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Abstract—Value distribution, particularly the numbers of a-points, weren’t studied for meromor-
phic functions in a given domain which are solutions of some complex differential equations. In
fact we have here a “virgin land.” A new program of investigations of similar solutions in a given
domain was initiated quite recently. In this program some geometric methods were offered to
study some standard problems as well as some new type problems related to Gamma-lines and
Blaschke characteristic for a-points of the solutions of different equations. In this paper we apply
these methods to get bounds for length of Gamma-lines and Blaschke characteristic for a-points for
solutions of equations w′′ = gwμ considered in a given domain.
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1. INTRODUCTION

There is a huge number of investigations in complex differential equations (CDE) when the solutions
are meromorphic in the complex plane or in the unit disk. The main attention was paid to the value
distribution type phenomena of the solutions, particularly to the zeros (more generally to the a-points)
of these solutions. Meantime, we have very few studies of meromorphic solutions in a given domain,
particularly zeros of similar solutions weren’t touched at all. In fact, our present situation with the
solutions in a given domain is similar to that in the beginning of 20th century when studies of the growth
of solutions in the complex plane were started.

Recently, a new program of investigations of CDEs with solutions in a given domain was initiated
in [4], where different characteristics of solutions were studied for different CDEs. In this paper we
consider two characteristics for the solutions in a given domain of equations w′′ = gwμ, where μ is a
positive integer number.

2. ON a-POINTS OF SOLUTIONS OF w′′ = gwμ

Denote D1 = {z : |z| < 1}. Let w(z) be a meromorphic function in D1. Denote a-points of w
by zi(a) ∈ D1. The Blaschke sum of zeros of w, i.e.,

∑
i(1− |zi(0)|), was widely used in the study

of meromorphic functions in D1, particularly in CDEs with solutions in the unit disk. For a given
analytic function in D1, Pommerenke considered in [10] (1982) the equation w′′ = gw (one-dimensional
complex Schrödinger equation) with solutions w in D1 and proved for the zeros zi(0) of w: assumption∫ ∫

D1
|g(z)|1/2dσ < ∞ implies

∑
i(1− |zi(0)|) < ∞. A new stage of studies of this equation related to

interrelations of g and Blaschke sum for D1 was started recently by Heittokangas [6] (2005); for further
developments see his survey in the book [8].
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As we mentioned above our aim is to study CDEs with solutions in domains D.
Assume that D is a simply connected domain with smooth boundary ∂D of finite length l(D) and

area S(D).
We study the following more general equation

w′′ = gwμ, (Sμ)

where μ is a positive integer number and g(z) is a regular function in D̄ = D ∪ ∂D.
As a characteristic of a-points we consider the following Blaschke sum of a-points for a given

domain D (considered first in [2, Chapter 1]) which we define as N (D, a,w) :=
∑

i Dist(zi(a), ∂D),
where Dist(x, y) stands obviously for the distance between x and y. Notice that in the case when D is
the disk D1 we have Dist(zi(0), ∂D) = 1− |zi(0)|; respectively, the Blaschke sum for D becomes usual
Blaschke sum for D1.

For a regular function w in D̄ we denote M(w) := maxz∈∂D |w(z)| 1 and m(w′) := minz∈D̄ |w′(z)|.
Theorem 2.1. For an arbitrary regular in D̄ solution w(z) of equation (Sμ) and any complex

value a �= 0 we have

N (D, a,w) ≤ K11M
μ(w) +K12m(w′) +K13, (2.1)

where K11, K12, K13 are independent of w.

Some comments. Notice that if we know the magnitude w′(z0) at any point z0 ∈ D̄ we can
substitute m(w′) in (2.1) by |w′(z0)|. The coefficients depend on the equation, the value a and the
domain D. They are determined in the simple terms:

K11 =
3π + 3μ

4|a| M(g)l(D)S(D), K12 =
π + μ

2|a| S(D),

and

K13 =
1

4

∫∫

D

∣
∣
∣
∣
g′(z)

g(z)

∣
∣
∣
∣ dσ +

π + 2

8
l(D).

Thus, K11, K12, and K13 are finite when the last double integral is finite so that (2.1) yields, in this
case, simply determined bounds for N (D, a,w).

Finally, we notice that in the case when g(z) is a polynomial of degree n the upper bounds of the
double integral can be easily given by n and S(D).

