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Abstract—In this paper, we extend a Hardy–Littlewood type theorem to the exponentially p-
harmonic Bergman space on the real unit ball B in R

n. As an application, we characterize
exponentially p-harmonic Bergman spaces in terms of Lipschitz type conditions. Furthermore, some
derivative-free characterizations for n-harmonic Qk spaces are established.
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1. INTRODUCTION AND MAIN RESULTS

For n ≥ 2, let R
n denote the usual real vector space of dimension n. For two column vectors

x, y ∈ R
n, we use 〈x, y〉 to denote the inner product of x and y. The ball in R

n with center a and radius
r is denoted by B(a, r). In particular, we write B = B(0, 1) and Br = B(0, r). Let dv be the normalized
volume measure on B and dσ the normalized surface measure on the unit sphere S = ∂B.

The purpose of this paper is to investigate p-harmonic functions whose definition is as follows.

Definition 1.1. Let p > 1 and Ω be a domain in R
n. A continuous function u ∈ W 1,p

loc (Ω) is
p-harmonic if

div
(
|∇u|p−2∇u

)
= 0

in the weak sense, i.e.,
∫

Ω

〈|∇u|p−2∇u,∇η〉dv(x) = 0

for each η ∈ C∞
0 (Ω).

p-harmonic functions are natural extensions of harmonic functions from a variational point of view.
They have been extensively studied because of its various interesting features and applications. By a
well-known regularity result due to Tolksdorf, p-harmonic functions are C1(Ω). Moreover, u ∈ W 2,2

loc (Ω)

if p ≥ 2 and u ∈ W 2,p
loc (Ω) if 1 < p < 2 (cf. [12, 20]).

Let p > 1, we denote by hp(B) the set of all p-harmonic functions on the real unit ball B in R
n. For

α ∈ R and β > 0, the so-called exponential weighted function ωα,β, introduced by Aleman and Siskakis
[2], is defined as

ωα,β(x) = (1− |x|)α exp
(

−1

(1− |x|)β

)
, x ∈ B,

and the associated weighted volume measure is denoted by

dvα,β(x) = ωα,β(x)dv(x).
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For 1 < s < ∞, α ∈ R and β > 0, the exponentially weighted p-harmonic Bergman space
As

α,β(B) is defined as

As
α,β(B) =

⎧
⎨

⎩
u ∈ hp(B) : ||u||sAs

α,β
=

∫

B

|u(x)|sdvα,β(x) < ∞

⎫
⎬

⎭
.

In particular, if β = 0, then As
α,β(B) becomes the weighted p-harmonic Bergman space, which is

denoted by As
α(B).

For 0 < s < ∞, α > −1, let f be a holomorphic function on the unit disc D of the complex plane C.
The famous Hardy–Littlewood theorem for holomorphic Bergman spaces asserts that

∫

D

|f(z)|s(1− |z|2)αdA(z) ≈ |f(0)|s +
∫

D

|f ′(z)|s(1− |z|2)s+αdA(z), (1.1)

where dA is the area measure on C normalized so that A(D) = 1 (cf. [10]).
It is well-known that integral estimate (1.1) plays an important role in the theory of holomorphic

functions. For the generalizations and applications of (1.1) to the spaces of holomorphic functions,
harmonic functions, and solutions to certain PDEs, see [3–5, 9, 15, 11, 14, 21, 25] and the references
therein. In [18], Siskakis extended (1.1) to the setting of exponentially weighted Bergman space of
holomorphic functions for 1 ≤ s < ∞. For the further generalizations of (1.1) to holomorphic Bergman
spaces with some general differential weights, see [15, 19]. By applying these results, Cho and
Park characterized exponentially weighted Bergman space in terms of Lipschitz type conditions ([5,
Theorem A], [6, Theorem 3.1]).

In [11], Kinnunen et al. pointed out that (1.1) is also true for p-harmonic functions. More precisely,
they obtained the following integral estimate.

