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INTRODUCTION

The existing methods of directly measuring the
frictional moment apply special elastic elements [1, 2].
The application of these methods at friction conjunc�
tions of test benches and real machines is highly diffi�
cult. Thus, it is necessary to determine the work spent
by friction based on other values. The most convenient
values are the temperature data, since they require no
complex or bulky measuring equipment. Temperature
registration near the friction zone, which develops an
adequate mathematical model of the conjunction of
thermal processes and can be used to solve the corre�
sponding inverse boundary problem, yields data on the
rate of specific heat generation (heat flow) under fric�
tion. It is known that the majority of mechanical work
at friction is converted into heat while the heat con�
sumption of other components is insignificant com�
pared to the amount of heat generated [3]. Thus, the
value of the rate of specific heat generation under fric�
tion is approximately equal to the powers of specific
friction and can be used to determine the frictional
moment. This method is called heat�friction diagnos�
tics [4].

The problem of conducting direct measurements
of frictional moment is even more complicated for
friction systems, in particular for systems of bearings
on a common shaft (Fig. 1). Measurements of fric�
tional moments at each sliding bearing using strain
gauges or other devices are both difficult and inaccu�
rate.

Heat�friction diagnostics for a bearing system pre�
supposing a uniform temperature distribution within
the cross section of the shaft due to rather high rota�
tional speeds (more than 5 rad/s) and regarding the
shaft as a one�dimensional rod is studied in the works
[2–7]. In these cases, the coefficient of heat transfer in
a heat�transfer model takes into account the rotational
speed. The rotational speed of the shaft in sliding bear�
ings, at which calculations of temperature fields must
take into account the rotation of the shaft, are deter�
mined in [8]. In work [9], heat�friction diagnostics
that take into account the influence of the rotation of
the shaft on the temperature field is studied for one
sliding bearing in the case of a plane.

Successful heat�friction diagnostics is greatly
determined by the adequate mathematical model of
the thermal process in the studied friction conjunc�
tion. This paper considers the problem of determining
temperature�field dynamics in a bearing system on a
common shaft with a low rotational speed, which
requires that the rotation of the shaft be taken into
account.

MODEL OF HEAT PROCESSES 

The mathematical model of thermal processes in a
bearing system on a common shaft is a generalization
of the one�bearing model. To obtain convenient for�
mulas for calculating the temperature field in a sliding
bearing, it usually accepted that the coefficient of
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heat�flow separation on the contact surface of a shaft�
bearing is constant. Under these conditions, the heat�
transfer problem is considered in [10–12]. 

A picture of heat distribution in a bearing can only
be adequate if the spatial distribution of friction heat is
taken into account. Heat�friction diagnostics using a
full three�dimensional model of thermal process needs
a preset temperature on a plane near the friction zone,
which is almost impossible. Thus, quasi�three�dimen�
sional mathematical model can be developed.

The proposed model is based on supposition that
temperature distribution in uniform along the bearing
and the body, for heat transfer at their end surfaces is
insignificant. Calculations using full three�dimen�
sional heat transfer model in a sliding bearing show
that convectional heatsink from end surfaces of sleeve
and race is less than 0.5% of heat release rate at fric�
tion. Thus, the sleeve and the body can be regarded as
plane while the shaft is considered to be three�dimen�
sional.

The nonstationary temperature field in the bear�
ings is described by two�dimensional quasilinear heat
equations for sleeve and bodies: 

(1)

For the shaft, this field is described by the following
three�dimensional equation with a convection term to
take into account the rotation of the shaft:
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In shaft�sleeve friction zones, the conditions of
heat release at friction are set as follows:

(3)

 (3')

On spare surfaces of the shaft, sleeves, and races, the
conditions of convective heat transfer are set as

(4)

(5)

(6)

At the ends of the shaft, the first� and third�type
conditions are set as follows:

(7)

In the center of the shaft, the boundedness condi�
tion of heat flow is set as
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Fig. 1. Calculation scheme for a system of sliding bearings: (1) shaft; (2) sleeve; (3) race.
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Based on the angular coordinate, the following
periodicity conditions are met:

(9)

(10)

The starting temperature distributions in the friction
conjunction elements are taken to be equal and uniform
as shown below:

(11)

