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Abstract—1In this paper, we investigate the uniqueness of transcendental meromorphic functions
sharing three values with their derivatives in an arbitrary small angular domain including a Borel
direction. The results extend the corresponding results from Gundersen, Mues and Steinmetz,
Zheng, Li et al., and Chen.
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1. INTRODUCTION AND MAIN RESULT

Let f : C — C = CJ{oo} be a meromorphic function, where C'is the complex plane. It is assumed

that the reader is familiar with the basic results and notations of the Nevanlinna’s value distribution
theory (see [6, 14, 15]), such as T'(r; f), N(r, f) and m(r, f). Meanwhile, the lower order p and the
order A\ of a meromorphic function f are in turn defined as follows

log T
p = p(f) = liminf og T(r, f),
r—o0 log r

A= A(f) = limsup log T(r. f).
r—00 log r
Let f and g be nonconstant meromorphic functions in the domain D C C. If f — ¢ and g — ¢ have the
same zeros with the same multiplicities in D, then ¢ € C'|J{oo} is called an C'M shared value in a
domain D C C' of two meromorphic functions f and g. If f — c and g — ¢ only have the same zeros in
D, then ¢ € C'|J{oo} is called an I M shared value in a domain D C C of two meromorphic functions f
and g. The zeros of f — cimply the poles of f when ¢ = +o0.

In 1979, Gundersen [5] and Mues and Steinmetz [10] have considered the uniqueness of a meromor-
phic function f and its derivative f/ and obtained the following result.

Theorem A: Let f be a nonconstant meromorphic function in C, and let aj(j = 1,2,3) be three
distinct finite complex numbers. If f and f' share aj(j = 1,2,3) IM, then f = f'.

Later on, Frank and Schwick [3] generalized the above results and proved the following result.

Theorem B: Let f be a nonconstant meromorphic function, and let k be a positive integer. If
there exist three distinct finite complex numbers a,b, and ¢ such that f and f*) share a,b,c IM,
then f = f®).

In 2004, Zheng [16] first considered the uniqueness question of meromorphic functions with shared
values in an angular domain and proved the following result (see [16, Theorem 3]):
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MEROMORPHIC FUNCTIONS SHARING THREE VALUES 359

Theorem C: let f be a transcendental meromorphic function of finite lower order and such
that 6 = 6(a, fP)) > 0 for some a € C'|J{oo} and an integer p > 0. Let the pairs of real numbers
{oj, B;}(4 =1,...,q) be such that

—mT<a <P << B <. <o <pB <,

withw:max{ T :1§j§q},and
i~y

(01— ) < 5 aresiny/5(a, f0)/2,

1

q
]:
where § = max{w, u}. For a positive integer k, assume that f and f*) share three distinct finite
complex numbers a;(j = 1,2,3) IM in X = Jl_ {2 : oy < argz < B;}. [fw < A(f), then f = f.

In 2015, Li et al. [9] observed that Theorem C is invalid for ¢ > 2 and proved the following more
general result, which extends Theorem C (see [9, p. 443]).

Theorem D: (see [9]). Let f be a transcendental meromorphic function of finite lower order
w(f) in C and such that é(a, f) >0 for some a € C. Assume that q > 2 pairs of real numbers
{oy, B;} satisfy the conditions

—T<a<Pf1<aa<B<.. . <o <B <7

withw =max{ y " :1<j<q} and

q
Z(aj+1 - Bj) < éarcsin \/5(a, /2,

j=1

where 6 = max{w, u}. For a k-th-order linear differential polynomial L[f] in f with constant
coefficients given by

LIf] = bef ™ + b fED b f (L.1)
where k is a positive integer, by, b1, - - -, by are constants and by, # 0, assume that f and L[f]
share aj(j =1,2,3) IM in
q

X = U{z tay <argz < ()
1=1
where a;(j = 1,2,3) are three distinct finite complex numbers such that a # a; (j =1,2,3). If
A(f) # w, then f = L[f).

In 2019, Chen [2] proved the following result.

Theorem E: Let f be a nonconstant meromorphic function of lower order pu(f) > 1/2 in C,
a;(j =1,2,3) be three distinct finite complex numbers, and let L[f] be given by Theorem D. Then
there exists an angular domain D = {z : a < argz < 8}, where 0 < 8 — « < 27, such that, if f and
L{f]sharea;(j =1,2,3) CM in D, then f = L[f].