Theorem A. Let α > −1, 1 < s < ∞, then
∫

B

|u(x)|s(1− |x|)αdv(x) ≈ |u(0)|s +
∫

B

|∇u(x)|s(1− |x|)s+αdv(x) (1.2)

for all u ∈ hp(B).
With developing of theory on the standard (weighted) Bergman space, more general spaces such as

weighted Bergman spaces with exponential type weights have been extensively studied (see [2, 4–6,
8, 16]). As the first aim of this paper, we consider an analogue of (1.2) in the setting of exponentially
weighted p-harmonic Bergman space As

α,β(B). The following is our result in this line.

Theorem 1.1. Let 1 < s < ∞, α ∈ R and β ≥ s− 1, then
∫

B

|u(x)|sdvα,β(x) ≈ |u(0)|s +
∫

B

|∇u(x)|s(1− |x|)sdvα,β(x) (1.3)

for all u ∈ hp(B).
To state our next results, let us recall the following notion.
The weighted hyperbolic distance dλ, due to Dall’Ara [7], is induced by the metric λ(x)−2dx⊗ dx,

i.e.,

dλ(x, y) = inf
γ

1∫

0

|γ′(t)|
λ(γ(t))

dt, x, y ∈ B,

where λ(x) = (1− |x|2)2 and γ : [0, 1] → B is a parametrization of a piecewise C1 curve with γ(0) = x

and γ(1) = y. By [7], it was shown that dλ(x, y) ≈ |x−y|
[x,y]2

when x, y are close sufficiently in B, see
Section 4 in [7] for details.

As an application of Theorem 1.1, we obtain a Lipschitz type characterization for exponentially
weighted p-harmonic Bergman space As

α,β(B).
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BERGMAN-TYPE AND Qk-TYPE SPACES 193

Theorem 1.2. Let 1 < s < ∞, α ∈ R, β ≥ 2s− 1 and u ∈ hp(B). Then the following statements
are equivalent:
(a) u ∈ As

α,β(B).

(b) There exists a positive continuous function g ∈ Ls(B, dvα,β) such that

|u(x)− u(y)| ≤ |x− y|
[x, y]2

(
g(x) + g(y)

)

for all x, y ∈ B.
(c) There exists a positive continuous function g ∈ Ls(B, dvα,β) such that

|u(x)− u(y)| ≤ dλ(x, y)
(
g(x) + g(y)

)

for all x, y ∈ B.
(d) There exists a positive continuous function h ∈ Ls(B, dvα+2s,β) such that

|u(x)− u(y)| ≤ |x− y|
(
h(x) + h(y)

)

for all x, y ∈ B.
Remark 1.1. Theorem 1.2 is a generalization of [5, Theorem A] to the setting of p-harmonic

functions.
In recent years a special class of Möbius invariant function spaces in the unit disk D of the complex

plane C, the so-called holomorphic Qk space, has attracted much attention. See [23, 24] for a summary
of recent research about Qk spaces in the unit disk D. Recall that for 0 < k < ∞, a holomorphic function
f is said to belong to the Qk space if

||f ||Qk
= sup

a∈D

∫

B

|f ′(z)|2(1− |ϕa(z)|2)kdA(z) < ∞.

It is well-known that Qk = B, the holomorphic Bloch space if k > 1 and Qk = BMOA if k = 1.
In our final results, we focus on the borderline case p = n. It is known that n-harmonic functions are

Möbius invariant, and thus we are able to generalize some properties of holomorphic Qk spaces to the
n-harmonic setting.

Definition 1.2. For 0 < k < ∞, the Qk space consists of all u ∈ hn(B) such that

||u||Qk
= sup

a∈B

∫

B

|∇u(x)|n(1− |ϕa(x)|2)kdv(x) < ∞,

where ϕa is the Möbius transformation on the real unit ball B that interchanges the points 0 and a (see
the definition in Section 2).

In [13], Latvala characterized n-harmonic Qk and BMO(B) spaces by means of certain Möbius
invariant weighted Dirichlet integrals. Motivated by the results in [13, 22], we show a derivative-free
characterization of Qk as follows.

Theorem 1.3. Let 0 < k < n and u ∈ hp(B). Then u ∈ Qk if and only if

sup
a∈B

∫

B

∫

B

|u(x)− u(y)|n
[x, y]2n

(1− |ϕa(x)|2)kdv(x)dv(y) < ∞.

