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INTRODUCTION

Mathematical models of nonstationary heat gener�
ation during braking, which are based on analytical
solutions of one�dimensional thermal problems of
friction, are presented in monographs [1–4]. An
advantage of this modeling is that it yields to exact for�
mulas for the temperature of friction contact, while its
failure is that real dimensions of the friction elements
are difficult to account for. This drawback can be over�
come using numerical methods, in particular the finite
element method (FEM). A review of works devoted to
the use of the FEM in solving frictional heat problems
for a disk–pad system is presented in [5]. Depending
on some input parameters of the tribosystem, such as
the initial velocity of braking, the relative dimensions
of the pad and disk, and the coefficient of mutual overlap,
the temperature is determined using 2D (axisymmetric)
[6–8] or 3D (spatial) [9] FEM calculation models.

One of the most important output parameters in
modeling the frictional heating of brakes is the dura�
tion of braking, which is determined from the solution
of the equation of motion. In the majority of numeri�
cal models, which are related to frictional heat gener�
ation in braking systems, the equation of motion is first
integrated to find the variation in the velocity in the
course of braking and then a functional equation
(nonlinear in the general case) is derived from the con�
dition of stoppage for determining the duration of
braking. Subsequently, the latter characteristic is used
as an input parameter when solving the corresponding
boundary heat�conduction problem [10, 11].

The mutual effect of the velocity and the tempera�
ture during braking was considered when constructing
numerical�analytical solutions of the system of equa�
tion of friction thermal dynamics. We got sight of the
fact that the coefficient of friction is the parameter that
relates the equation of motion (the force of friction) to
the thermal problem of friction (the specific power of
friction). Since the temperature dependence of the
coefficient of friction should be taken into account in
studying thermal conditions of the operation of heavy�
duty brakes, variations in the velocity of sliding and the
temperature in the course of braking are interrelated.
Using this idea, we proposed the axisymmetric FEM�
based calculation model for determining the tempera�
ture and duration of braking [12].

The aim of this work was to study the effect of the
design dimensions of the friction elements of a disk–
pad braking system on the maximum temperature and
the duration of braking with account for the tempera�
ture dependence of the coefficient of friction.

PROBLEM FORMULATION

Let a four�wheel vehicle with mass m move with the
constant linear velocity  Each wheel of the vehicle is
equipped with a disk–pad braking system that
includes two pads, each of which has the thickness 
and is in contact with the two working surfaces of the
disk with thickness  At a moment of time assumed
to be the initial moment of time  the stationary
pads are pressed to the working surfaces of the rotating
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disk by the constant pressure  Because of the fric�
tion, the mechanical energy of the system transforms
to heat, which is accompanied by a decrease in the
velocity and the heating of the friction elements. At
the moment of time  the vehicle stops. Here, we
make the following assumptions:

(1) The coefficient of mutual overlap in the disk–
pad pair is equal to 1.

(2) The total force of friction is uniformly distrib�
uted over the braking systems.

(3) The materials of the friction elements are
homogeneous and have constant thermal characteris�
tics.

(4) The coefficient of friction f depends on the
temperature T.

(5) The thermal contact of each pad with the disc is
perfect; i.e., the temperatures of the working surfaces
of the pad and disk are the same, and the sum of the
heat flux densities that are directed inside each com�
ponent in normal direction to these surfaces is equal to
the specific power of friction.

(6) On the free surfaces of the pads and the disk,
convective heat transfer to the environment occurs
with the constant heat transfer coefficient h.

Taking into account these assumptions and because
of the geometric symmetry of the contact between
the pads and the disk, to determine the tempera�
ture field, it is sufficient to consider the following
axisymmetric (in the cylindrical system of coordi�
nates ) thermal problem of friction for the system
that consists of a pad and a disk with the thickness 
that has the adiabatic end surface  as follows
(Fig. 1):
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The specific power of friction in boundary condi�
tion (3) is as follows [21]:
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Fig. 1. Schematic of disk–pad friction pair: (1) pad and
(2) disk.
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and variations in the velocity  of the vehicle in the
course of braking is found by solving the following
equation of motion:

(15)
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and (16)
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The integration of Eq. (15) taking into account for�
mula (16) and initial condition (17) yields

(18)

Under the condition  the following func�
tional equation for determining the duration of brak�
ing  can be derived from solution (18):

(19)
Thus, we have formulated the mathematical model

of the process of frictional heating in the course of
braking in which the temperature, the velocity, and the
duration of braking are interrelated. The connecting
element of the model is the joint consideration of the
temperature dependence of the coefficient of friction
both in boundary condition (3) of boundary heat�
conduction problem (1)–(14) and in equation of
motion (15)–(17).