In theory of meromorphic functions, a function is uniquely determined by its value on a set with an
accumulation point. It is natural to ask if we can prove similar results with the conditions

ED(f7aj):ED(f/7aj)7 ]:17273

for some typical set in C' in steads of general angular domain in C, where Ep(a, f) = {z : 2 € D, f(2) =

a} (as a set in C). In general, the answer of this question is negative. For f(z) = e??, it is clear that
f(2) # f'(2), but | f(2)| is bounded by 1 on D being the left half plane. Thus

Ep(f,n)=Ep(f,n)=0 forany n > 1.

This example shows us that, if such angular domain D exists, it must be a region whose image under f
should be dense in C'.
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360 PAN, LIN

Based on the theory on singular direction for a meromorphic function (see [14]) and the research
results of shared values of a meromorphic function (see[8, 12]), combining with the result of Theorems D
and E, we may conjecture that angular domain of the singular direction may be the right. The main result
of this paper shows that it is true when D is an angular domain with the Borel direction as the center line
for f with order A > 0, which extends Theorems D and E.

In order to prove our main results, we introduce some notations about Ahlfors—Shimizu character of
meromorphic function in C.

T 2m i / 9
To(r,f)z/Aff)dt, A(t) = 717//<1j|if|f 0 |2> dpdo. (1.2)
0 0 0

We recall the Nevanlinna theory on an angular domain.

Let f be a meromorphic function in D = {z : « < arg z < 8}, where 0 < § — a < 27. Nevanlinna
[11] defined the following symbols (also see [4]).

/ w . o d
At )= [ (= 5 o™ ae) + 1057 L)}
1
B
By g(r, f) = :Tww /logJr |f(re?®)|sinw(h — o)d,

«

1 b |\ .
Cap(r, f) =2 Z <\bm|w_‘ l)smw(@m—a),

r2
1<|bm|<r
Saﬁ(rv f) = Aa,ﬁ(rv f) + Baﬂ(rv f) + O(L,B(Tv f)
where w = T ,and by, = |b,,|e? are the poles of f in D counting multiplicities.

(8 —a)
Throughout the paper, we denote by R(r, *) a quantity satisfying
R(r,x) = O{log(rT'(r,%))},r € E,
where E denotes a set of positive real numbers with finite linear measure, which will not necessarily be
the same in each occurrence. To state our result, we need the following theorem F and definitions .

Theorem F (see([7]). Let f be a meromorphic function of infinite order in C. Then there exists a
function p(r) such that

(i) p(r)is continuous and nondecreasing forr > rg, and p(r) — +oo as r — +oo.

(i) U(r) = rP")(r > ro) satisfies the condition
logU(R) ] r

fim logU(r)

r—+oo logU(r)

logT
(iii) limsup g T(r, f) =
r—oo  p(r)logr

The function p(r) is also called the precise order of f.

Definition 1.1 (see[13]). Let f be a meromorphic function of finite order A(f) > 0in C. A direction
arg z = 0y (0 < 6y < 27) is called a Borel direction of f(z) of order \(f) if for arbitrary small positive e
the following relation holds:

. IOgn(n 907€7f = a)
lim
r—00 log r

= A(f)
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forall a e C = C'|J+oo except at most two exceptional values, where n(r, 6, ¢, f = a) denotes the
number of the zeros of f — a counting multiplicities in the sector |arg z — 6| < e,|z| < 7.

Definition 1.2 (see [7]). Let f be a meromorphic function of infinite order in C' and let p(r) be the
precise order of f. A direction arg z = 0y (0 < 6y < 27) is called a Borel direction of f(z) with precise
order p(r) if for arbitrary small positive € the following relation holds:

. IOgn(n 907€7f = a)
lim

=1
r—c0 p(r)logr

foralla € C except at most two exceptional values, where n(r, 8y, €, f = a) is as in Definition 1.1.
In this paper we will prove the following theorem.

Theorem 1.1. Let f be a meromorphic function of finite order \(f) >0 in C and ¢ be an
arbitrary small positive number, and a direction argz = 0y (0 < 0y < 27) be a Borel direction
of f(z). Assume that f and f' share three distinct finite complex numbers a;(j = 1,2,3) IM in
A(by,e), where A(Bp,e) = {z: |argz — 0y| < e}. Then f = f'.