For 0 < r < 1 and u ∈ hn(B), we define the oscillation of u at x in the pesudo-hyperbolic metric as
or(u)(x) which is given by

or(u)(x) = sup
y∈E(x,r)

|u(x)− u(y)|.

Similarly, define another oscillation of u at x as

ôr(u)(x) = sup
y∈E(x,r)

|ûr(x)− u(y)|,
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where

ûr(x) =
1

|E(x, r)|

∫

E(x,r)

u(y)dv(y).

Theorem 1.4. Let 0 < r < 1 and u ∈ hn(B). Then the following statements are equivalent:

(a) u ∈ Qk;

(b) sup
a∈B

∫

B

|or(u)(x)|n(1− |ϕa(x)|2)kdτ(x) < ∞,

(c) sup
a∈B

∫

B

|ôr(u)(x)|n(1− |ϕa(x)|2)kdτ(x) < ∞,

where dτ(x) = (1− |x|2)−ndv(x) is the invariant measure on B.
The rest of this paper is organized as follows. In Section 2, some necessary terminology and notation

will be introduced. In Section 3, we shall prove Theorem 1.1. The proof of Theorem 1.2 will be presented
in Section 4 by applying Theorem 1.1. The final Section 5 is devoted to the proofs of Theorems 1.3
and 1.4. Throughout this paper, constants are denoted by C they are positive and may differ from one
occurrence to the other. For nonnegative quantities X and Y , X � Y means that X is dominated by Y
times some inessential positive constant. We write X ≈ Y if Y � X � Y .

2. PRELIMINARIES

In this section, we introduce notation and collect some preliminary results that involve Möbius
transformations and p-harmonic functions.

Let a ∈ R
n, we write a in polar coordinate by a = |a|a′. For a, b ∈ R

n, let

[a, b] =
∣∣|a|b− a′

∣∣ .

The symmetric lemma shows

[a, b] = [b, a].

For any a ∈ B, denote by ϕa the Möbius transformation in B. It is an involution of B such that ϕa(0) = a
and ϕa(a) = 0, which is of the form

ϕa(x) =
|x− a|2a− (1− |a|2)(x− a)

[x, a]2
, x ∈ B.

An elementary computation gives

|ϕa(x)| =
|x− a|
[x, a]

.

In terms of ϕa, the pseudo-hyperbolic metric ρ is given by

ρ(a, b) = |ϕa(b)|, a, b ∈ B.

The pseudo-hyperbolic ball with center a and radius r is denoted by

E(a, r) = {x ∈ B : ρ(a, x) < r}.
However, E(a, r) is also a Euclidean ball with center ca and radius ra given by

ca =
(1− r2)a

1− |a|2r2 and ra =
r(1− |a|2)
1− |a|2r2 , (2.1)

respectively (cf. [1, 17]).
Following [5], we define a positive value function 
 in B as


(a, b) =
|a− b|
[a, b]2

, a, b ∈ B.
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The ball Br(a) associated with 
 is given by

Br(a) = {x ∈ B : 
(a, x) < r}.

Obviously, one see that 
(a, b) < r implies ρ(a, b) < 2r for a small positive r.

Lemma 2.1. Let r be a small positive number and x ∈ Br(a) (resp., E(a, r)). Then

1− |x|2 ≈ 1− |a|2 ≈ [a, x], dλ(a, x) ≈ 
(a, x)

and

|Br(a)| ≈ (1− |a|2)2n, (resp. |E(a, r)| ≈ (1− |a|2)n),

where |Br(a)| and |E(a, r)| denote the Euclidean volume of Br(a) and E(a, r), respectively.
Proof. It is obvious from [17, Lemma 2.1].
By Lemma 2.1, the following comparable results can be easily derived.
Lemma 2.2. For a small r > 0, there exist two positive constants r1, r2 such that

B(a, r1(1− |a|2)2) ⊆ Br(a) ⊆ B(a, r2(1− |a|2)2), a ∈ B.

