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1. INTRODUCTION

Let X and Y be Banach spaces. The essential norm of a bounded linear operator T : X — Y is its
distance to the set of compact operators K mapping X into Y, that is,

|T||e, x>y = inf{||T — K||x—y : Kiscompact}.
Let D be the open unit disc in the complex plane C, H(D) the space of analytic functions on D and H*°
be the space of bounded analytic functions on D with norm || f||oc = sup,ep | f(2)]-
Let w € H(D) and ¢ € S(D), the set of seli-maps of . The weighted composition operator with
symbols u and ¢, denoted by uCl,, is defined as follows
uCpf = MyCpf =u(fop), [feHD),

where M, is the multiplication operator with symbol w and C,, is the composition operator. We refer the
interested reader to [4] and [12] for the theory of the composition operators and to [2, 3, 6, 10, 14, 16, 20,
21, 22] for (weighted) composition on various spaces of analytic functions.

Let Z denote the set of all functions f € H(D) N C(D) such that

i(6+h) i(6—h)y _ i
151 = up M) (10 =256

where the supremum is taken over all # € R and h > 0. By Theorem 5.3 of [12] and the Closed Graph
Theorem, we see that an analytic function f on D belongs to Z if and only if sup,ep(1 — |2|?)|f"(2)] <
oo. Furthermore,

< 00,

1f1] 2 sup(L — [2[*)[ f"(2)]-
zeD
The preceding quantity is seminorm for the space Z. The norm defined by
£z =[O+ £ (0)] + Slelg(l — z)f"(2)|
yields a Banach space structure on Z, which is called the Zygmund space.
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Let 0 < a < oo. A function f € H(D) is said to belong to the Bloch type space B* if

ﬁf=wml—kHlf@N<W-
z€D
Under the seminorm f — 8, B is conformally invariant, and the norm defined by || f||ge = |f(0)| +
yields a Banach space structure on B“. It is well known that for 0 < o« < 1 B* is a subspace of H*°.
When a = 1, we get the classical Bloch space 5.

The Lipschitz space Lip, (with 0 <« < 1) is the space of functions f € H(D) satisfying the
Lipschitz condition of order o, i.e, there exists a constant C' > 0 such that
[f(z) = f(w)| < Clz —w|¥, zweD.
Such functions f extend continuously to the closure of the disc. The quantity

b, =170+ sup { 9770, e 2 )

defines a norm on Lip,,. Let f € Lip, and set

O —su {If() ()I,zjwemz#w}‘

|z —wl|®
Then, for z € D, we have |f(2)| < [f(0)| + C|2|* < Clz — w|* < || fl|Lip,, -

Thus, taking the supremum over D, we obtain |[f||ec < |[|f|lLip,. By a theorem of Hardy and
Littlewood [5], the elements of Lip,, are characterized by the following Bloch-type condition: A function
f € H(D) belongs to Lip,, if and only if

a(f) = sup(1 — [#2)72|f'(2)] < oo.

zeD

Moreover,
[ flLip, = [FO)] 4+ a(f). (L.1)

Composition operators, weighted composition operators, and related operators between the Zygmund
space and some various spaces of analytic functions have been studied in [7, 8,9, 13, 19]. In[8], Li and
Stevi¢ defined the generalization composition operator C% as follows

(Cof)(z / e (12)

Li and Stevi¢ studied the boundedness and compactness of the generalized composition operator on
the Zygmund space and the Bloch type space and the little Bloch type space in [8]. In this paper, we
study boundedness and compactness of the generalization composition operator C% from Lip,, to Z.
Also we give some estimates for the essential norm of this operator. Weighted composition operators
uC,, between Lip, and Z spaces were studied by Colonna and Li in [2]. Some characterizations of the
boundedness and compactness of the composition operator, as well as Volterra type operator, on the
Bloch type space and the Zygmund space can be found in[1, 5, 17].

The notation @ =< b means that there is a positive constant C' such that a < Cb. We say that a ~ bif
both a < band b < «a hold.

2. BOUNDEDNESS OF THE OPERATOR C% : Lip, — Z

In this section, we give necessary and sufficient conditions for the boundedness of the operator
CY%: Lip, — Z.

