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1. INTRODUCTION AND MAIN RESULT

Let f : C → Ĉ = C
⋃
{∞} be a meromorphic function, where C is the complex plane. It is assumed

that the reader is familiar with the basic results and notations of the Nevanlinna’s value distribution
theory (see [6, 14, 15]), such as T (r; f), N(r, f) and m(r, f). Meanwhile, the lower order μ and the
order λ of a meromorphic function f are in turn defined as follows

μ := μ(f) = lim inf
r→∞

log T (r, f)

log r
,

λ := λ(f) = lim sup
r→∞

log T (r, f)

log r
.

Let f and g be nonconstant meromorphic functions in the domain D ⊆ C. If f − c and g − c have the
same zeros with the same multiplicities in D, then c ∈ C

⋃
{∞} is called an CM shared value in a

domain D ⊆ C of two meromorphic functions f and g. If f − c and g − c only have the same zeros in
D, then c ∈ C

⋃
{∞} is called an IM shared value in a domain D ⊆ C of two meromorphic functions f

and g. The zeros of f − c imply the poles of f when c = +∞.
In 1979, Gundersen [5] and Mues and Steinmetz [10] have considered the uniqueness of a meromor-

phic function f and its derivative f ′ and obtained the following result.
Theorem A: Let f be a nonconstant meromorphic function in C, and let aj(j = 1, 2, 3) be three

distinct finite complex numbers. If f and f ′ share aj(j = 1, 2, 3) IM , then f ≡ f ′.

Later on, Frank and Schwick [3] generalized the above results and proved the following result.
Theorem B: Let f be a nonconstant meromorphic function, and let k be a positive integer. If

there exist three distinct finite complex numbers a, b, and c such that f and f (k) share a, b, c IM ,
then f ≡ f (k).

In 2004, Zheng [16] first considered the uniqueness question of meromorphic functions with shared
values in an angular domain and proved the following result (see [16, Theorem 3]):
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Theorem C: Let f be a transcendental meromorphic function of finite lower order and such
that δ = δ(a, f (p)) > 0 for some a ∈ C

⋃
{∞} and an integer p ≥ 0. Let the pairs of real numbers

{αj , βj}(j = 1, ..., q) be such that

−π ≤ α1 < β1 ≤ α2 < β2 ≤ ... ≤ αq < βq ≤ π,

with ω = max

{
π

βj − αj
: 1 ≤ j ≤ q

}

, and

q∑

j=1

(αj+1 − βj) <
4

δ
arcsin

√

δ(a, f (p))/2,

where δ = max{ω, μ}. For a positive integer k, assume that f and f (k) share three distinct finite
complex numbers aj(j = 1, 2, 3) IM in X =

⋃q
l=1{z : αj ≤ arg z ≤ βj}. If ω < λ(f), then f ≡ f (k).

In 2015, Li et al. [9] observed that Theorem C is invalid for q ≥ 2 and proved the following more
general result, which extends Theorem C (see [9, p. 443]).

Theorem D: (see [9]). Let f be a transcendental meromorphic function of finite lower order
μ(f) in C and such that δ(a, f) > 0 for some a ∈ C. Assume that q ≥ 2 pairs of real numbers
{αj , βj} satisfy the conditions

−π ≤ α1 < β1 ≤ α2 < β2 ≤ ... ≤ αq < βq ≤ π

with ω = max{ π
(βj−αj)

: 1 ≤ j ≤ q}, and

q∑

j=1

(αj+1 − βj) <
4

δ
arcsin

√
δ(a, f)/2,

where δ = max{ω, μ}. For a k-th-order linear differential polynomial L[f ] in f with constant
coefficients given by

L[f ] = bkf
(k) + bk−1f

(k−1) + · · ·+ b1f
′, (1.1)

where k is a positive integer, bk, bk−1, · · · , b1 are constants and bk 	= 0, assume that f and L[f ]
share aj(j = 1, 2, 3) IM in

X =

q⋃

l=1

{z : αj ≤ arg z ≤ βj}.

where aj(j = 1, 2, 3) are three distinct finite complex numbers such that a 	= aj (j = 1, 2, 3). If
λ(f) 	= ω, then f = L[f ].

