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1. INTRODUCTION

Let X and Y be Banach spaces. The essential norm of a bounded linear operator T : X → Y is its
distance to the set of compact operators K mapping X into Y , that is,

||T ||e,X→Y = inf{||T −K||X→Y : K is compact}.
Let D be the open unit disc in the complex plane C, H(D) the space of analytic functions on D and H∞

be the space of bounded analytic functions on D with norm ||f ||∞ = supz∈D |f(z)|.
Let u ∈ H(D) and ϕ ∈ S(D), the set of self-maps of D. The weighted composition operator with

symbols u and ϕ, denoted by uCϕ, is defined as follows

uCϕf = MuCϕf = u(f ◦ ϕ), f ∈ H(D),

where Mu is the multiplication operator with symbol u and Cϕ is the composition operator. We refer the
interested reader to [4] and [12] for the theory of the composition operators and to [2, 3, 6, 10, 14, 16, 20,
21, 22] for (weighted) composition on various spaces of analytic functions.

Let Z denote the set of all functions f ∈ H(D) ∩ C(D) such that

||f || = sup
|f(ei(θ+h)) + f(ei(θ−h))− 2f(eiθ)|

h
< ∞,

where the supremum is taken over all θ ∈ R and h > 0. By Theorem 5.3 of [12] and the Closed Graph
Theorem, we see that an analytic function f on D belongs to Z if and only if supz∈D(1− |z|2)|f ′′(z)| <
∞. Furthermore,

||f || ≈ sup
z∈D

(1− |z|2)|f ′′(z)|.

The preceding quantity is seminorm for the space Z . The norm defined by

||f ||Z = |f(0)|+ |f ′(0)| + sup
z∈D

(1− |z|2)|f ′′(z)|

yields a Banach space structure on Z , which is called the Zygmund space.
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Let 0 < α < ∞. A function f ∈ H(D) is said to belong to the Bloch type space Bα if

βf = sup
z∈D

(1− |z|2)α|f ′(z)| < ∞.

Under the seminorm f → βf , Bα is conformally invariant, and the norm defined by ||f ||Bα = |f(0)|+ βf
yields a Banach space structure on Bα. It is well known that for 0 < α < 1 Bα is a subspace of H∞.
When α = 1, we get the classical Bloch space B.

The Lipschitz space Lipα (with 0 < α < 1) is the space of functions f ∈ H(D) satisfying the
Lipschitz condition of order α, i.e, there exists a constant C > 0 such that

|f(z)− f(w)| ≤ C|z −w|α, z, w ∈ D.

Such functions f extend continuously to the closure of the disc. The quantity

||f ||Lipα = |f(0)| + sup

{
|f(z)− f(w)|

|z − w|α , z, w ∈ D, z 	= w

}

defines a norm on Lipα. Let f ∈ Lipα and set

C = sup

{
|f(z)− f(w)|

|z − w|α , z, w ∈ D, z 	= w

}
.

Then, for z ∈ D, we have |f(z)| ≤ |f(0)|+ C|z|α ≤ C|z − w|α ≤ ||f ||Lipα .

Thus, taking the supremum over D, we obtain ||f ||∞ ≤ ||f ||Lipα . By a theorem of Hardy and
Littlewood [5], the elements of Lipα are characterized by the following Bloch-type condition: A function
f ∈ H(D) belongs to Lipα if and only if

α(f) = sup
z∈D

(1− |z|2)1−α|f ′(z)| < ∞.

Moreover,

||f ||Lipα ≈ |f(0)|+ α(f). (1.1)

Composition operators, weighted composition operators, and related operators between the Zygmund
space and some various spaces of analytic functions have been studied in [7, 8, 9, 13, 19]. In [8], Li and
Stević defined the generalization composition operator Cg

ϕ as follows

(Cg
ϕf)(z) =

z∫
0

f ′(ϕ(ξ))g(ξ)dξ. (1.2)

Li and Stević studied the boundedness and compactness of the generalized composition operator on
the Zygmund space and the Bloch type space and the little Bloch type space in [8]. In this paper, we
study boundedness and compactness of the generalization composition operator Cg

ϕ from Lipα to Z .
Also we give some estimates for the essential norm of this operator. Weighted composition operators
uCϕ between Lipα and Z spaces were studied by Colonna and Li in [2]. Some characterizations of the
boundedness and compactness of the composition operator, as well as Volterra type operator, on the
Bloch type space and the Zygmund space can be found in [1, 5, 17].