3. GAMMA-LINES OF SOLUTIONS OF w′′ = gwμ

3.1. Gamma-Lines, Motivation of Their Studies and the Preceding Results

Let w(z) := u+ iv := Rew + i Imw be a meromorphic function in D. Consider level sets of u−A,
−∞ < A < +∞, that is, solutions u(x, y) = A (or Rew(z) = A). (By the definition, level sets of real
functions u(x, y) are solutions of u(x, y) = 0). In turn, level sets are particular cases of Gamma-lines
of w which are those curves in D whose w-images belong to a given curve. For instance, when Γ is the
real axis, Gamma-lines become level sets of function u(x, y), i.e., solutions of u(x, y) = 0,

One can notice a striking similarity between the a-points (which are the solutions w(z) = a) and
the level sets (which are solutions of u(x, y) = A). On the other hand, level sets of u−A admit a lot of
interpretations (streaming line, potential line, isobar, isoterm) in different applied fields of engineering,
physics, environmental, and other problems. Due to the above arguments (similarity with a-points and
applicability), it is pertinent to study largely level sets for different classes of meromorphic functions
particularly for the solutions w of different classes of complex differential equations.

1 Here we may remember that in numerous studies concerning regular functions w in the disks D(r) := {z : |z| < r}
(instead of the domains D) the magnitude M(w) plays a role of a characteristic. The same is true also for entire functions;
in this case we deal usually with lnM(w) := lnmaxz∈∂D(r) |w(z)|.
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We denote the length of Gamma-lines of w lying in D by L(D,Γ, w). These lengths were widely
studied in [2] for large classes of smooth Jordan curves Γ (bounded or unbounded) in the complex plane.
The only restriction for Γ is that ν(Γ) = Varz∈ΓαΓ(z) < ∞, where Var means variation and αΓ(z) is the
angle between the tangent to Γ at z ∈ Γ and the real axis.

As to Gamma-lines for solutions of equation, they were considered first recently in [1] for solutions in
D of equation w′′ = gw, where estimates of L(D,Γ, w) were given in terms of Ahlfors–Shimizu classical
characteristic.

In this section, we give upper bounds of L(D,Γ, w) for solution w of (Sμ). The bounds will be given
in terms of M(w), which in application mean often some important physical concepts.

Theorem 3.1. Let w(z) be a regular function in D̄ which is a solution of equation (Sμ) and Γ a
smooth Jordan curve with ν(Γ) < ∞ which does not pass through zero. Then

L(D,Γ, w) ≤ K21M
μ(w) +K22m(w′) +K23, (3.1)

where K21, K22, and K23 are independent of w.
The coefficients depend on the equation, the curve Γ and the domain D. They are determined in the

simple terms:

K21 = K(Γ)
3π + 3μ

|aΓ|
M(g)l(D)S(D), K22 = K(Γ)

2π + 2μ

|aΓ|
S(D),

where K(Γ) = 3(ν(Γ) + 1), aΓ is the closest to the zero point belonging to Γ,2 and

K23 = K(Γ)

∫∫

D

∣
∣
∣
∣
g′(z)

g(z)

∣
∣
∣
∣ dσ +K(Γ)

π + 2

2
l(D).

Theorem 3.2. Assuming in Theorem 3.1 that Γ is a straight line which does not pass through
zero, we have

L(D,Γ, w) ≤ K31M
μ(w) +K32m(w′) +K33, (3.2)

where K31, K32, and K33 are independent of w.
Assuming that a is the closet to zero point on Γ, we have

K31 =
3π + 3μ

2|a| M(g)l(D)S(D), K32 =
π + μ

|a| S(D),

and

K33 =
1

2

∫∫

D

∣
∣
∣
∣
g′(z)

g(z)

∣
∣
∣
∣ dσ +

π + 2

4
l(D).

4. PROOFS

Proof of Theorem 3.1. We need the following “basic identity for Gamma-lines” (see [2, item 1.1.3,
identity (1.1.6)]). We state it as

Lemma 4.1. For any regular function w in D, we have
∞∫

0

L(D,Γ(R), w)dR =

∫∫

D

∣
∣w′∣∣ dσ,

where Γ(R) is the circumference {w : |w| = R}.
For a given a ∈ C, a �= 0, we denote D(|a|/2, 3|a|/4) := {z : |a|/2 < |w(z)| < 3|a|/4}. This set

consists of some connected components which are simply connected or multiply connected compo-
nents. Dividing multiply connected components into some simply connected ones, we can consider

2 If we have more than one similar point we take arbitrary of them.
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D(|a|/2, 3|a|/4) as a union of simply connected domains Dλ(|a|/2, 3|a|/4), where λ is a counting index
of these domains. Applying Lemma 4.1 in each Dλ(|a|/2, 3|a|/4) and then summing up for all indexes
λ, we obtain

3|a|/4∫

|a|/2

L(D,Γ(R), w)dR =

∫∫

D(|a|/2,3|a|/4)

∣
∣w′∣∣ dσ.