In 2019, Chen [2] proved the following result.
Theorem E: Let f be a nonconstant meromorphic function of lower order μ(f) > 1/2 in C,

aj(j = 1, 2, 3) be three distinct finite complex numbers, and let L[f ] be given by Theorem D. Then
there exists an angular domain D = {z : α ≤ arg z ≤ β}, where 0 ≤ β −α ≤ 2π, such that, if f and
L[f ] share aj(j = 1, 2, 3) CM in D, then f = L[f ].

In theory of meromorphic functions, a function is uniquely determined by its value on a set with an
accumulation point. It is natural to ask if we can prove similar results with the conditions

ĒD(f, aj) = ĒD(f
′, aj), j = 1, 2, 3

for some typical set in C in steads of general angular domain in C, where ĒD(a, f) = {z : z ∈ D, f(z) =
a} (as a set in C). In general, the answer of this question is negative. For f(z) = e2z , it is clear that
f(z) 	= f ′(z), but |f(z)| is bounded by 1 on D being the left half plane. Thus

ĒD(f, n) = ĒD(f
′, n) = ∅ for any n > 1.

This example shows us that, if such angular domain D exists, it must be a region whose image under f
should be dense in C .
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Based on the theory on singular direction for a meromorphic function (see [14]) and the research
results of shared values of a meromorphic function (see [8, 12]), combining with the result of Theorems D
and E, we may conjecture that angular domain of the singular direction may be the right. The main result
of this paper shows that it is true when D is an angular domain with the Borel direction as the center line
for f with order λ > 0, which extends Theorems D and E.

In order to prove our main results, we introduce some notations about Ahlfors–Shimizu character of
meromorphic function in C .

T0(r, f) =

r∫

0

A(t)

t
dt, A(t) =

1

π

2π∫

0

t∫

0

(
|f ′(ρeiθ)|

1 + |f(ρeiθ)|2

)2

dρdθ. (1.2)

We recall the Nevanlinna theory on an angular domain.
Let f be a meromorphic function in D = {z : α ≤ arg z ≤ β}, where 0 ≤ β − α ≤ 2π. Nevanlinna

[11] defined the following symbols (also see [4]).

Aα,β(r, f) =
ω

π

r∫

1

(
1

tω
− tω

r2ω

)

{log+ |f(teiα)|+ log+ |f(teiβ)|}dt
t
,

Bα,β(r, f) =
2ω

πrω

β∫

α

log+ |f(reiθ)| sinω(θ − α)dθ,

Cα,β(r, f) = 2
∑

1<|bm|<r

(
1

|bm|ω − |bm|ω
r2ω

)

sinω(θm − α),

Sα,β(r, f) = Aα,β(r, f) +Bα,β(r, f) + Cα,β(r, f)

where ω =
π

(β − α)
, and bm = |bm|eiθm are the poles of f in D counting multiplicities.

Throughout the paper, we denote by R(r, ∗) a quantity satisfying

R(r, ∗) = O{log(rT (r, ∗))}, r ∈ E,

where E denotes a set of positive real numbers with finite linear measure, which will not necessarily be
the same in each occurrence. To state our result, we need the following theorem F and definitions .

Theorem F (see [7]). Let f be a meromorphic function of infinite order in C. Then there exists a
function ρ(r) such that

(i) ρ(r) is continuous and nondecreasing for r ≥ r0, and ρ(r) → +∞ as r → +∞.

(ii) U(r) = rρ(r)(r ≥ r0) satisfies the condition

lim
r→+∞

logU(R)

logU(r)
= 1, R = r +

r

logU(r)
.

(iii) lim sup
r→∞

log T (r, f)

ρ(r) log r
= 1.

The function ρ(r) is also called the precise order of f .
Definition 1.1 (see [13]). Let f be a meromorphic function of finite order λ(f) > 0 in C. A direction

arg z = θ0 (0 ≤ θ0 < 2π) is called a Borel direction of f(z) of order λ(f) if for arbitrary small positive ε
the following relation holds:

lim
r→∞

log n(r, θ0, ε, f = a)

log r
= λ(f)
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for all a ∈ Ĉ = C
⋃

+∞ except at most two exceptional values, where n(r, θ0, ε, f = a) denotes the
number of the zeros of f − a counting multiplicities in the sector | arg z − θ0| < ε,|z| ≤ r.