NUMERICAL SOLUTION AND ANALYSIS

The solution of boundary heat�conduction prob�
lem (1)–(14) was obtained by the FEM using the Com�
sol Multiphysics 4.4 software package [13]. The area
occupied by the pad was divided into 440 axisymmetric
quadrilateral elements and the area occupied by the
disk was divided into 280 elements, which resulted in
2997 degrees of freedom. Taking into account the fairly
small difference in the dimensions of the pad and the
disk for all five variants considered below, the number of
elements in the radial (22 elements for the pad and
28 elements for the disk) and the axial (20 elements for
the pad and 10 elements for the disk) directions were
retained unchanged. From the viewpoint of the accu�
racy of the calculations, the consideration of the maxi�
mum temperature gradients along the normal to the
friction surface was also significant. Therefore, the axial
size of the finite elements was increased with increasing
their distance from the friction surface; the ratio of the
smallest to the largest size was retained unchanged and
equal to 0.2.

The frictional heating of the disk–pad system was
studied for the case of the single braking of a vehicle
with the mass m = 5671.9 kg, which had wheels with
the radius Rw = 0.314 m and moved with the velocity

 km/h. It was assumed that the initial temper�
atures of the pad and the disk were equal to the ambi�
ent temperature of Ta = 20°C and the heat transfer coef�
ficient was constant and equal to W/(m2 K). The
calculations were carried out for an FMK�11 ceramics
pad and a ChNMKh cast iron disk. Five variants of the
dimensions of the pad and the disk were considered
(Table 1) provided that the volumes of the pad and the
disk remained unchanged. The thermal characteristics
of the materials of the pad and the disk are presented
in Table 2 [2]. Figure 2 shows the temperature depen�
dences of the coefficient of friction plotted for the
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Table 1. Dimensions of pad and disk

Variant 
no.

pad disk

Rp, 
mm

rp, 
mm

δp, 
mm

Rd, 
mm

rd, 
mm

δd, 
mm

1 99.5 62.5 11.7 99.5 52 6.5
2 106.5 69.5 10.8 106.5 59 6.0
3 113.5 76.5 10.0 113.5 66 5.5
4 120.5 83.5 9.3 120.5 73 5.1
5 127.5 90.5 8.7 127.5 80 4.8

Table 2. Thermal characteristics of materials

Characteristic FMK�11 ChNMKh

K, W/(m K) 34.3 51
c, J/(kg K) 500 500
ρ, kg/m3 4700 7100
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Fig. 2. Temperature dependences of coefficient of friction
f of FMK�11–ChNMKh pair at four different contact
pressures: (1) p0 = 0.59 MPa; (2) 0.78; (3) 1.18; and
(4) p0 = 1.47 MPa.
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FMK�11/ChNMKh friction pair based on the
obtained experimental data at four values of the con�
tact pressure.

A comparative analysis of the temperature and the
duration of braking for the different dimensions of the
pad and the disk was carried out at the constant power

of friction  where the integrand

 was calculated using formula (14). Figure 3
shows variations in  in the course of braking for dif�
ferent values of the outer radius of the disk at the pres�
sure  MPa. It can be seen that the areas
between each curve and the time axis are the same.