NUMERICAL SOLUTION

Problems (1)–(11) are solved by the finite differ�
ence method and are reduced to a set of one�dimen�
sional heat equations. The presence of a convection
term in heat equation (2) to take into account the rota�
tion of the shaft leads to certain difficulties in solving
the problem numerically. Using monotonic and
locally one�dimensional difference equations to
approximate the sum allows one to meet the maxi�
mum principle, i.e., at any τ and hϕ steps, an approxi�
mated solution can be found for the time and angular
variable. In the case when the time step tends to zero,
among the multiple approximate solutions, one
should choose the solution that meets the condition of
sticking. The algorithm developed for the numerical
determination of the temperature field should be used
for to solve the boundary problem by solving the
inverse heat�transfer problem in order to determine
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friction heat transfer. Thus, in the numerical solution of
the direct problem, the machine time needed to solve
the inverse problem depends on the time step. If the step
is too small, the machine time can be impracticable. So,
the maximum possible time step at the preset sticking
criterion should be chosen.

Based on in silico experiments that use a detailed
spatial network, a time step that provides a conver�
gence solution was determined at different values of
the Courant number  that char�
acterize the relation of time step based on the angular
variable with the rotational speed of the shaft and time
step. Since the rotating shaft is common for all of the
sliding bearings, it is enough to consider the case of
one bearing. The time step found can be used for tem�
perature calculation for a system of several bearings.

Results of temperature calculations vs. the Courant
number are given for the following geometric dimen�
sions: R1k = 12 mm, R2k = 13 mm, R3k = 16 mm, R4k =
30 mm, and k = 1 (Fig. 2). The material of the shaft
and the race is steel, while the sleeve is made of
F4K20�filled PTFE. The rotational speed of the shaft
π rad/s and contact angle is 30°. The intensity of the
specific heat release is constant at  kWt/m2. The
convergence solution is found at γ < 1. For practical
calculations, the time step can be determined from the
condition γ = 2, since, at γ < 2, the temperature values
change within a 1° interval.

COMPARISON OF CALCULATED 
AND EXPERIMENTAL TEMPERATURES 

To establish the adequacy of the mathematical model
expressed as two� and three�dimensional heat equations
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Fig. 2. Calculated dependences of maximum temperatures in the friction zone at various Courant numbers γ: (1) γ = 36; (2) 12;
(3) 2; (4) 1; (5) 1.8.
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for a real thermal process in a sliding bearing, a compari�
son was conducted of the calculated and experimental
temperatures (Fig. 3). The tests were conducted on the
SMT�1 friction machine for one bearing. Temperatures
were registered using a type�T thermocouple with a
diameter of 0.1 mm on a Termodat multichannel device
at 5 points in the sleeve at a distance of 0.5 mm from fric�
tion zone. The contact angle was 60°. The calculated
dependence of temperature at ϕ = 0 lies within the inter�
val of experimental data (Fig. 3). Similar results were
obtained for other measurement points which proves to
be adequate for describing the thermal process in the slid�
ing bearing using the proposed model.

MODELING OF THERMAL PROCESS 
IN A BEARING SYSTEM

The solution algorithm was generalized for a sys�
tem of sliding bearings. As an example, a system of
four equal bearings (F4K20�filled PTFE) was consid�
ered. The intensity of heat generation in bearings were
described as the following time functions:

(13)

Intensity functions were chosen such that the first
one increases, the third one is constant, and the third
and the fourth have maximum peaks at 10 min. Tem�
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perature�field dynamics in the bearings mutually
influence the temperature dependence on time in
neighbor bearings, which is shown by the temperature
dynamics in the friction zone of the bearing (Fig. 4).
As the rate of heat release in the first bearing increases,
the temperature in the friction zone must also
increase. Under the influence of a decrease in the rate
of heat release in the second bearing after 10 min, the
temperature in the first one decreases after 15 min of
work. The temperature of the third bearing could be
stable due to the stability of heat release rate but, under
the influence of temperature decrease at the fourth
bearing, it also decreases. 

Based on a study of temperature fields in sliding
bearings, it was determined that distances of 10 cm
between the bearings would exclude a mutual influ�
ence on the temperature�field dynamics of the bear�
ings. These results can also be used, e.g., to develop a
multiposition test bench for friction and wear testing
materials.