Theorem 1.2. Let f be a meromorphic function of infinite order in C and a direction arg z = 6
(0 <0y < 2m) be a Borel direction of f(z) with precise order p(r). Then for arbitrary positive
number e, f and f' share two finite values IM at most in the angular region {z : |arg z — 0y| < €}.

Theorem 1.3. Let f be a meromorphic [unction of infinite order in C and L[f] defined by
(1.1), and argz =6y (0 < 0y < 2m) be a Borel direction of f(z) with precise order p(r). Then
for arbitrary positive ¢, f and L[f] share two finite values CM at most in the angular region
{z:|argz — 6| < e}.

2. PRELIMINARY

In this section, we will introduce and prove some lemmas that will be used in the proof of the main
result.

Lemma 2.1 ([1, 12]). Let F be a family of meromorphic functions such that for every function
f € Fits zeros of multiplicity are at least k. If F is not a normal family at the origin 0, then for
0 < a < kthere exist

(a) areal numberr (0 <r < 1);
(b) a sequence of complex numbers z, — 0, |z,| < r;
(c) asequenceof functions f, € F,
(d) asequence of positive numbers p, — 0;
such that

gn(z) = pn_afn(zn + pnz)

converges locally uniformly with respect to spherical metric to a nonconstant meromorphic
function g(z) on C and, moreover, g is of order at most two.

For convenience, we will use the following notation

3 3
f/ f/ f// f//
LD : = .
(T’,f 01762) C1 [m<r7f +;m T7f_ai mAT f/ +;m r’f’—tai

Lemma 2.2 ([12]). Let f be a meromorphic function in a domain D = {z : |z| < R} and a;(j =

1,2,3) be three distinct finite complex numbers, and let t be a positive real number and a € C. If

ED(ajvf) = ED(taj7f/) fO?" .7 = 17273a

+02
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and a # a; and f(0) # a;,00(j =1,2,3), f/(0) #0, f"(0)#0, f'(0) #tf(0), then for0<r <R
we have
TT7_, 1£(0) — ai £/(0) — ta;|?
t£(0) — f(0)[5]£(0)[
1

n f// > >
1£7(0)] + <log t+m<r, ' ta +1)0(1).

where Ep(a, f) ={z:2 € D, f(z) = a} (as a set in C) and O(1) is a complex number depending
onlyon aand a;(i =1,2,3).

T(r,f) < LD(r, f:2,3) + log

+ 3log

Lemma 2.3 ([14]). Let f(z) be a meromorphic function with finite order A > 0 and arg z = 0y is
a Borel direction of f. Then there exist a series of circles

Iy ={z ]z — 2| <e€jlzl},
where zj = |zj|e?0, lim |2;| = +o0, lim ¢; = 0(j = 1,2, - ), such that f takes any complex num-
j—o0 j—o0
ber at least |z;|*=% times in every circle T'; with at most some exceptional values contained in

two circles with spherical radius 277, where lim |6;| = 0.
j—00

Lemma 2.4 ([14]). Let F be a family of meromorphic function on domain D, then F is normal
on D if and only if, for every bounded closed domain K C D, there exists a positive number M
such that every f € F

|f'(2)]
< M.
L+ [f()P ~

Lemma 2.5 ([6, 17]). Let m be the normalized area measure on the Riemann sphere S. Then we
have

A(r, f) = /n(r,f = a)dm(a),
c
where C = C'|J{oo}.

Lemma 2.6 ([6, 17]). Let f(z) be a meromorphic function in a domain D = {z: |z| < R}. If
f(0) # oo, then for 0 < r < R we have

T(t, 1) = Tolt, £) ~log™ |fO)]| < log2

where log™ | f(0)| will be replace by log |c(0)| when f(0) = oo, and c(0) is the coefficient of the
Laurent series of f(z) at 0, and Ty(t, f) is defined as (1.2).

Lemma 2.7 ([8]). Let f(z) be a nonconstant meromorphic function in the complex plane, and ay,
as, ag are three distinct finite complex numbers. Assume that f and f' share the a;(i = 1,2,3) IM
inQa,B) ={z:a<argz < B} with0 < a < < 2r. Then one of the following two cases holds:
(i) f=f or (ii) Sap(r,f)=Q(r, f), where Q(r, f) is such a quantity that if f(z) is of finite
order, then Q(r, f) = O(1) asr — oo, and if f(z) is of infinite order, then Q(r, f) = O(log(rT'(r, f))
forr ¢ Eandr — oo and E denotes a set of positive real numbers with finite linear measure.