Due to the mean value theorem we conclude that there is R∗ ∈ (|a|/2, 3|a|/4) such that

L(D,Γ(R∗), w) =
4

|a|

∫∫

D(|a|/2,3|a|/4)

∣
∣w′∣∣ dσ. (4.1)

Denote D(|w| > c) = {z : |w(z)| > c > 0}. The set D(|w| > c) may consists of one or more domains
Dη(|w| > c); clearly they can be as simply connected as well as multiply connected. By ∂Dη(|w| > c) we
denote the union of all boundary components of Dη(|w| > c). Notice that the boundary ∂Dη(|w| > R∗)
should have a (nonempty) common part ∂Dη(|w| > R∗) ∩ ∂D with ∂D. (Indeed, assume contrary, that
∂Dη(|w| > R∗) lies fully insideD. Thenw should have a pole insideD which contradicts our assumption
that w is regular in D̄). Observing that the different common parts (taken for different η) do not overlap
we obtain

∑

η

l (∂Dη(|w| > R∗)) ≤ L(D,Γ(R∗), w) + l(∂D). (4.2)

We need also the following “principle of logarithmic derivatives,” which was established recently [3] by
making use of Gamma-lines technic.

Lemma 4.2. Let d be a bounded domain with piecewise smooth boundary (d can be also
multiply connected); we assume that the intersection of d with any straight line consists of finite
number of intervals. Then, for any meromorphic function f in the closure of d and any integer
k ≥ 1, we have

∫∫

d

∣
∣
∣
∣
f ′(z)

f(z)

∣
∣
∣
∣ dσ ≤

∫∫

d

∣
∣
∣
∣
∣

f (k+1)(z)

f (k)(z)

∣
∣
∣
∣
∣
dσ +

kπ

2
l(∂d). (4.3)

Comment 1. In [3], we assumed that the intersection of d with any straight line consists of finite
number of intervals. This restriction on intersection was putted just for simplicity of the proof. To avoid
this it is enough to consider a domain d∗ (“very close” to d) which satisfies this restriction. Then we can
apply (4.3) to d∗ and make limit transfer to d. We will come to the above wording of Lemma 4.1.

Assume now that f is our regular function w in D̄ and d is one of the domains Dη(|w| > R∗). Notice
that the part of the boundary ∂Dη(|w| > R∗) lying in D consists of piecewise analytic curves with a finite
number of possible turning points where w′ = 0. This implies that the boundary of each ∂Dη(|w| > R∗)
is piecewise smooth so that we can apply (4.3). Applying it for the derivative w′ in a given domain
Dη(|w| > R∗) with k ≥ 2 we have

∫∫

Dη(|w|>R∗)

∣
∣
∣
∣
w′′(z)

w′(z)

∣
∣
∣
∣ dσ ≤

∫∫

Dη(|w|>R∗)

∣
∣
∣
∣
∣

w(k+1)(z)

w(k)(z)

∣
∣
∣
∣
∣
dσ +

π

2
(k − 1)l (∂Dη(|w| > R∗)) . (4.4)

Further, we need the following “tangent variation principle” (see [2, item 1.2.2 inequalities 1.2.8 and
1.2.9]).

Lemma 4.3. For any meromorphic function f(z) in D̄ and any smooth Jordan curve Γ (bounded
or unbounded) with ν(Γ) < ∞, we have

L(D,Γ, f) ≤ K(Γ)

⎧
⎨

⎩

∫∫

D

∣
∣
∣
∣
f ′′(z)

f ′(z)

∣
∣
∣
∣ dσ + l(∂D)

⎫
⎬

⎭
, (4.5)
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where K(Γ) = 3(ν(Γ) + 1).