Let u ∈ hp(B), for convenience, we denote

−
∫

B(x,r)

u(y)dv(y) =
1

|B(x, r)|

∫

B(x,r)

u(y)dv(y).

We end this section with some useful inequalities concerning p-harmonic functions which are crucial for
our investigations (cf. [11]).

Lemma 2.3. Assume that u ∈ hp(B). Then we have the following inequalities.

(1) For each δ > 1, there is a positive constant C such that
∫

B(x,r)

|∇u(y)|pdv(y) ≤ C

rp

∫

B(x,δr)

|u(y)|pdv(y),

whenever B(x, δr) ⊂ B.

(2) For each δ > 1 and 0 < s ≤ t, there is a positive constant C such that

|u(x)| ≤ C

⎛

⎜
⎝−

∫

B(x,r)

|u(y)|tdv(y)

⎞

⎟
⎠

1
t

≤ C

⎛

⎜
⎝−

∫

B(x,δr)

|u(y)|sdv(y)

⎞

⎟
⎠

1
s

,

whenever B(x, δr) ⊂ B.

(3) For each δ > 1 and 0 < s ≤ t, there is a positive constant C such that

|∇u(x)| ≤ C

⎛

⎜
⎝−

∫

B(x,r)

|∇u(y)|tdv(y)

⎞

⎟
⎠

1
t

≤ C

⎛

⎜
⎝−

∫

B(x,δr)

|∇u(y)|sdv(y)

⎞

⎟
⎠

1
s

,

whenever B(x, δr) ⊂ B.

(4) For each t > 0 and δ > 1, there is a positive constant C such that

oscx∈B(y,r)u(x) ≤ C

⎛

⎜
⎝−

∫

B(y,δr)

|∇u(y)|tdv(y)

⎞

⎟
⎠

1
t

,

whenever B(y, δr) ⊂ B.

JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS Vol. 57 No. 3 2022



196 FU, XIE

3. PROOF OF THEOREM 1.1
Proposition 3.1. Let 1 < s < ∞, α ∈ R and β > 0, then

|u(0)|s +
∫

B

(1− |x|)s|∇u(x)|sdvα,β(x) �
∫

B

|u(x)|sdvα,β(x)

for all u ∈ hp(B).
Proof. By Lemma 2.3, we have

|u(0)| ≤ C

⎛

⎜
⎜
⎝

∫

B 1
2

|u(x)|sdvα,β(x)

⎞

⎟
⎟
⎠

1
s

�

⎛

⎝
∫

B

|u(x)|sdvα,β(x)

⎞

⎠

1
s

.

Hence, it is sufficient to prove without the term |u(0)|s. It follows from Lemma 2.3 again that for each
fixed x ∈ B,

|∇u(x)| ≤ C

⎛

⎜
⎜
⎝−

∫

B(x,
(1−|x|)

4
)

|∇u(y)|pdv(y)

⎞

⎟
⎟
⎠

1
p

�

⎛

⎜⎜
⎝(1− |x|)−p −

∫

B(x, (1−|x|)
3

)

|u(y)|pv(y)

⎞

⎟⎟
⎠

1
p

� (1− |x|)−1

⎛

⎜⎜
⎝−

∫

B(x, (1−|x|)
2

)

|u(y)|sv(y)

⎞

⎟⎟
⎠

1
s

.

Combing this with Lemma 2.1 and Fubini’s theorem, we conclude that
∫

B

|∇u(x)|s(1− |x|)sdvα,β(x) �
∫

B

−
∫

B(x,
(1−|x|)

2
)

|u(y)|sdv(y)dvα,β(x)

�
∫

B

−
∫

B(x,
(1−|x|)

2
)

|u(y)|sdvα,β(y)dv(x)

�
∫

B

|u(y)|s −
∫

B(y, (1−|y|)
2

)

dv(x)dvα,β(y) �
∫

B

|u(y)|sdvα,β(y).