Theorem 2.1. Let 0 <a <1, g€ H(D) and p € S(D). Then the operator C% : Lip, — Z is
bounded if only if the following quantities are finite:

(P
M= (1 p(e)2)1o
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and
o (=PI
TR - leGppe
Proof. For any f € Lip,,
(1~ ERCLHY ()] = (1~ P (e(2)a@)Y | < (@~ 1P (e)lg ()
e AR (- R Gl
(L= BRI NI ol < Clfll, (51 D, + 02 RN,

where in the last inequality we have used (1.1) and the following well known characterization of Bloch
type functions (see [18]):

sup(1 —[2*)' 72| f'(2)| = |f'(0)] + igg(l = 2> ().

z€eD

Conversely, assume that Cfé : Lip, — Z is bounded. Forafixeda € Dandforz € Dand 1 < j < 3, set

~al?)
Fus(z) = (1 —fal®)?

(1 —az)i—

A direct calculation shows that

fusl) == laPp, fiy@= VRN @ =

(G- a)j+1-a)
(1= laPy>-e

Then, for w € D, we get,

(8 )y = (L~ D) | (1= 0)(2 = gl (w)o(w)

(1 Je(w)R)ie a-lpwpp= @D
2
" 2 — a)g(w)p(w 2 —a)(3—a)g(w)¢ (w)p(w
o= -’
and
" 3—a)g(w)p(w 3— a)(4 — a)g(w)e (w)p(w)”
st -
Subtracting (2.1) from (2.2), we get
" " w)p(w 4 — 2a) g(w)p(w)? w2
(81" (W) = (Clfu)w) = | 00 (7 JMdeCl el )
On the other hand, subtracting (2.1) from (2.3), we obtain
" ” 2g(w)p(w 10 4aww2w2
(Cafomal ) = Cafena' ) = X0+ O

Subtracting (2.3) from (2.4), we get

(w)p(w)’
e = (o)) = 2CL o) () + (Ch ().

which implies that

(1 = [w]*)|g(w)¢’ (w )IIsO( )
(1 = lp(w)[?)?*

1 1
= (O3 f o) (W) + [(CF fopu,2)" (W) + | (CF fio(w).s)" (w)]
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1 1
< 2\|(C$f¢(w),1)(w)\|z + [(CLf o) 2) (W) 2 + 2\|(C$f¢(w),3)(w)|\z <C. (2.5)
Fixr € (0,1). If |p(w)| > r, then by (2.5), we have
(1= [w)lg' (w)|p(w)| _ C

1 =fe(w)?)>=> = r
Taking the functions f(z) = z and f(z) = 22 respectively, we obtain
Ny = sup(1 = =) (2)] < o (26)
ze

and Ny = sup.cp(1 — [2*)lg' (2)¢(2) + 9(2)¢' (2)] < o0.
If |p(w)| < r, then by (2.6) we get

_Q-pPldwl N
M= (e S (12w 27)

which, combined with (2.7), implies that M; < oo. Arguing similarly, we get

(1= )y ()
(1 - o)y = ¢

and

- Pl @) N
e =T e S (e <

This means M, < oo. O

3. COMPACTNESS OF THE OPERATOR C¥% : Lip, — Z

In this section, we study the compactness of the operator C% : Lip, — Z. We begin with the
following lemma.

Lemma 3.1 ([11], Lemma 3.7). Let 0 < o <1 and T be a bounded linear operator from Lip,
into a normed linear space Y. Then T is compact if and only if ||T fu|ly — 0 whenever {f,} is a
norm-bounded sequence in Lip,, that converges to 0 uniformly on D.

Theorem 3.2. Let 0 < a <1, ¢ € S(D) and g € H(D). Then C% : Lip, — Z is compact if and
only if bounded,

(1= )l ()]
lo(ze) =1 (1 — |o(z)]2) 0 (3.1)

and

i 1PN GG _

loz)l—1 (1 — |o(zr)]?)2

Proof. Let (z)ken be a sequence in D such that |¢(z;)| — 1ask — oc. Let fi; = (gl_;f(zf))‘jia
—p(z)z

N. Then fy ; € Lip,, supgen || i jlILip, < o0 and fy, ; — 0 uniformly on D as k — oo. Let C% : Lip, —
Z be compact. By Lemma 3.1 it gives limy_,« ||C% f ;|| 2z = 0. Note that

(= ) +1—a)¢2(x)

fateta = (L g = VY

(1 = lp(z]?)t=o’
We have
(7 — )@ = 2)|g’ (z) (2]
(1 = lp(zg)[2)
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= a)UH1=a)(1 = |zl (zr)lg (i)l |0 (zi) [
(1 —[ep(ze)P)> '

Consequently,
=)= P g Gl
(k)1 (1 = [ () [?)
o =) 1= a) (= [z (zr)lg(zx)l 0 (2r)
= ot (1 - e 52

if one of these two limits exists. Next, set

_ A=le)lPY i a (=)
Y-y Gl a1 p(z)z)ite
Then Ay, ;(¢(2k)) = 0, supgen |75z < oo and Ay, j converges to 0 uniformly on D as k — oo. Since