Comment 2. In particular case when Γ is a straight line, the above formula can be improved. Due to
Theorem 1 in [5] we have in this case

L(D,Γ, f) ≤ 1

2

∫∫

D

∣
∣
∣
∣
f ′′(z)

f ′(z)

∣
∣
∣
∣ dσ +

1

2
l(∂D). (4.6)

Applying (4.4) to the regular function w in any of the domains Dη(|w| > R∗) and combining with (4.4),
we obtain: for any smooth Jordan curve Γ with ν(Γ) < ∞,

L(Dη(|w| > R∗),Γ, w) ≤ K(Γ)

⎧
⎪⎨

⎪⎩

∫∫

Dη(|w|>R∗)

∣
∣
∣
∣
∣

w(k+1)(z)

w(k)(z)

∣
∣
∣
∣
∣
dσ +

π

2
(k − 1) l (∂Dη(|w| > R∗)) + l(D)

⎫
⎪⎬

⎪⎭
.

Summing up this inequality by η, we get the following formula for D(|w| > R∗):

L(D(|w| > R∗),Γ, w) ≤

K(Γ)

⎧
⎪⎨

⎪⎩

∫∫

D(|w|>R∗)

∣
∣
∣
∣
∣

w(k+1)(z)

w(k)(z)

∣
∣
∣
∣
∣
dσ +

π

2
(k − 1) l (∂D(|w| > R∗)) + l(D)

⎫
⎪⎬

⎪⎭
,

where

l (∂D(|w| > R∗)) =
∑

η

l (∂Dη(|w| > R∗)) .

Applying (4.2) to the last inequality, we obtain

L(D(|w| > R∗),Γ, w) ≤ K(Γ)

×

⎧
⎪⎨

⎪⎩

∫∫

D(|w|>R∗)

∣
∣
∣
∣
∣

w(k+1)(z)

w(k)(z)

∣
∣
∣
∣
∣
dσ +

π(k − 1)

2
L(D,Γ(R∗), w) +

(
π (k − 1)

2
+ 1

)

l(D)

⎫
⎪⎬

⎪⎭
. (4.7)

Comment 3. For a straight line Γ we can apply (4.6) instead of (4.5). Respectively instead of (4.7)
we get

L(D(|w| > R∗),Γ, w) ≤ 1

2

∫∫

D(|w|>R∗)

∣
∣
∣
∣
∣

w(k+1)(z)

w(k)(z)

∣
∣
∣
∣
∣
dσ

+
π

4
(k − 1)L(D,Γ(R∗), w) +

1

2

(
π (k − 1)

2
+ 1

)

l(D). (4.8)

Now, we consider a curve Γ in Theorem 3.1 which does not pass through zero. Assume aΓ is the point
on Γ which is the closest to the point 0; if we have more than one similar points, we take arbitrary one of
them. With this value aΓ we define as above corresponding value R∗

Γ ∈ (|aΓ|/2, 3|aΓ|/4) and notice that
the curve Γ (which we consider in w-plane) lies fully in the set D(|w| > R∗

Γ). Respectively, Gamma-
lines of this Γ lie fully in the set D (|w| > R∗

Γ) so that we have L(D(|w| > R∗
Γ),Γ, w) = L(D,Γ, w) and

(4.7) yields

L(D,Γ, w) ≤ K(Γ)

×

⎧
⎪⎨

⎪⎩

∫∫

D(|w|>R∗
Γ)

∣
∣
∣
∣
∣

w(k+1)(z)

w(k)(z)

∣
∣
∣
∣
∣
dσ +

π

2
(k − 1)L(D,Γ(R∗

Γ), w) +

(
π (k − 1)

2
+ 1

)

l(D)

⎫
⎪⎬

⎪⎭
. (4.9)
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Now, we apply the last inequality to our solution w(z) of equation (Sμ) for μ = 2, we have for any z ∈ D̄
∣
∣
∣
∣
w′′′(z)

w′′(z)

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

g′(z) (w(z))μ + μg(z) (w(z))μ−1 w′(z)

g(z) (w(z))μ

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
g′(z)

g(z)

∣
∣
∣
∣+ μ

∣
∣
∣
∣
w′(z)

w(z)

∣
∣
∣
∣ .

Thus, due to definition of R∗
Γ, for any z ∈ D(|w| > R∗

Γ) we have |w(z)| > |aΓ|/2; consequently,
∣
∣
∣
∣
w′′′(z)

w′′(z)

∣
∣
∣
∣ ≤

∣
∣
∣
∣
g′(z)

g(z)

∣
∣
∣
∣+

2μ

|aΓ|
∣
∣w′(z)

∣
∣ ,

and taking into account that D(|w| > R∗
Γ) ⊂ D, we get

∫∫

D(|w|>R∗
Γ)

∣
∣
∣
∣
w′′′(z)

w′′(z)

∣
∣
∣
∣ dσ ≤

∫∫

D(|w|>R∗
Γ)

{∣
∣
∣
∣
g′(z)

g(z)

∣
∣
∣
∣+

2μ

|aΓ|
∣
∣w′(z)

∣
∣
}

dσ ≤
∫∫

D

∣
∣
∣
∣
g′(z)

g(z)

∣
∣
∣
∣ dσ +

2μ

|aΓ|

∫∫

D

∣
∣w′(z)

∣
∣ dσ.