The notation a 
 b means that there is a positive constant C such that a ≤ Cb. We say that a ≈ b if
both a 
 b and b 
 a hold.

2. BOUNDEDNESS OF THE OPERATOR Cg
ϕ : Lipα → Z

In this section, we give necessary and sufficient conditions for the boundedness of the operator
Cg
ϕ : Lipα → Z .

Theorem 2.1. Let 0 < α < 1, g ∈ H(D) and ϕ ∈ S(D). Then the operator Cg
ϕ : Lipα → Z is

bounded if only if the following quantities are finite:

M1 = sup
z∈D

(1− |z|2)|g′(z)|
(1− |ϕ(z)|2)1−α
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and

M2 = sup
z∈D

(1− |z|2)|g(z)ϕ′(z)|
(1− |ϕ(z)|2)2−α

.

Proof. For any f ∈ Lipα,

(1− |z|2)|(Cg
ϕf)

′′(z)| = (1− |z|2)|(f ′(ϕ(z))g(z))′ | ≤ (1− |z|2)|f ′(ϕ(z)||g′(z))|

+ (1− |z|2)|(ϕ′(z))||g(z)||(f ′′(ϕ(z))| ≤ C||f ||Lipα

(
(1− |z|2)|g(z)|
(1− |ϕ(z)|2)1−α

+
(1− |z|2)|g′(z)||ϕ(z)|

(1− |ϕ(z)|2)2−α

)
,

where in the last inequality we have used (1.1) and the following well known characterization of Bloch
type functions (see [18]):

sup
z∈D

(1− |z|2)1−α|f ′(z)| ≈ |f ′(0)|+ sup
z∈D

(1− |z|2)2−α|f ′′(z)|.

Conversely, assume that Cg
ϕ : Lipα → Z is bounded. For a fixed a ∈ D and for z ∈ D and 1 ≤ j ≤ 3, set

fa,j(z) =
(1− |a|2)j
(1− az)j−α

.

A direct calculation shows that

fa,j(a) = (1− |a|2)α, f ′
a,j(a) =

(j − α)a

(1− |a|2)1−α
, f ′′

a,j(a) =
(j − α)(j + 1− α)a2

(1− |a|2)2−α
.

Then, for w ∈ D, we get,

(Cg
ϕfϕ(w),1)

′′(w) =
(1− α)g(w)ϕ(w)

(1− |ϕ(w)|2)1−α
+

(1− α)(2 − α)g(w)ϕ′(w)ϕ(w)
2

(1− |ϕ(w)|2)2−α
, (2.1)

(Cg
ϕfϕ(w),2)

′′(w) =
(2− α)g(w)ϕ(w)

(1− |ϕ(w)|2)1−α
+

(2− α)(3− α)g(w)ϕ′(w)ϕ(w)
2

(1− |ϕ(w)|2)2−α
(2.2)

and

(Cg
ϕfϕ(w),3)

′′(w) =
(3− α)g(w)ϕ(w)

(1− |ϕ(w)|2)1−α
+

(3− α)(4 − α)g(w)ϕ′(w)ϕ(w)
2

(1− |ϕ(w)|2)2−α
. (2.3)

Subtracting (2.1) from (2.2), we get

(Cg
ϕfϕ(w),2)

′′(w)− (Cg
ϕfϕ(w),1)

′′(w) =
g(w)ϕ(w)

(1− |ϕ(w)|2)1−α
+

(4− 2α)g(w)ϕ(w)2ϕ(w)
2

(1− |ϕ(w)|2)2−α
. (2.4)

On the other hand, subtracting (2.1) from (2.3), we obtain

(Cg
ϕfϕ(w),3)

′′(w) − (Cg
ϕfϕ(w),1)

′′(w) =
2g(w)ϕ(w)

(1− |ϕ(w)|2)1−α
+

(10− 4α)g(w)ϕ(w)2ϕ(w)
2

(1− |ϕ(w)|2)2−α
.