This proves the result.
Proposition 3.2. Let 1 < s < ∞, α ∈ R and β ≥ s− 1, then

∫

B

|u(x)|sdvα,β(x) � |u(0)|s +
∫

B

|∇u(x)|s(1− |x|)sdvα,β(x)

for all u ∈ hp(B).
Proof. Assume that u(0) = 0. We divide the integral on the left-hand side of (3.2) into two parts:

∫

B

|u(x)|sdvα,β(x) =
∫

B 1
3

+

∫

B\B 1
3

.

It is easy to see that the integral over B 1
3

is dominated by
∫

B 1
3

|u(x)|sdvα,β(x) �
(
oscx∈B 1

3

u(x)
)s
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�
∫

B 1
2

|∇u(x)|s(1− |x|)sdvα,β(x) �
∫

B

|∇u(x)|s(1− |x|)sdvα,β(x).

We now estimate the integral over B \ B 1
3

. Since u is C1(B), for ζ ∈ S, we have

|u(rζ)− u(
1

3
ζ)| � C

∫ r

1
3

|∇u(tζ)|dt.

Thus,
∫

B\B 1
3

|u(x)|sdvα,β(x) =
∫

S

∫ 1

1
3

nrn−1|u(rζ)|sωα,β(r)drdσ(ζ)

�
∫

S

∫ 1

1
3

rn−1

(
|u(rζ)− u(

1

3
ζ)|s + |u(1

3
ζ)|s

)
ωα,β(r)drdσ(ζ).

Note that the integral
∫

S

∫ 1

1
3

rn−1|u(1
3
ζ)|sωα,β(r)drdσ(ζ) �

∫

B

|∇u(x)|s(1− |x|)sdvα,β(x)

by the same reasoning as the above integral estimate over B 1
3

. It follows from Lemma 2.3 and Hölder’s

inequality that

I =

∫

S

∫ 1

1
3

rn−1|u(rζ)− u(
1

3
ζ)|sωα,β(r)drdσ(ζ) =

∫

S

∫ 1

1
3

rn−1

(∫ r

1
3

|∇u(tζ)|dt
)s

ωα,β(r)drdσ(ζ)

�
∫

S

∫ 1

1
3

(∫ r

0
t(n−1)/s|∇u(tζ)|dt

)s

ωα,β(r)drdσ(ζ) �
∫

S

∫ 1

0

∫ r

0
tn−1|∇u(tζ)|sdtωα,β(r)drdσ(ζ)

�
∫

S

∫ 1

0
tn−1|∇u(tζ)|sdt

∫ r

t
ωα,β(r)drdσ(ζ).

Observe that
1∫

s

ωα,β(r)dr � (1− s)β+1ωα,β(s), 0 < s < 1;

from [18, Example 3.2], we obtain

I �
∫

S

∫ 1

0
tn−1|∇u(tζ)|sωα,β(t)(1 − |t|)sdt(r)dσ(ζ) �

∫

B

|∇u(x)|s(1− |x|)sdvα,β(x)

from the assumption β ≥ s− 1.
To remove the restriction u(0) = 0, let u(x) = u(0) + u1(x) with ∇u = ∇u1 and u1(0) = 0. There-

fore,
∫

B

|u(x)|sdvα,β(x) =
∫

B

|u(0) + u1(x)|sdvα,β(x)

� |u(0)|s +
∫

B

|u1(x)|sdvα,β(x) � |u(0)|s +
∫

B

(1− |x|)s|∇u(x)|sdvα,β(x)

as desired. �
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Proof of Theorem 1.1. Gathering Propositions 3.1 and 3.2, assertion (1.3) follows. By a slight
modification on the proof of Proposition 3.2, we can also obtain the following corollary which can be
viewed as an extension of [5, Proposition 2.10] into p-harmonic setting.

Corollary 3.1. Let 1 < s < ∞, α ∈ R and β ≥ 2s− 1, then
∫

B

|u(x)|sdvα,β(x) ≈ |u(0)|s +
∫

B

|∇u(x)|s(1− |x|)2sdvα,β(x)

for all u ∈ hp(B).

4. LIPSCHITZ TYPE CHARACTERIZATIONS FOR As
α,β(B)

In this section, we discuss Lipschitz type characterizations of the space As
α,β(B) by applying

Corollary 3.1.
Proof of Theorem 1.2. We first prove (b) ⇒ (a). Assume that (b) holds. Then for each fixed x and

all y sufficiently close to x
∣∣
∣∣
u(x)− u(y)

x− y

∣∣
∣∣ ≤

1

[x, y]2
(
g(x) + g(y)

)
, x �= y.