Due to (4.1) we also have

L(D,Γ(R∗
Γ), w) ≤

4

|aΓ|

∫∫

D

∣
∣w′∣∣ dσ

so that, applying the last two inequalities to (4.9) applied for μ = 2, we obtain

L(D,Γ, w) ≤ K(Γ)

⎧
⎨

⎩

∫∫

D

∣
∣
∣
∣
g′(z)

g(z)

∣
∣
∣
∣ dσ +

2π + 2μ

|aΓ|

∫∫

D

∣
∣w′(z)

∣
∣ dσ +

(π

2
+ 1

)
l(D)

⎫
⎬

⎭
. (4.10)

Since w and g are regular functions and μ is an integer, we conclude that gwμ is a regular function so
that, taking into account that w′′ = gwμ, we have for an arbitrary z0 ∈ D̄

w′(z)− w′(z0) =

z∫

z0

w′′(Z)dZ =

z∫

z0

g(Z) (w(Z))μ dZ.

Consequently, we have |w′(z)| ≤ M(g)Mμ(w)lD(z, z0) + |w′(z0)|, where lD(z, z0) is the length of a
curve, say γ, which lies in D̄ and connects z and z0. We always can connect z with a point z∗ ∈ ∂D
and z0 with a point z∗0 ∈ ∂D by some curves with the lengths l(D)/2 and then can connect the points
z∗ and z∗0 by a part of the boundary ∂D of the length l(D)/2. Thus, we always can take γ such
that lD(z, z0) ≤ 3l(D)/2. Also, we can take z0 such that |w′(z0)| reaches its minimum in D̄ (that is
|w′(z0)| := m(w′) := minz∈D̄ |w′(z)|). With similar notations we obtain

∫∫

D

|w′(z)|dσ ≤ 3

2
M(g)Mμ(w)l(D)S(D) +m(w′)S(D).

Consequently, (4.10) implies

L(D,Γ, w) ≤ K(Γ)
3π + 3μ

|aΓ|
M(g)Mμ(w)l(D)S(D)

+K(Γ)
2π + 2μ

|aΓ|
m(w′)S(D) +K(Γ)

∫∫

D

∣
∣
∣
∣
g′(z)

g(z)

∣
∣
∣
∣ dσ

+K(Γ)
π + 2

2
l(D) = K21M

μ(w) +K22m(w′) +K23, (4.11)

with K21, K22, and K23 given after Theorem 3.1. This completes the proof of Theorem 3.1.
Proof of Theorem 3.2. This theorem is a particular case of Theorem 3.1, where we deal with a

straight line Γ. Due to Comment 3, we see that the constant K(Γ) in (4.7) is replaced by 1/2 for the
straight line; respectively we should apply (4.8) (instead of (4.7)) in the above proofs. Applying (4.8), we
obtain (4.9), (4.10), and (4.11) with K(Γ) replaced by 1/2. Respectively, we get the proof of Theorem
3.2 with the coefficients K31, K32, and K33 given after Theorem 3.2.
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Proof of Theorem 2.1. The next inequality giving interrelations between Blaschke characteristic
and Gamma-lines was proved in [2, item 1.5], (see also [4, item 7.1])): for any regular function w in
D and any smooth Jordan curve Γ connecting a with ∞ we have N (D, a,w) ≤ L(D,Γ, w). Since any
straight line passing through a contains two parts connecting a with ∞, we have for any straight line Γ

N (D, a,w) ≤ 1

2
L(D,Γ, w).

Due to Theorem 3.2 we have upper bounds L(D,Γ, w) for any straight line Γ, which does not pass
through zero. Respectively, Theorem 3.2 and the previous inequality give the following upper bounds for
N (D, a,w):

N (D, a,w) ≤ 1

2
L(D,Γ, w) ≤ 1

2

[
K31M

μ(w) +K32m(w′) +K33

]
.

Denoting K11 =
1
2K31, K12 =

1
2K32, and K13 =

1
2K33, we obtain Theorem 2.1.
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