Definition 1.2 (see [7]). Let f be a meromorphic function of infinite order in C and let ρ(r) be the
precise order of f . A direction arg z = θ0 (0 ≤ θ0 < 2π) is called a Borel direction of f(z) with precise
order ρ(r) if for arbitrary small positive ε the following relation holds:

lim
r→∞

log n(r, θ0, ε, f = a)

ρ(r) log r
= 1

for all a ∈ Ĉ except at most two exceptional values, where n(r, θ0, ε, f = a) is as in Definition 1.1.

In this paper we will prove the following theorem.
Theorem 1.1. Let f be a meromorphic function of finite order λ(f) > 0 in C and ε be an

arbitrary small positive number, and a direction arg z = θ0 (0 ≤ θ0 < 2π) be a Borel direction
of f(z). Assume that f and f ′ share three distinct finite complex numbers aj(j = 1, 2, 3) IM in
A(θ0, ε), where A(θ0, ε) = {z : | arg z − θ0| < ε}. Then f ≡ f ′.

Theorem 1.2. Let f be a meromorphic function of infinite order in C and a direction arg z = θ0
(0 ≤ θ0 < 2π) be a Borel direction of f(z) with precise order ρ(r). Then for arbitrary positive
number ε, f and f ′ share two finite values IM at most in the angular region {z : | arg z − θ0| < ε}.

Theorem 1.3. Let f be a meromorphic function of infinite order in C and L[f ] defined by
(1.1), and arg z = θ0 (0 ≤ θ0 < 2π) be a Borel direction of f(z) with precise order ρ(r). Then
for arbitrary positive ε, f and L[f ] share two finite values CM at most in the angular region
{z : | arg z − θ0| < ε}.

2. PRELIMINARY

In this section, we will introduce and prove some lemmas that will be used in the proof of the main
result.

Lemma 2.1 ([1, 12]). Let F be a family of meromorphic functions such that for every function
f ∈ F its zeros of multiplicity are at least k. If F is not a normal family at the origin 0, then for
0 ≤ α ≤ k there exist

(a) a real number r (0 < r < 1);

(b) a sequence of complex numbers zn → 0, |zn| < r;

(c) a sequence of functions fn ∈ F ;

(d) a sequence of positive numbers ρn → 0;

such that

gn(z) = ρn
−αfn(zn + ρnz)

converges locally uniformly with respect to spherical metric to a nonconstant meromorphic
function g(z) on C and, moreover, g is of order at most two.

For convenience, we will use the following notation

LD(r, f : c1, c2) = c1

[

m

(

r,
f ′

f

)

+

3∑

i=1

m

(

r,
f ′

f − ai

)]

+ c2

[

m

(

r,
f ′′

f ′

)

+

3∑

i=1

m

(

r,
f ′′

f ′ − tai

)]

.

Lemma 2.2 ([12]). Let f be a meromorphic function in a domain D = {z : |z| < R} and aj(j =
1, 2, 3) be three distinct finite complex numbers, and let t be a positive real number and a ∈ C. If

ĒD(aj , f) = ĒD(taj, f
′) for j = 1, 2, 3;
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and a 	= aj and f(0) 	= aj,∞(j = 1, 2, 3), f ′(0) 	= 0, f ′′(0) 	= 0, f ′(0) 	= tf(0), then for 0 < r < R
we have

T (r, f) ≤ LD(r, f : 2, 3) + log

∏3
i=1 |f(0)− ai|2|f ′(0)− tai|3
|tf(0)− f ′(0)|5|f ′(0)|2

+ 3 log
1

|f ′′(0)| +
(

log+ t+m

(

r,
f ′′

f ′ − ta

)

+ 1

)

O(1).

where ĒD(a, f) = {z : z ∈ D, f(z) = a} (as a set in C) and O(1) is a complex number depending
only on a and ai(i = 1, 2, 3).

Lemma 2.3 ([14]). Let f(z) be a meromorphic function with finite order λ > 0 and arg z = θ0 is
a Borel direction of f . Then there exist a series of circles

Γj = {z : |z − zj | < εj |zj |},

where zj = |zj |eiθ0 , lim
j→∞

|zj | = +∞, lim
j→∞

εj = 0(j = 1, 2, · · ·), such that f takes any complex num-

ber at least |zj |λ−δj times in every circle Γj with at most some exceptional values contained in
two circles with spherical radius 2−j , where lim

j→∞
|δj | = 0.