By letting y approach x in the direction of each real coordinate axis, we see that (1− |x|)2|∇u(x)| ≤
Cg(x) for all x ∈ B. It follows from the assumption g ∈ Ls(B, dvα,β) that

∫

B

(1− |x|)2s|∇u(x)|sdvα,β(x) < ∞.

Thus, u ∈ As
α,β(B) by Corollary 3.1.

For the converse, we assume u ∈ As
α,β(B). Fix a small r > 0 and consider any two points x, y ∈ B

with 
(x, y) < r. By Lemma 2.1, it is given that

|u(x)− u(y)| =
∣
∣∣
∣

∫ 1

0

du

dt
(ty + (1− t)x)dt

∣
∣∣
∣ ≤ C|x− y|

∫ 1

0
|∇u(ty + (1− t)x)|dt

≤ C
(x, y) sup{(1 − |ζ|)2|∇u(ζ)| : ζ ∈ Br(x)} ≤ 
(x, y)h(x),

where h(x) = C(r) sup{(1 − |ζ|)2|∇u(ζ)| : ζ ∈ Br(x)}. If 
(x, y) ≥ r, the triangle inequality implies

|u(x)− u(y)| ≤ |u(x)| + |u(y)| ≤ 
(x, y)

(
|u(x)|

r
+

|u(y)|
r

)
.

Letting g(x) = h(x) + |u(x)|
r , then |u(x)− u(y)| ≤ 
(x, y)

(
g(x) + g(y)

)
for all x, y ∈ B. Note that

g(x) = h(x) + |u(x)|
r is the desired function provided that h ∈ Ls(B, dvα,β).

Since r is a small positive number, by Lemma 2.2, we see that Br(ζ) ⊂ B(x, (1−|x|)2
4 ) for every

ζ ∈ Br(x). It follows from Lemma 2.3 that

sup
ζ∈Br(x)

|∇u(ζ)| ≤ C

⎛

⎜
⎜
⎝−

∫

B(x, (1−|x|)2
4

)

|∇u(y)|pdv(y)

⎞

⎟
⎟
⎠

1
p

�

⎛

⎜⎜
⎝(1− |x|)−2p −

∫

B(x, (1−|x|)2
3

)

|u(y)|pv(y)

⎞

⎟⎟
⎠

1
p

� (1− |x|)−2

⎛

⎜⎜
⎝−

∫

B(x, (1−|x|)2
2

)

|u(y)|sv(y)

⎞

⎟⎟
⎠

1
s

.
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Hence, by Fubini’s theorem and Lemma 2.1,

||h||sAs
α,β

�
∫

B

(1− |x|)−2nωα,β(x)

∫

B(x,
(1−|x|)2

2
)

|u(y)|sdv(y)dv(x)

�
∫

B

|u(y)|sωα,β(y)

∫

B(y, (1−|y|)2
2

)

(1− |x|)−2ndv(y)dv(x) � ||u||sAs
α,β

,

which implies h ∈ Ls(B, dvα,β). This proves (a) ⇔ (b).
(a) ⇔ (c). It follows from Lemmas 2.1 and 2.2 and a discussion similar to the above, the assertion
follows.
(a) ⇔ (d). Assume that (d) holds. Then it can be deduced that

(1− |x|)2|∇u(x)| ≤ C(1− |x|)2h(x)

for all x ∈ B. The assumption h ∈ Ls(B, dvα+2s,β) implies (1− |x|)|2∇u(x)| ∈ Ls(B, dvα,β) and, thus,
according to Corollary 3.1, means that u ∈ As

α,β(B).