Since the maximum value of specific power of fric�
tion (14) is achieved at the outer radius  of
the ring zone of contact, the temperature in this zone
has also the maximum value. Figure 4 shows time vari�
ations in this temperature in the course of braking for
the five configurations under study at the used maxi�
mum contact pressure  MPa. The maximum
value of the temperature  is obtained
for the disk having the largest outer radius 
m and the smallest thickness  = 0.0048 m. In this case,
the duration of braking is the shortest (  s). A
decrease in the outer radius of the disk and an increase
in its thickness lead to a decrease in the temperature in
the zone of contact and to a rise in the duration of brak�
ing (  and  s at  m
and  = 0.0065 m). This is more pronounced in
Fig. 5, which shows the dependences of the maximum
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temperature on the outer radius of the disk at four val�
ues of the contact pressure. It can be seen that, at a
constant value of the outer radius of the disk, the dura�
tion of braking increases as the pressure and, hence,
temperature of the friction surface decreases.
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Fig. 3. Variations in power of friction Q in the course of
braking at p0 = 1.47 MPa and different outer radii of disk:
(1) Rd = 99.5 mm; (2) 106.5; (3) 113.5; (4) 120.5; and
(5) Rd = 127.5 mm.
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Fig. 4. Time dependences of temperature T on surface of
disk–pad contact at p0 = 1.47 MPa and different outer
radii of disk: (1) Rd = 99.5 mm; (2) 106.5; (3) 113.5;
(4) 120.5; and (5) Rd = 127.5 mm.
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Fig. 5. Dependences of maximum temperature on outer
radius Rd of disk at different contact pressures: (1) p0 =
0.59 MPa; (2) 0.78; (3) 1.18; and (4) p0 = 1.47 MPa.
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Figure 6 shows the dependences of the duration of
braking on the outer radius of the disk, which corre�
spond to the time dependences of the temperature
presented in Fig. 4. At a specified pressure, the dura�
tion of braking decreases with increasing dimensions
of the disk. On the contrary, at constant dimensions of
the disk, the duration of braking decreases as the pres�
sure increases.

Figure 7 shows the isotherms of the temperatures of
the pad and the disk at the constant time 
which is approximately equal to the time of attaining
the maximum temperature. As follows from boundary
condition (4), the temperatures of the pad and the disk
on the surface of contact are the same. With increasing
distance from this surface, the temperature decreases.
An increase in the pressure and, hence, the power of
heat generation leads to a rise in the temperature,
which is especially noticeable in the vicinity of the
friction surface.

0.5 ,st t=

CONCLUSIONS

The thermal problem of friction for the disk–pad
system is formulated, which takes into account the
mutual effect of the velocity and the temperature in
the course of friction via the temperature dependence
of the coefficient of friction. The solution of the prob�
lem is obtained for the FMK�11 metal�ceramic pad–
the ChNMKh cast iron disk friction pair using
FEM. The effect of the relative dimensions of the pad
and the disk on the temperature and the duration of
braking is studied provided that the masses of the pad
and the disk remain unchanged. It has been found that
at the contact pressure that varies in the range

 MPa the increase in the outer radius of the
disk from 0.0995 to 0.1275 m (by 28.1%) leads to the
decrease in the duration of braking by 44%, while the
maximum temperature rises only slightly. The largest
increase in the maximum temperature (1.6%) has
been found at the minimum pressure  MPa.
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Fig. 6. Dependences of duration of braking ts on outer radius Rd of disk at different contact pressures: (1) p0 = 0.59 MPa; (2) 0.78;
(3) 1.18; and (4) p0 = 1.47 MPa.
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Thus, during braking under conditions that are
close to the conditions we consider, including the
input parameters of braking, as well as the dimen�
sions and the thermal characteristics of the friction
elements, changes in the relative dimensions of the
pad and the disk will not lead to a substantial increase
in the maximum temperature and its gradient in the
axial direction provided that the masses of the pad
and the disk remain unchanged; rather, it will favor a
decrease in the duration of braking and, hence, the
braking distance.

ACKNOWLEDGMENTS

The work has been accomplished under the
research project No. MB/WM/8/2014 at the Bialys�
tok University of Technology.

NOTATION

c—specific heat; f—coefficient of friction; h—
heat transfer coefficient; K—thermal conductivity;
m—mass; p0—pressure; Q—power of friction; q—
specific power of friction; r—radial coordinate; Rw—
radius of wheel; t—time; ts—duration of braking; T—
temperature; Ta—initial temperature; V—velocity;
V0—initial velocity; z—axial coordinate; δ—thick�
ness; θ—angular coordinate; and ρ—specific density;
subscript p denotes pad and subscript d denotes disk.
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