In the heat�friction diagnostics based on solving
the inverse boundary problem heat transfer, the
machine time for solving the direct problem plays a
key role. Faster calculations are possible if the mathe�
matical model is simplified. The mathematical model
of thermal process in the bearing system can be simpli�
fied by assuming that the temperature distribution is
uniform in the cross section of the shaft. Thus, the
shaft can be regarded as one�dimensional so that its
rotational speed can only be taken into account in the
coefficient of heat transfer of its surface with the envi�
ronment. To justify the supposition of uniform tem�
perature distribution and analyze the temperature dis�
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Fig. 3. Calculated dependences of temperature on time in an inner point of a sleeve at a distance of 0.5 mm from the friction zone.
(I is confidence interval for experimental temperature data).
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tribution by radial variable, it is necessary to study the
temperature dynamics in the shaft within the circle.
The accepted intensity of heat release and the diame�
ter and thermophysical properties of the shaft allow
one to consider the temperature distribution by radial
variable to be uniform. As the rotational speed of the
shaft increases, the temperature distribution within
the circle will tend to be uniform. Hence, it is neces�
sary to determine the rotational speed of the shaft
above which temperature distribution can be regarded
as uniform. 

At a small distance from a sliding bearing (2–4 mm)
by the axial variable, the temperature distribution in
the shaft by circle becomes uniform. So, to study the
uniformity of temperature distribution by a circle vari�
able in a system of sliding bearings, one bearing that
has the initial characteristics given above was consid�
ered. In the calculations at various rotational speeds,
specific the function of the intensity of heat generation
remained unchanged due to the condition

 The maximum and minimum
values of the temperature in the shaft friction zone are
observed at the beginning and end of contact. The cal�
culated dependences of the surface temperature of the
shaft on the angular coordinate are presented (Fig. 5).
Despite the increase in the coefficient of heat transfer,
upon an increase in the rotational speed of the shaft
after the end of a contact the shaft surface is not cooled
enough, so minimum temperature at contact
increases. Furthermore, due to the decrease in the
contact time, the maximum temperature on the shaft

const.1pR pVΩ = =

surface decreases. Thus, an increase in the rotational
speed leads to uniform temperature distribution along
the circumference.

The suppositions that allow one to simplify the
mathematical model of thermal process in a bearing
system are only acceptable if a satisfactory level of
accuracy is achieved in the description of the process.
Differences between the maximum and minimum
temperatures on the shaft surface vs. the rotational
speed of the shaft (Fig. 6) allow one to determine the
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Fig. 4. Dependences of maximum temperatures in the contact zone of sliding bearings on time: (1) first bearing; (2) second bear�
ing; (3) third bearing; (4) fourth bearing.

28.5

28.0

27.5

27.0

26.5
120600–180 –60–120

ϕ, deg

T
, 
°
C

1

2
3
4

5
6 7

Fig. 5. Temperature distribution on the shaft surface at var�
ious rotational speed values: (1) 0.1π rad/s; (2) 0.3π;
(3) 0.5π; (4) 0.7π; (5) π; (6) 1.4 π; (7) 2π.



482

JOURNAL OF FRICTION AND WEAR  Vol. 35  No. 6  2014

TIKHONOV, STAROSTIN

rotational speed of the shaft above which the tempera�
ture distribution can be regarded as uniform.

CONCLUSIONS

⎯A mathematical model of the thermal processes
in a system of sliding bearings that takes into account
the rotational speed of the shaft and a practicable cal�
culation method to determine time step based on in
silico experiments have been proposed.

⎯By comparing calculate and experimental tem�
perature data, the adequacy of the mathematical
model proposed for a real thermal process in sliding
bearings has been established.

⎯Based on a study of the temperature fields in
sliding bearings, the distances between bearings
excluding their mutual influence have been deter�
mined and the rotational speed above which the math�
ematical model can be simplified has been established.

⎯The proposed mathematical model can be
applied to determine the friction forces in each bear�
ing of the system based on the temperature data.

NOTATION

Qk—rate of specific heat release in the contact
zone of the kth bearing; U—temperature of the shaft;
Tk—temperature of the kth bearing; T0—temperature
of environment; k, N—indices and number of bear�
ings; —radius of the shaft; —inner and
outer radii of the kth bearing sleeve; —outer radius
of the kth bearing race; —length of the kth bearing;
L—length of a shaft; —cylindrical coordinates;

—beginning and end axial coordinates of the
kth bearing position; —contact angle; —angu�
lar speed; t—time; —testing time; —volume heat
capacity of the shaft material; —volume heat

1R  2 3,k kR R

4kR

kd
  , ,r zϕ

 1,k kz z
−

02ϕ Ω

mt 1C
  2 3,k kC C

capacity of materials of the kth bearing sleeve and
race, respectively; —coefficients of heat
transfer on the surfaces of the shaft, sleeve, and race,
respectively; —coefficient of thermal conductivity
of the shaft material; —coefficients of ther�
mal conductivity of materials of kth bearing sleeve and
race, respectively; p—pressure; V—linear speed.
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