Lemma 2.8 ([4, 9]). Let f be a meromorphic function on Q(c, 8). If Sq5(r, f) = O(1), then
log | f(re?)| = r¥csin(w(¢ — a)) 4 o(r*)

: . . ™ :
uniformly fora < ¢ < Basr ¢ F andr — oo, where cis a positive constant, w = ,and Fis
a

/B_

a set of finite logarithmic measure, and Q(«, B) = {z : a < argz < §}.
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Lemma 2.9 ([13]). Let f be a meromorphic function of infinite order in C, and let p(r) be a
precise order of f. Then a direction arg z = 0y is a Borel direction of precise order p(r) of f if and
only if for arbitrarily small e > 0 we have

lim sup lOg S90—€,90+€ (T7 f)

=1.
r—-+o00 p(r)logr

Lemma 2.10 ([2]). Let f be a meromorphic function of infinite order in C, a;j(j =1,2,3) be
three distinct finite complex numbers and let L[f] be given by (1.1). Suppose that f and L[f]
share a;(j =1,2,3) CM in D ={z:a <argz <}, where 0 < f—a <2r. If f#L[f], then
Saﬁ(rv f) = R(T7 f)

Lemma2.11([14]). Let f(z) be a meromorphic function in disk D(0, R) centered at 0 with radius
R. I] f(0) # 0,00, then we have for0 <r < p <R

f) 1

f f(0)
where k is a positive integer and cy, is a constant depending only on k.

Lemma 2.12 ([14]). Let T'(r) be a continuous, nondecreasing, nonnegative function and a(r)

be a nonincreasing, nonnegative function on [ro, R|(0 < ro < R < 00). If there exist constants b, c
such that

1 1
) < ¢k {1 + log™ log™ + log™ . + log™ bt +1log™t p+log™ T(p, f)} ,

m(r,

1
T(r) < a(r) +blog*t bt + clog™ T(p),
forrg <r < p< R, then

2
T(r) < 2a(r) + Blog™ +C,
T

R—
where B, C are two constants depending only on b, c.

Lemma 2.13. Let f(z) be a meromorphic function with finite order A > 0 and arg z = 0y be
a Borel direction of f, and T'j = {z : |z — z;j| < €j|2j|} be a series of circles, where z; = |z;|e®
andjli_}n;o\zj\ = —|—oo,jli_>]ogO ¢, =00=1,2,---). Suppose that f and f' share three distinct finite
complex numbers aj(j = 1,2,3) IM in A(0y,c), where A(Oy,e) = {z: |argz — 6| <e}. If f £ f',
then for every sufficiently large n(n > ny),

Alen, 2n, f) < O(1)(1 +log™ |2,]), (2.1)

where e, = |zp|€n.
Proof. Set f,,(2) = f(zn + €nz). We consider two cases:
Case 1. Assume that f,,(z) be normal at |z| < 1, by Lemma 2.4, implying that

L) enlf (20 + €n2)] -
L+ [fa(2)P  141f(zn+en2)? <M (n=12,.)

in |z| <1, where M is a positive numbers. Then we have

2
|f' (20 + pe)]| 9
< .
Alen, zn, f) // (1 1 f G+ pei®)? pdpdf < 2M

So, (2.1) holds.
Case 2. Assume that f,,(2) is not normal at |z| < 1.
According to Lemma 2.1, there exist
(1) a sequence of point {z],} C {|z| < 1};
(2) a subsequence of { f,,(2)}5°, without loss of generality, we still denote it by { f,(2)};
(3) positive numbers p,, with p, — 0(n — o0); such that

hn(2) = fulzn + pnz) = 9(2) (2.2)
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in spherical metric uniformly on a compact subset of C as n — oo, where g(z) is a nonconstant
meromorphic function. Thus, for any positive integer k, we have

W) = pu® £ (21, + pu) = g™ (9).