Subtracting (2.3) from (2.4), we get

2g(w)ϕ′(w)ϕ(w)
2

(1− |ϕ(w)|2)2−α
= (Cg

ϕfϕ(w),1)
′′(w) − 2(Cg

ϕfϕ(w),2)
′′(w) + (Cg

ϕfϕ(w),3)
′′(w),

which implies that

(1− |w|2)|g(w)ϕ′(w)||ϕ(w)|2
(1− |ϕ(w)|2)2−α

=
1

2
|(Cg

ϕfϕ(w),1)
′′(w)| + |(Cg

ϕfϕ(w),2)
′′(w)| + 1

2
|(Cg

ϕfϕ(w),3)
′′(w)|
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≤ 1

2
||(Cg

ϕfϕ(w),1)(w)||Z + ||(Cg
ϕfϕ(w),2)(w)||Z +

1

2
||(Cg

ϕfϕ(w),3)(w)||Z ≤ C. (2.5)

Fix r ∈ (0, 1). If |ϕ(w)| > r, then by (2.5), we have

(1− |w|2)|g′(w)|ϕ(w)|
(1− |ϕ(w)|2)2−α

≤ C

r
.

Taking the functions f(z) = z and f(z) = z2 respectively, we obtain

N1 = sup
z∈D

(1− |z|2)|g′(z)| < ∞ (2.6)

and N2 = supz∈D(1− |z|2)|g′(z)ϕ(z) + g(z)ϕ′(z)| < ∞.

If |ϕ(w)| < r, then by (2.6) we get

M1 =
(1− |w|2)|g′(w)|
(1− |ϕ(w)|2)2−α

≤ N1

(1− r2)1−α
, (2.7)

which, combined with (2.7), implies that M1 < ∞. Arguing similarly, we get

(1− |w|2)|g′(w)|
(1− |ϕ(w)|2)2−α

≤ C

and

M2 =
(1− |w|2)|g(w)ϕ′(w)|

(1− |ϕ(w)|2)2−α
≤ N2

(1− r2)2−α
< ∞.

This means M2 < ∞. �

3. COMPACTNESS OF THE OPERATOR Cg
ϕ : Lipα → Z

In this section, we study the compactness of the operator Cg
ϕ : Lipα → Z . We begin with the

following lemma.
Lemma 3.1 ([11], Lemma 3.7). Let 0 < α < 1 and T be a bounded linear operator from Lipα

into a normed linear space Y . Then T is compact if and only if ||Tfn||Y → 0 whenever {fn} is a
norm-bounded sequence in Lipα that converges to 0 uniformly on D̄.

Theorem 3.2. Let 0 < α < 1, ϕ ∈ S(D) and g ∈ H(D). Then Cg
ϕ : Lipα → Z is compact if and

only if bounded,

lim
|ϕ(zk)|→1

(1− |zk|2)|g′(zk)|
(1− |ϕ(zk)|2)1−α

= 0 (3.1)

and

lim
|ϕ(zk)|→1

(1− |zk|2)|ϕ′(zk)|g(zk)|
(1− |ϕ(zk)|2)2−α

= 0.

Proof. Let (zk)k∈N be a sequence in D such that |ϕ(zk)| → 1 as k → ∞. Let fk,j =
(1−|ϕ(zk)|2)j
(1−ϕ(zk)z)j−α

, k ∈
N. Then fk,j ∈ Lipα, supk∈N ||fk,j||Lipα < ∞ and fk,j → 0 uniformly on D as k → ∞. Let Cg

ϕ : Lipα →
Z be compact. By Lemma 3.1 it gives limk→∞ ||Cg

ϕfk,j||Z = 0. Note that

f ′
k,j(ϕ(zk)) =

(j − α)ϕ(zk)

(1− |ϕ(zk|2)1−α
, f ′′

a,j(ϕ(zk)) =
(j − α)(j + 1− α)ϕ2(zk)

(1− |ϕ(zk|2)2−α
.