Lemma 2.4 ([14]). Let F be a family of meromorphic function on domain D, then F is normal
on D if and only if, for every bounded closed domain K ⊆ D, there exists a positive number M
such that every f ∈ F

|f ′(z)|
1 + |f(z)|2 ≤ M.

Lemma 2.5 ([6, 17]). Let m be the normalized area measure on the Riemann sphere S. Then we
have

A(r, f) =

∫

Ĉ

n(r, f = a)dm(a),

where Ĉ = C
⋃
{∞}.

Lemma 2.6 ([6, 17]). Let f(z) be a meromorphic function in a domain D = {z : |z| < R}. If
f(0) 	= ∞, then for 0 < r < R we have

|T (t, f)− T0(t, f)− log+ |f(0)|| ≤ 1

2
log 2,

where log+ |f(0)| will be replace by log |c(0)| when f(0) = ∞, and c(0) is the coefficient of the
Laurent series of f(z) at 0, and T0(t, f) is defined as (1.2).

Lemma 2.7 ([8]). Let f(z) be a nonconstant meromorphic function in the complex plane, and a1,
a2, a3 are three distinct finite complex numbers. Assume that f and f ′ share the ai(i = 1, 2, 3) IM
in Ω(α, β) = {z : α < arg z < β} with 0 ≤ α < β < 2π. Then one of the following two cases holds:
(i) f ≡ f ′, or (ii) Sα,β(r, f) = Q(r, f), where Q(r, f) is such a quantity that if f(z) is of finite
order, then Q(r, f) = O(1) as r → ∞, and if f(z) is of infinite order, then Q(r, f) = O(log(rT (r, f))
for r /∈ E and r → ∞ and E denotes a set of positive real numbers with finite linear measure.

Lemma 2.8 ([4, 9]). Let f be a meromorphic function on Ω(α, β). If Sα,β(r, f) = O(1), then

log |f(reiφ)| = rωc sin(ω(φ− α)) + o(rω)

uniformly for α ≤ φ ≤ β as r /∈ F and r → ∞, where c is a positive constant, ω =
π

β − α
, and F is

a set of finite logarithmic measure, and Ω(α, β) = {z : α ≤ arg z ≤ β}.
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Lemma 2.9 ([13]). Let f be a meromorphic function of infinite order in C, and let ρ(r) be a
precise order of f . Then a direction arg z = θ0 is a Borel direction of precise order ρ(r) of f if and
only if for arbitrarily small ε > 0 we have

lim sup
r→+∞

logSθ0−ε,θ0+ε(r, f)

ρ(r) log r
= 1.

Lemma 2.10 ([2]). Let f be a meromorphic function of infinite order in C, aj(j = 1, 2, 3) be
three distinct finite complex numbers and let L[f ] be given by (1.1). Suppose that f and L[f ]
share aj(j = 1, 2, 3) CM in D = {z : α ≤ arg z ≤ β}, where 0 < β − α ≤ 2π. If f 	≡ L[f ], then
Sα,β(r, f) = R(r, f).

Lemma 2.11 ([14]). Let f(z) be a meromorphic function in disk D(0, R) centered at 0with radius
R. If f(0) 	= 0,∞, then we have for 0 < r < ρ < R

m(r,
f (k)

f
) < ck

{

1 + log+ log+
∣
∣
∣
∣

1

f(0)

∣
∣
∣
∣ + log+

1

r
+ log+

1

ρ− r
+ log+ ρ+ log+ T (ρ, f)

}

,

where k is a positive integer and ck is a constant depending only on k.
Lemma 2.12 ([14]). Let T (r) be a continuous, nondecreasing, nonnegative function and a(r)

be a nonincreasing, nonnegative function on [r0, R](0 < r0 < R < ∞). If there exist constants b, c
such that

T (r) < a(r) + b log+
1

ρ− r
+ c log+ T (ρ),

for r0 < r < ρ < R, then

T (r) < 2a(r) +B log+
2

R− r
+ C,

where B, C are two constants depending only on b, c.
Lemma 2.13. Let f(z) be a meromorphic function with finite order λ > 0 and arg z = θ0 be

a Borel direction of f , and Γj = {z : |z − zj | < εj|zj |} be a series of circles, where zj = |zj |eiθ0 ,
and lim

j→∞
|zj | = +∞, lim

j→∞
εj = 0(j = 1, 2, · · ·). Suppose that f and f ′ share three distinct finite

complex numbers aj(j = 1, 2, 3) IM in A(θ0, ε), where A(θ0, ε) = {z : | arg z − θ0| < ε}. If f 	≡ f ′,
then for every sufficiently large n(n ≥ n0),