We claim ¢”(€) # 0. Otherwise, g(z) = cz+d, (¢,d € C and ¢ # 0). We can choose &, with g(&) =
a1. By Hurwitz’s theorem, there exists a sequence &, — &y such that

hn(fn) = fn(Z% + pngn) = 9(50) =ar.
Notice that f and f’ share a; IMin {z : |arg 2 — 6y| < e}, we have
C = g/(£0) = nh_g;lo h%(&n) = nh—>Igo pngnf/(zn + ETL(Z;’L + pn&n))
_ . / _ 3
- nh_{I;O annf(Zn + En(zn + pnfn)) - nh_{%O PnEnai.
Thus, we have

lim ppe, = .
n—oo aq

For finite complex number ag, we can choose 79 with g(n9) = ae. By Hurwitz’s theorem, there exists a
sequence 7, — 7o such that

b (1n) = fn(’z?,’l, + pniin) = g(no) = as.

Likewise, we get

. c
lim ppen, =
n—oo a2

this gives a contradiction.
For a sequence of positive numbers p,e,, it is easy to know that there exists a subsequence, we still
denoted by p,ey,, such that li_}rn PnEn = ag, where ag € [0,400) [ J{+0o0}. Now, we consider two cases:

ap = 0or+ooand 0 < ag < +o0.
Case 2.1. Assume that li_)rn PnEn = 0 or oo.
n o

We choose &y € C such that
9(&0) # 0,a1,az,a3,00, g' (&) # 0,00, g" (&) # 0, c0.
Let pn(2) = fu(z), + pnéo + z) Tor arbitrary small e > 0, in view of
E A09,0) (a5, f) = Eawoe)(as, ), 7=1,2,3,

and li_)rn e, = 0, and for sufficiently large n,

T, = {2]2 — 2n| < €nl2nl, 20 = |20]€®®} C A(6o,€/2).
Therefore, for every sufficiently large n(n > ng), we have
Ep(ai;pa(2)) = Ep(enai, pj(2)) (i =1,2,3),
where D = {z : |z] < 4}. Note that
Pn(0) = fulzy + pnéo) = ha(é0) = g(éo) # a1, a2, a3, o0,

m@:m%+m@=“fﬁ W (&) = ¢'(€0),

n

M@:ﬂ%+%@=mﬁﬂ B (60) = 6" (o),

n

Enpn(()) —p%(O) _ Enpnhn(gg) - hn(&O) .
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Thus, we have

3 3
;i n 0 7 n nlqg 1
g Tt 0 0) — 0P 0) = o
lenpn(0) — Py, (0)[°|p7,(0)] [P (0)]
3
H| — ai*[p,(0) — enail®

i=1
|enpn(0) — 17, (0)° 11, (0)2 1 (0)?

3
H |hn 50 - az| |h/ (50) ngnai|3

— 4log p, +1 =1 . 23
OB IO8 | (o) — Iy (€0) P (60) IR (€0) P (23)

Since li_)m pnen = 0 or 0o, by simple calculation we can deduce for sufficiently large n(n > ng)

= log

3 _ 21 k) — ke .13
og. [T lhn(ﬁo)(k) ai| |hn(k§50) 2%(‘21?;' < O(1)log* |z. (2.4)
Iprenhn(€0) — ha (§0)1° A (§0) 2 A (€0) I3
Applying Lemma 2.2 to p,,(z) with properties (2.3), (2.4), we have
/!

for 0 < » < 3 and sufficiently large n, where a # a; (j = 1,2,3) and a € C.
By Lemmas 2.11 and 2.12, we have

T(r,pn) < O(1)(1 +log™ |z,]).
In view of Lemma 2.6, we obtain
To(r, pn) < O(1)(1 +log™ |2,|).
Thus, we get
To(3en, 2n + &n(2, + pndo), ) < O(1)(1 + log™ |zn]).
[t follows that
A(2en, 2 + €n(2, + puéo), [) < O(1)(1 + log™ |za]).
Note that 2/, + p,& — 0, we get
{2z —za]l <en} C{2: ]2 — 2n —en(2), — pnéo)| < 2en}.
Therefore, we have
Alen, 2n, f) < O(1)(1 +log™ |z,]).
Case 2.2. Assume that nh_}rr;o PnEn = ag,ag # 0,00. Now, we distinguish two subcases agg(z) #

9'(z) and apg(2) = ¢'(2).
Case 2.2.1. agg(z) # ¢'(z). We can choose &, € C such that