We have

||Cg
ϕfk,j||Z ≥ (j − α)(1 − |zk|2)|g′(zk)||ϕ(zk)|

(1− |ϕ(zk)|2)1−α

∣∣∣∣
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− (j − α)(j + 1− α)(1 − |zk|2)|ϕ′(zk)|g(zk)||ϕ(zk)|2
(1− |ϕ(zk)|2)2−α

∣∣∣∣ .
Consequently,

lim
|ϕ(zk)|→1

(j − α)(1 − |zk|2)|g′(zk)||ϕ(zk)|
(1− |ϕ(zk)|2)1−α

= lim
|ϕ(zk)|→1

(j − α)(j + 1− α)(1− |zk|2)|ϕ′(zk)|g(zk)||ϕ(zk)|2
(1− |ϕ(zk)|2)2−α

(3.2)

if one of these two limits exists. Next, set

hk,j =
(1− |ϕ(zk)|2)j

(1− ϕ(zk)z)j−α
− j − α

j + 1− α

(1− |ϕ(zk)|2)j+1

(1− ϕ(zk)z)j+1−α
.

Then h′k,j(ϕ(zk)) = 0, supk∈N ||hk,j||Z < ∞ and hk,j converges to 0 uniformly on D as k → ∞. Since
Cg
ϕ : Lipα → Z is compact, we have limk→∞ ||Cg

ϕhk,j||Z = 0. On the other hand,

||Cg
ϕhk,j||Z ≥ (j − α)(j + 1− α)(1 − |zk|2)|ϕ′(zk)|g(zk)||ϕ(zk)|2

(1− |ϕ(zk)|2)2−α
.

Hence,

lim
k→∞

(j − α)(j + 1− α)(1 − |zk|2)|ϕ′(zk)|g(zk)||ϕ(zk)|2
(1− |ϕ(zk)|2)2−α

= 0.

Therefore,

lim
|ϕ(zk)|→1

(1− |zk|2)|ϕ′(zk)|g(zk)|
(1− |ϕ(zk)|2)2−α

= lim
k→∞

(j − α)(j + 1− α)(1 − |zk|2)|ϕ′(zk)|g(zk)||ϕ(zk)|2
(1− |ϕ(zk)|2)2−α

= 0.

This together with (3.2) imply that

lim
|ϕ(zk)|→1

(j − α)(1− |zk|2)|g′(zk)|
(1− |ϕ(zk)|2)1−α

= 0.

Conversely, assume that Cg
ϕ : Lipα → Z is bounded and (3.1) holds. Since Cg

ϕ : Lipα → Z is bounded,
we have ||Cg

ϕf ||Z ≤ C||f ||Lipα for all f ∈ Lipα. Taking the functions f(z) = z and f(z) = z2 respec-
tively, we obtain

sup
z∈D

(1− |z|2)|g′(z)| < ∞ (3.3)

and
sup
z∈D

(1− |z|2)|g′(z)ϕ(z) + g(z)ϕ′(z)| < ∞. (3.4)

Using these facts and the boundedness of the function ϕ(z), we get

sup
z∈D

(1− |z|2)|g′(z)| < ∞.

Then,

C1 = sup
z∈D

(1− |z|2)|g(z)||ϕ′(z)| < ∞ (3.5)

and
C2 = sup

z∈D
(1− |z|2)|g(z)||ϕ′(z)| < ∞.