Conversely, suppose that u ∈ As
α,β(B). Then (b) implies that there exists a positive continuous

function g ∈ Ls(B, dvα,β) such that

|u(x)− u(y)| ≤ C
|x− y|
[x, y]2

(
g(x) + g(y)

)

for all x, y ∈ B. Since for x, y ∈ B, [x, y] ≥ 1− |x|, [x, y] ≥ 1− |y|, we see that

|u(x)− u(y)| ≤ C|x− y|
(

g(x)

(1− |x|)2 +
g(y)

(1− |y|)2

)
≤ |x− y|

(
h(x) + h(y)

)
, x, y ∈ B,

where

h(x) =
Cg(x)

(1− |x|)2 .

Hence, h ∈ Ls(B, dvα+2s,β) from the assumption g ∈ Ls(B, dvα,β). �
In the following, we consider a symmetric lifting operator L which is defined as

Lu(x, y) =
u(x)− u(y)

x− y
, x �= y,

where u ∈ hp(B).
As an application of Theorem 1.2, we can obtain the boundedness of operator L as follows.
Theorem 4.1. Let 1 < s < ∞, α ∈ R, β ≥ 2s− 1. Then L : As

α,β(B) → Ls(B× B, dvα+s,β ×
dvα+s,β) ∩ hp(B× B) is bounded.

Proof. Let u ∈ As
α,β(B). Then there exists a positive continuous function g ∈ Ls(B, dvα,β) such that

|Lu(x, y)|s =
∣∣
∣∣
u(x)− u(y)

x− y

∣∣
∣∣

s

� |g(x)|s + |g(y)|s
[x, y]2s

, x �= y,

by Theorem 1.2. Applying Fubini’s Theorem, we obtain
∫

B

∫

B

|Lu(x, y)|sdvα+s,β(x)dvα+s,β(y) ≤ 2C

∫

B

∫

B

|g(x)|s
[x, y]2s

dvα+s,β(x)dvα+s,β(y)

�
∫

B

∫

B

|g(x)|s
(1− |x|)s(1− |y|)s dvα+s,β(x)dvα+s,β(y) �

∫

B

|g(x)|sdvα,β(x) < ∞.

Consequently, L : As
α,β(B) → Ls(B × B, dvα+s,β × dvα+s,β) ∩ hp(B× B) is bounded. �
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5. CHARACTERIZATIONS OF Qk SPACES

In this section, we discuss some derivative-free characterizations for Qk spaces of n-harmonic
functions on the real unit ball B in R

n.
Lemma 5.1. Let 0 < k < ∞ and u ∈ hn(B). Then there exists a constant C > 0 such that

∫

B

|∇u(x)|n(1− |x|2)kdv(x) ≤ C

∫

B

∫

B

|u(x)− u(y)|n
[x, y]2n

(1− |x|2)kdv(x)dv(y).

Proof. Write

K =

∫

B

∫

B

|u(x)− u(y)|n
[x, y]2n

(1− |x|2)kdv(x)dv(y).

Making the change of variables y �→ ϕx(y) leads to

K =

∫

B

∫

B

|u(x)− u ◦ ϕx(y)|n
[x, ϕx(y)]2n

(1− |x|2)kJϕx(y)dv(x)dv(y)

=

∫

B

∫

B

|u ◦ ϕx(0) − u ◦ ϕx(y)|n(1− |x|2)k−ndv(x)dv(y)

=

∫

B

(1− |x|2)k−ndv(x)

∫

B

|u ◦ ϕx(0) − u ◦ ϕx(y)|ndv(y).

Note that u ◦ ϕx ∈ hn(B), it follows from (1.2) that
∫

B

|u ◦ ϕx(0) − u ◦ ϕx(y)|ndv(y) ≈
∫

B

|∇(u ◦ ϕx)(y)|n(1− |y|2)ndv(y).

It deduces from [13, Lemma 4.4] that

K ≈
∫

B

(1− |x|2)k−ndv(x)

∫

B

|∇(u ◦ ϕx)(y)|n(1− |y|2)ndv(y)

≈
∫

B

(1− |x|2)k−ndv(x)

∫

B

|∇u(y)|n(1− |ϕx(y)|2)ndv(y)

≥ C

∫

B

(1− |x|2)k−ndv(x)

∫

E(x, 1
2
)

|∇u(y)|n(1− |ϕx(y)|2)ndv(y)

≥ C

∫

B

(1− |x|2)kdv(x) −
∫

E(x, 1
2
)

|∇u(y)|ndv(y) ≥ C

∫

B

|∇u(x)|n(1− |x|2)kdv(x).