A(εn, zn, f) ≤ O(1)(1 + log+ |zn|), (2.1)

where εn = |zn|εn.
Proof. Set fn(z) = f(zn + εnz). We consider two cases:
Case 1. Assume that fn(z) be normal at |z| ≤ 1, by Lemma 2.4, implying that

|f ′
n(z)|

1 + |fn(z)|2
=

εn|f ′(zn + εnz)|
1 + |f(zn + εnz)|2

≤ M (n = 1, 2, ...)

in |z| ≤ 1, where M is a positive numbers. Then we have

A(εn, zn, f) =
1

π

2π∫

0

εn∫

0

(
|f ′(zn + ρeiθ)|

1 + |f(zn + ρeiθ)|2

)2

ρdρdθ ≤ 2M2.

So, (2.1) holds.
Case 2. Assume that fn(z) is not normal at |z| ≤ 1.
According to Lemma 2.1, there exist
(1) a sequence of point {z′n} ⊂ {|z| < 1};
(2) a subsequence of {fn(z)}∞1 , without loss of generality, we still denote it by {fn(z)};
(3) positive numbers ρn with ρn → 0(n → ∞); such that

hn(z) = fn(z
′
n + ρnz) → g(z) (2.2)

JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS Vol. 57 No. 6 2022



364 PAN, LIN

in spherical metric uniformly on a compact subset of C as n → ∞, where g(z) is a nonconstant
meromorphic function. Thus, for any positive integer k, we have

h(k)n (ξ) = ρn
kf (k)

n (z′n + ρnξ) → g(k)(ξ).

We claim g′′(ξ) 	≡ 0. Otherwise, g(z) = cz + d, (c, d ∈ C and c 	= 0). We can choose ξ0, with g(ξ0) =
a1. By Hurwitz’s theorem, there exists a sequence ξn → ξ0 such that

hn(ξn) = fn(z
′
n + ρnξn) = g(ξ0) = a1.

Notice that f and f ′ share a1 IM in {z : | arg z − θ0| < ε}, we have

c = g′(ξ0) = lim
n→∞

h′n(ξn) = lim
n→∞

ρnεnf
′(zn + εn(z

′
n + ρnξn))

= lim
n→∞

ρnεnf(zn + εn(z
′
n + ρnξn)) = lim

n→∞
ρnεna1.

Thus, we have

lim
n→∞

ρnεn =
c

a1
.

For finite complex number a2, we can choose η0 with g(η0) = a2. By Hurwitz’s theorem, there exists a
sequence ηn → η0 such that

hn(ηn) = fn(z
′
n + ρnηn) = g(η0) = a2.

Likewise, we get

lim
n→∞

ρnεn =
c

a2
,

this gives a contradiction.
For a sequence of positive numbers ρnεn, it is easy to know that there exists a subsequence, we still

denoted by ρnεn, such that lim
n→∞

ρnεn = a0, where a0 ∈ [0,+∞)
⋃
{+∞}. Now, we consider two cases:

a0 = 0 or +∞ and 0 < a0 < +∞.
Case 2.1. Assume that lim

n→∞
ρnεn = 0 or ∞.

We choose ξ0 ∈ C such that

g(ξ0) 	= 0, a1, a2, a3,∞, g′(ξ0) 	= 0,∞, g′′(ξ0) 	= 0,∞.

Let pn(z) = fn(z
′
n + ρnξ0 + z) for arbitrary small ε > 0, in view of

EA(θ0,ε)(aj , f) = EA(θ0,ε)(aj , f
′), j = 1, 2, 3,

and lim
n→∞

εn = 0, and for sufficiently large n,

Γn = {z|z − zn| < εn|zn|, zn = |zn|eiθ0} ⊆ A(θ0, ε/2).