On the other hand, from (3.1), for every ε > 0, there is a δ ∈ (0, 1) such that

(1− |zk|2)|g′(zk)||ϕ(zk)|
(1− |ϕ(zk)|2)1−α

< ε and
(1− |zk|2)|ϕ′(zk)|g(zk)|

(1− |ϕ(zk)|2)2−α
< ε, (3.6)
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whenever δ < |ϕ(z)| < 1. Assume that (fk)k∈N is a sequence in Lipα such that supk∈N ||fk||Lipα < ∞
and (fk) converges to 0 uniformly on D as k → ∞. Let U = {z ∈ D : |ϕ(z)| ≤ δ}. Then by (3.5) and
(3.6), it follows that

sup
z∈D

(1− |z|2)|(Cg
ϕfk)

′′(z)| ≤ sup
z∈D

(1− |z|2)|f ′
k(ϕ(z))||g′(z)|+ sup

z∈D
(1− |z|2)|(ϕ′(z))||g(z)||f ′′

k (ϕ(z))|

+ sup
z∈D\U

(1− |z|2)|f ′
k(ϕ(z))||g′(z)| + sup

z∈D\U
(1− |z|2)|(ϕ′(z))||g(z)||f ′′

k (ϕ(z))|

≤ C1 sup
z∈D

|f ′
k(ϕ(z))| + sup

z∈D\U

(1− |z|2)|g(z)|
(1− |ϕ(z)|2)1−α

||f ||Lipα + C2 sup
z∈D

|f ′′
k (ϕ(z))|

+ sup
z∈D\U

(1− |z|2)|g′(z)||ϕ(z)|
(1− |ϕ(z)|2)2−α

||f ||Lipα ≤ C1 sup
|λ|≤δ

|f ′
k(λ)|+ C2 sup

|λ|≤δ
|f ′′

k (λ)|+ 2Cε||f ||Lipα .

So,

||Cg
ϕfk||Z = |f ′

k(ϕ(0))||g(0)| + sup
z∈D

(1− |z|2)|(Cg
ϕfk)

′′(z)|

≤ C1 sup
|λ|≤δ

|f ′
k(λ)|+ C2 sup

|λ|≤δ
|f ′′

k (λ)| + 2Cε||f ||Lipα + |f ′
k(ϕ(0))||g(0)|.

The proof is complete. �

4. ESSENTIAL NORM OF Cg
ϕf : Lipα → Z

In this section, we give some estimates for the essential norm of operator Cg
ϕf : Lipα → Z .

Theorem 4.1. Let ϕ ∈ S(D) and g ∈ H(D) such that Cg
ϕ : Lipα → Z is bounded. Then

||Cg
ϕf ||e,Lipα→Z ≈ max{A1, A2},

where

Aj := lim sup
|a|→1

||Cg
ϕ

(
(1− |a|2)j
(1− az)j−α

)
||Z , j = 1, 2.

Proof. First we prove that max{A1, A2} ≤ ||Cg
ϕ||e,Lipα→Z . Let a ∈ D. Define

fa,j(z) =
(1− |a|2)j
(1− az)j−α

.

It is easy to check that fa,j ∈ Lipα for all a ∈ D and fa,j converges uniformly to 0 on compact subset of
Lipα as |a| → 1 Thus, for any compact operator T : Lipα → Z , we have lim|a|→1 ||Tfa,j||Z = 0, j =
1, 2. Hence,

||Cg
ϕ − T ||Lipα→Z � lim sup

|a|→1
||Cg

ϕ − Tfa,j||Z � lim sup
|a|→1

||Cg
ϕfa,j||Z − lim sup

|a|→1
||Tfa,j ||Z = Aj.

Therefore, based on the definition of the essential norm, we obtain

||Cg
ϕ||e,Lipα→Z = inf

k
||Cg

ϕ − T ||Lipα→Z � Aj , j = 1, 2.

Now, we prove that ||Cg
ϕf ||e,Lipα→Z � max{A1, A2}. For r ∈ [0, 1), set Kr : H(D) → H(D) by

(Krf)(z) = fr(z) = f(rz). It is obvious that fr − f → 0 uniformly on compact subsets of D as r → 1.
Moreover, the operator Kr is compact on B and ||Kr||B→B ≤ 1(see [10]). By a similar argument it can be
proved that the operator Kr is compact on Lipα and ||Kr||Lipα→Lipα ≤ 1. Let {rj} ⊂ (0, 1) be a sequence
such that rj → 1 as j → ∞. Then for all positive integer j, the operator Cg