�
Lemma 5.2. Let 0 < k < n and u ∈ hn(B). Then there exists a constant C > 0 such that

K =

∫

B

∫

B

|u(x)− u(y)|n
[x, y]2n

(1− |x|2)kdv(x)dv(y) ≤ C

∫

B

|∇u(x)|n(1− |x|2)kdv(x).

Proof. From the proof of Lemma 5.1, we see that

K ≈
∫

B

|∇u(y)|ndv(y)
∫

B

(1− |ϕx(y)|2)n(1− |x|2)k−ndv(x)
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It follows from the assumption 0 < k < n and [17, Lemma 2.4] that
∫

B

(1− |ϕx(y)|2)n(1− |x|2)k−ndv(x) =

∫

B

(1− |x|2)k(1− |y|2)n
[x, y]2n

dv(x)

� (1− |y|2)k,
as desired. �
Proof of Theorem 1.3. By [13, Lemmas 2.3 and 4.4], we know that u ∈ Qk if and only if

sup
a∈B

∫

B

|∇(u ◦ ϕa)(x)|n(1− |x|2)kdv(x) < ∞.

This together with Lemmas 5.1 and 5.2, the assertion follows.
Proof of Theorem 1.4. The proof will follow by the routes (a) ⇒ (b) ⇒ (c) ⇒ (a).

(a) ⇒ (b). Let u ∈ Qk. By Lemma 2.3, for 0 < r < 1 and a fixed x ∈ B,

|or(u)(x)|n � 1

|E(x, r′)|

∫

E(x,r′)

|u(x)− u(y)|ndv(y),

where r < r′ < 1. From Lemmas 2.1 and 2.3, we have

1

|E(x, r′)|

∫

E(x,r′)

|u(x)− u(y)|ndv(y) �
∫

E(x,r′)

|u(x) − u(y)|n (1− |x|2)n
[x, y]2n

dv(y)

=

∫

B(0,r′)

|u ◦ ϕx(0)− u ◦ ϕx(y)|ndv(y) �
∫

B(0,r′)

|∇(u ◦ ϕx)(y)|n(1− |y|2)ndv(y).

By making the change of variables and [13, Lemma 4.3],

|or(u)(x)|n �
∫

E(x,r′)

|∇u(y)|ndv(y),

from which we see that
∫

B

|or(u)|n(1− |ϕa(x)|2)kdτ(x)

�
∫

B

(1− |ϕa(x)|2)kdτ(x)
∫

E(x,r′)

|∇u(y)|ndv(y) �
∫

B

|∇u(x)|n(1− |ϕa(x)|2)kdv(x),

for each a ∈ B. Hence, (a) implies (b).

(b) ⇒ (c). By Lemma 2.3, for 0 < r < 1,

sup
y∈E(x,r)

|ûr(x)− u(y)| � sup
y∈E(x,r)

1

|E(x, r)|

∫

E(x,r)

|u(y)− u(z)|dv(z)

� sup
y∈E(x,r)

sup
z∈E(x,r)

|u(y)− u(z)| � sup
y∈E(x,r)

|u(x)− u(y)|.

Thus ôr(u)(x) � or(u)(x), from which (b) ⇒ (c) follows.

(c) ⇒ (a). For 0 < r < 1 and x ∈ B, we have

(1− |x|2)n|∇u(x)|n � 1

|E(x, r)|

∫

E(x,r)

|u(y)− ûr(x)|ndv(y)

JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS Vol. 57 No. 3 2022



202 FU, XIE

�
(

sup
y∈E(x,r)

|ûr(x)− u(y)|
)n

by Lemma 2.3. Consequently,

sup
a∈B

∫

B

|∇u(x)|n(1− |ϕa(x)|2)kdv(x) � sup
a∈B

∫

B

|ôr(u)(x)|n(1− |ϕa(x)|2)kdτ(x).

The proof of this theorem is complete.
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