Therefore, for every sufficiently large n(n ≥ n0), we have

ĒD(ai, pn(z)) = ĒD(εnai, p
′
n(z)) (i = 1, 2, 3),

where D = {z : |z| < 4}. Note that

pn(0) = fn(z
′
n + ρnξ0) = hn(ξ0) → g(ξ0) 	= a1, a2, a3,∞,

p′n(0) = f ′
n(z

′
n + ρnξ0) =

h′n(ξ0)

ρn
, h′n(ξ0) → g′(ξ0),

p′′n(0) = f ′′
n(z

′
n + ρnξ0) =

h′′n(ξ0)

ρ2n
, h′′n(ξ0) → g′′(ξ0),

εnpn(0) − p′n(0) =
εnρnhn(ξ0)− h′n(ξ0)

ρn
.
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Thus, we have

log

∏3
i=1 |pn(0) − ai|2|p′n(0) − εnai|3
|εnpn(0) − p′n(0)|5|p′n(0)|2

+ 3 log
1

|p′′n(0)|

= log

3∏

i=1

|pn(0)− ai|2|p′n(0)− εnai|3

|εnpn(0) − p′n(0)|5|p′n(0)|2|p′′n(0)|3

= 4 log ρn + log

3∏

i=1

|hn(ξ0)− ai|2|h′n(ξ0)− ρnεnai|3

|ρnεnhn(ξ0)− h′n(ξ0)|5|h′n(ξ0)|2|h′′n(ξ0)|3
. (2.3)

Since lim
n→∞

ρnεn = 0 or ∞, by simple calculation we can deduce for sufficiently large n(n ≥ n0)

log

∏3
i=1 |hn(ξ0)− ai|2|h(k)n (ξ0)− ρknεnai|3

|ρknεnhn(ξ0)− h
(k)
n (ξ0)|5|h(k)n (ξ0)|2|h(k+1)

n (ξ0)|3
≤ O(1) log+ |zn|. (2.4)

Applying Lemma 2.2 to pn(z) with properties (2.3), (2.4), we have

T (r, pn) ≤ LD(r, pn; 2, 3) +O(1)

(

log+ |zn|+m

(

r,
p′′n

p′n − εna

)

+ 1

)

for 0 < r ≤ 3 and sufficiently large n, where a 	= aj (j = 1, 2, 3) and a ∈ C.

By Lemmas 2.11 and 2.12, we have

T (r, pn) ≤ O(1)(1 + log+ |zn|).
In view of Lemma 2.6, we obtain

T0(r, pn) ≤ O(1)(1 + log+ |zn|).
Thus, we get

T0(3εn, zn + εn(z
′
n + ρnξ0), f) ≤ O(1)(1 + log+ |zn|).

It follows that
A(2εn, zn + εn(z

′
n + ρnξ0), f) ≤ O(1)(1 + log+ |zn|).

Note that z′n + ρnξ0 → 0, we get

{z : |z − zn| < εn} ⊆ {z : |z − zn − εn(z
′
n − ρnξ0)| < 2εn}.

Therefore, we have

A(εn, zn, f) ≤ O(1)(1 + log+ |zn|).

Case 2.2. Assume that lim
n→∞

ρnεn = a0, a0 	= 0,∞. Now, we distinguish two subcases a0g(z) 	≡
g′(z) and a0g(z) ≡ g′(z).

Case 2.2.1. a0g(z) 	≡ g′(z). We can choose ξ0 ∈ C such that

g(ξ0) 	= 0, a1, a2, a3,∞, g′(ξ0) 	= 0,∞, g′′(ξ0) 	= 0,∞, a0g(ξ0)− g′(ξ0) 	= 0,∞.

Let
pn(z) = fn(z

′
n + ρnξ0 + z).

By the same arguments as in case 2.1, we can get

A(εn, zn, f) ≤ O(1)(1 + log+ |zn|).

Case 2.2.2. a0g(z) ≡ g′(z). We can derive that g(z) = ea0z+b0 , where b0 ∈ C. From (2.2), we obtain

hn(z) = fn(z
′
n + ρnz) = f(zn + εn(z

′
n + ρnz)) = f(zn + εnz

′
n + εnρnz) → g(z). (2.5)
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On the other hand, noting that f and f ′ share ai, i = 1, 2, 3 in A(θ0, ε), by Lemma 2.7, we have
Sθ−ε,θ+ε(r, f) = O(1). Therefore, applying Lemma 2.8 to f in A(θ0, ε), we obtain

log |f(reiφ)| = rωc sin(ω(φ− α)) + o(rω)

uniformly for θ0 − ε = α ≤ φ ≤ β = θ0 + ε as r /∈ F and r → ∞, where c is a positive constant, ω =
π

β − α
=

π

2ε
, and F is a set of finite logarithmic measure.