ϕKrj : Lipα → Z is compact.
By the definition of the essential norm, we get

||Cg
ϕ||e,Lipα→Z ≤ lim sup

j→∞
||Cg

ϕ − Cg
ϕKrj ||Lipα→Z .
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For any f ∈ Lipα such that ||f ||Lipα ≤ 1,

||(Cg
ϕ − Cg

ϕKrj)f ||Z ≤ |(Cg
ϕf(0)|+ |(f − frj)

′(ϕ(0))g(0)| + sup
z∈D

(1− |z|2)|g′(z)|(f − frj)
′(ϕ(z))|

+ sup
z∈D

(1− |z|2)|g(z)ϕ′(z)|(f − frj)
′′(ϕ(z))|

≤ lim sup
j→∞

sup
|ϕ(z)|≤rN

(1− |z|2)|g′(z)|(f − frj)
′(ϕ(z))|

︸ ︷︷ ︸
M1

+ lim sup
j→∞

sup
|ϕ(z)|>rN

(1− |z|2)|g′(z)|(f − frj)
′(ϕ(z))|

︸ ︷︷ ︸
M2

+ lim sup
j→∞

sup
|ϕ(z)|≤rN

(1− |z|2)|g(z)ϕ′(z)|(f − frj)
′′(ϕ(z))|

︸ ︷︷ ︸
M3

+ lim sup
j→∞

sup
|ϕ(z)|>rN

(1− |z|2)|g(z)ϕ′(z)|(f − frj)
′′(ϕ(z))|

︸ ︷︷ ︸
M4

,

where N ∈ N is large enough such that rj ≥ 1
2 for all j ∈ N. Since Cg

ϕ : Lipα → Z is bounded, by (3.3)
and (3.4), we have

F̃1 = sup
z∈D

(1− |z|2)|g′(z)| < ∞, F̃2 = sup
z∈D

(1− |z|2)|g′(z)ϕ(z) + g(z)ϕ′(z)| < ∞.

Since rjfrj → f ′ uniformly on compact subsets of D as j → ∞, so

M1 ≤ F̃1 = sup
z∈D

(1− |z|2)|g′(z)| = 0, M3 ≤ F̃2 = sup
z∈D

(1− |z|2)|g′(z)ϕ(z) + g(z)ϕ′(z)| = 0.

Next we consider M2. We have M2 ≤ lim supj→∞(Q1 +Q2), where

Q1 = sup
|ϕ(z)|>rN

(1− |z|2)|(f ′(ϕ(z))||g(z)ϕ′(z)|, Q2 = sup
|ϕ(z)|>rN

(1− |z|2)rj |(f ′(ϕ(z))||g(z)ϕ′(z)|.

Using the fact that ||f ||Lipα ≤ 1 and (1.1), we obtain

Q1 = sup
|ϕ(z)|>rN

(1− |z|2)|(f ′(ϕ(z))||g(z)ϕ′(z)|(1 − |ϕ(z)|2)1−α

(j − α)ϕ(z)

(j − α)ϕ(z)

(1− |ϕ(z)|2)1−α



(j − α)||f ||Lipα

rN
sup

|ϕ(z)|>rN

(1− |z|2)|g(z)ϕ′(z)| (j − α)ϕ(z)

(1 − |ϕ(z)|2)1−α


 sup
|ϕ(z)|>rN

(1− |z|2)|g(z)ϕ′(z)| (j − α)ϕ(z)

(1 − |ϕ(z)|2)1−α

 sup

|a|>rN

||Cg
ϕ(fa,j)||, j = 1, 2.

Taking the limit as N → ∞, we obtain

lim sup
j→∞

Q1 ≤ lim sup
|a|→∞

||Cg
ϕ(fa,j)||Z .

Similarly,

lim sup
j→∞

Q2 ≤ lim sup
|a|→∞

||Cg
ϕ(fa,j)||Z .

Hence, we get M2 
 max{A1, A2}. Similarly, it can be shown that M4 
 max{A1, A2}. This completes
the proof of the theorem. �
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