9(&0) # 0,a1,a2,a3,00,4 () # 0,00, g" (&) # 0,00, a09(%0) — ¢'(0) # 0, cc.
Let
Pu(2) = ful(zp + pno + 2).
By the same arguments as in case 2.1, we can get
Alen, 2n, f) < O(1)(1 +log™ |z,]).
Case 2.2.2. agg(z) = ¢'(z). We can derive that g(z) = e®*+%0 where by € C. From (2.2), we obtain
hi(2) = fulzh + pnz) = f(zn + en(z), + pnz)) = [(2n + €nzl + Enpnz) — g(2). (2.5)
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On the other hand, noting that f and f’ share a;,i =1,2,3 in A(fp,e), by Lemma 2.7, we have
So—c,0+<(1, f) = O(1). Therefore, applying Lemma 2.8 to f in A(fy, €), we obtain
log | f(re'?)| = r¥csin(w(p — a)) 4 o(r®)
uniformly for g —e =a < ¢ < =0y +¢c as r ¢ F and r — oo, where ¢ is a positive constant, w =
T ™

B_a = 50 and F is a set of finite logarithmic measure.

Noting that F'is a set of finite logarithmic measure. Therefore, there exist a real number R,0 < R <

oo, and a sequence of complex numbers wu,,0 < |u,| < R, for every sufficiently large n such that

log | f(zn + enzy, + enpnun)| = ricsin(w(d — a)) + o(ry,), (2.6)
where r, = |2, + enzl, + enpnun| € F, &n = arg(z, + enzly + enpniin), 0o — /2 < ¢y, < 09 +¢/2, and
o = 90 — E.

From (2.5), we get li_>m (f(zn +enzl, + enpnn) — g(un)) = 0. Noting that u, is a bounded
sequence, there exists convergent subsequence, we still denote it by u,, and set u,, — up(n — o). We
have li_)rn g(up) = lim e%untbo — et0uotbo and it follows that

n o n—oo

lim log | f(zn + €nzly + €npniin)|

n—00 T

On the other hand, by (2.6) we obtain that

l /
lim ® [fGzn +&nzn + Enpniin)| = lim csinw(¢ — a) > csin >0
n—00 7“7‘*{ n—00 4

=0.

we obtain a contradiction, and so case 2.2 is false. This completes the proof of Lemma 2.13.

3. PROOF OF THEOREMS

Proof of Theorem 1.1. Suppose that f # f’, since argz = 6y is a Borel direction of f, by
Lemma 2.3, there exists a series of circles

Ij={z:]z = 2] <¢lzl}
where z; = |zj|e, and lim |z;| = 400, lim ¢; = 0(j = 1,2, - -), such that f takes any complex
J]—00 J—00
number at least |z;|*~% times in every circle I'; with at most some exceptional values contained in

two circles with spherical radius 277, where lim |05 = 0. We denote the two circles by Aj; and Ajo.
j—0o0

Therefore, by Lemma 2.5, we have
Alejlzsl, 25, f) = /n(ejl%l, zj, [ = a)dm(a)
¢
> [ nlelalzd = admia) 2 gl (3.1)
C—Aj1—Ajo
On the other hand, from Lemma 2.13, the following inequality holds
Alen, zn, f) < O(1)(1 +log™ |2,]), (3.2)

where |z] < 1and g, = |z,|€n.
Combining with (3.1) and (3.2), we get

ol < Ao, 20, 1) < O)(1 -+ log* [z,

Noting that A > 0 and lim ¢,, = 0, this contradicts with li_)m |z| = +00. The proof of Theorem 1.1 is

n—o0
complete.
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Proof of Theorem 1.2. Suppose that f and f’ share three distinct finite complex numbers
a;j(j =1,2,3) IM in A(y,¢e), by Lemma 2.7, in view of f with infinite order and f # f’, we have
S@o—&,@o-‘r&(h f) = R(T7 f)a lmplylng that

Sto—c.60te(r, f) = O(log U (7)), U (r) = ™).

On the other hand, argz = 6y is a Borel direction of f with precise order p(r). By Lemma 2.9, for
arbitrarily small ¢ > 0, we have

log Sp,—e 00+ (7
lim sup 08 Sipo— do-+(r f) =1.

r—+00 p(r)logr
Thus, we arrive at a contradiction. This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Suppose that f and L[f] share three distinct finite complex numbers
a;(j =1,2,3) CM in A(6p, ). Using Lemmas 2.10 and 2.9 in A(6y, ), similar to proof of Theorem 1.2,
we can conclude a contradiction. This completes the proof of Theorem 1.3.
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