Noting that F is a set of finite logarithmic measure. Therefore, there exist a real number R, 0 < R <
∞, and a sequence of complex numbers un, 0 < |un| < R, for every sufficiently large n such that

log |f(zn + εnz
′
n + εnρnun)| = rωnc sin(ω(φ− α)) + o(rωn), (2.6)

where rn = |zn + εnz
′
n + εnρnun| /∈ F , φn = arg(zn + εnz

′
n + εnρnun), θ0 − ε/2 ≤ φn ≤ θ0 + ε/2, and

α = θ0 − ε.
From (2.5), we get lim

n→∞
(f(zn + εnz

′
n + εnρnun)− g(un)) = 0. Noting that un is a bounded

sequence, there exists convergent subsequence, we still denote it by un and set un → u0(n → ∞). We
have lim

n→∞
g(un) = lim

n→∞
ea0un+b0 = ea0u0+b0 , and it follows that

lim
n→∞

log |f(zn + εnz
′
n + εnρnun)|

rωn
= 0.

On the other hand, by (2.6) we obtain that

lim
n→∞

log |f(zn + εnz
′
n + εnρnun)|

rωn
= lim

n→∞
c sinω(φ− α) ≥ c sin

π

4
> 0

we obtain a contradiction, and so case 2.2 is false. This completes the proof of Lemma 2.13.

3. PROOF OF THEOREMS

Proof of Theorem 1.1. Suppose that f 	≡ f ′, since arg z = θ0 is a Borel direction of f , by
Lemma 2.3, there exists a series of circles

Γj = {z : |z − zj | < εj |zj |},

where zj = |zj |eiθ0 , and lim
j→∞

|zj | = +∞, lim
j→∞

εj = 0(j = 1, 2, · · ·), such that f takes any complex

number at least |zj |λ−δj times in every circle Γj with at most some exceptional values contained in
two circles with spherical radius 2−j , where lim

j→∞
|δj | = 0. We denote the two circles by Δj1 and Δj2.

Therefore, by Lemma 2.5, we have

A(εj |zj |, zj , f) =
∫

Ĉ

n(εj|zj |, zj , f = a)dm(a)

≥
∫

Ĉ−Δj1−Δj2

n(εj |zj |, zj , f = a)dm(a) ≥ 1

2
|zj |λ−δj . (3.1)

On the other hand, from Lemma 2.13, the following inequality holds

A(εn, zn, f) ≤ O(1)(1 + log+ |zn|), (3.2)

where |z| ≤ 1 and εn = |zn|εn.
Combining with (3.1) and (3.2), we get

1

2
|zn|λ−δn ≤ A(εn, zn, f) ≤ O(1)(1 + log+ |zn|).

Noting that λ > 0 and lim
n→∞

δn = 0, this contradicts with lim
n→∞

|zn| = +∞. The proof of Theorem 1.1 is

complete.
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Proof of Theorem 1.2. Suppose that f and f ′ share three distinct finite complex numbers
aj(j = 1, 2, 3) IM in A(θ0, ε), by Lemma 2.7, in view of f with infinite order and f 	≡ f ′, we have
Sθ0−ε,θ0+ε(r, f) = R(r, f), implying that

Sθ0−ε,θ0+ε(r, f) = O(logU(r)), U(r) = rρ(r).

On the other hand, arg z = θ0 is a Borel direction of f with precise order ρ(r). By Lemma 2.9, for
arbitrarily small ε > 0, we have

lim sup
r→+∞

logSθ0−ε,θ0+ε(r, f)

ρ(r) log r
= 1.

Thus, we arrive at a contradiction. This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Suppose that f and L[f ] share three distinct finite complex numbers
aj(j = 1, 2, 3) CM in A(θ0, ε). Using Lemmas 2.10 and 2.9 in A(θ0, ε), similar to proof of Theorem 1.2,
we can conclude a contradiction. This completes the proof of Theorem 1.3.
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