of plastic bulge to face of
asperity; x and y—Cartesian coordinates; ξ and η—

slip lines; —Mises flow stress, unit of stress;
μ—dimensionless Prandtl contact friction stress; σ—
average stress; p—normal contact pressure; ϕ—angle
of slope of tangent to slip line ξ with regard to x axis;
ψ—angle of centered spiral fan at node points; Vξ and
Vη—projections of velocity on slip lines; q—average
pressure at boundaries of contact; Qx and Qy—hori�
zontal and vertical forces per unit of length that which
act on the tool; S0, S1, and S2—areas shifted during
plastic deformation of asperities; l, l1, and l2—lengths
of free boundaries of plastic zone in deformation of
asperities; lc—length of boundary of contact of asper�

ity with tool; s1 and s2—lengths of boundaries of con�
tact of right and left plastic zones at sites with variable
contact pressure; and Nc—number of deformed
asperities at boundary of contact with tool.
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