C% : Lip, — Z is compact, we have limy_,, ||C%hy j||z = 0. On the other hand,
(G =) +1—a)(L — |z?)¢ ()9 (z1) | o(2r)

CIhy 4 >
|| © k’,JHZ = (1 _ |90(Zk)|2)2_a
Hence,
i U1 =)~ 261’ (zi) g (z) |0 (z)
im 29— =0.
k00 (1 —[e(2x)[?)
Therefore,

=PI el G- )G+ 1= a)(1 = )l (g () P
ezo)l=1 (1= lp(ze)[?)> k=00 (1 = lo(z)[?)>
This together with (3.2) imply that

=0.

o o 12Y]
U0 [l )
el (1= lp(ze)[2)
Conversely, assume that C% : Lip,, — Z is bounded and (3.1) holds. Since C% : Lip,, — Z is bounded,
we have ||CSf||z < C||f||Lip, for all f € Lip,. Taking the functions f(z) = z and f(z) = 2* respec-
tively, we obtain

= 0.

sup(1 — |2[*)|¢'(2)] < o0 (3.3)
zeD
and
sup(1 — |2°)|g'(2)¢(2) + 9(2)¢' (2)| < 0. (3.4)

z€eD

Using these facts and the boundedness of the function ¢(z), we get
sup(1 — |z[*)]¢'(2)] < oo
zeD
Then,
Cr = Slelg(l —21)g(2)l¢ (2)] < o0 (3.5)
and
Gz = sup(1 - 2[)g(2)l¢' (2)] < oo.
On the other hand, from (3.1), for every € > 0, thereis a § € (0, 1) such that

(L= lzlg' Gollle@al _ o (0= [zl ()l ()]

(1= le(z) )i W1 ez 2)2e
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whenever § < [¢(2)| < 1. Assume that (fx)kren is a sequence in Lip,, such that supyey || fx||Lip, < 00

and (fy) converges to 0 uniformly on D as k — co. Let U = {z € D : |p(z)| < ¢}. Then by (3.5) and
(3.6), it follows that

itelg(l — [)(CLfw)"(2)] < itelg(l = 2 fre(2))llg (2)] + ilelg(l = 2 D)1 (0 ()]

+ sup (1= [2)|fi(e()lg ()] + sup (1= |2 D)7 (p(2))]
zeD\U zeD\U

/ (1= [21*)]g(2)]
<O 31615 | fe(p(2)| + ZZB)I\)U (1= |p(2)[2)1—

(1 = [=)lg' (2)lle(2)

[ f1Lip,, + C2 sup | fi (9(2))]
S

e sup I 1, < 01 sup 16001+ Co sup )]+ 2C0 o,
So,
IC2illz = O g @)+ sup(1 ~ P)CLA) ()
< Oy sup [F{OV] + C sup ||+ 20 fllip, + 120D l9(O).
|AI<é |AI<é
The proof is complete. U

4. ESSENTIAL NORM OF C%f : Lip, = Z

In this section, we give some estimates for the essential norm of operator C3 f : Lip, — Z.
Theorem 4.1. Let ¢ € S(D) and g € H(D) such that C% : Lip,, — Z is bounded. Then

[ICZ flle,Lip, —z ~ max{A;, A},

where

. (1= laf?)? ,

A»::hmsup||09< , llz, 7=12.
! a1~ \ (1 —az)i~

Proof. First we prove that max{A;, As} < [|CZ||e,Lip, —z- Let a € D. Define

(1 - laf?)

(1—az)i—

fa,j(2) =

It is easy to check that f, ; € Lip,, forall a € D and f, ; converges uniformly to 0 on compact subset of
Lip, as |a| — 1 Thus, for any compact operator 7" : Lip, — Z, we have lim|q 1 [|Tfo ||z =0, j=
1,2. Hence,

ICE = Tlluip,—~z 2 limsup||CY — T fojl|z Z limsup ||CF fo,;]|z — limsup|[|T fo ]|z = A;.
la]—1 la]—1 la|]—1
Therefore, based on the definition of the essential norm, we obtain
[|1Colle,Lip,—2 = i%f\|cg —TlLp, >z 2 A5, j=1,2.

Now, we prove that [|CJf|leip,—z S max{A1, Ap}. For r €[0,1), set K,:H(D)— H(D) by
(K f)(2) = fr(2) = f(rz). Itis obvious that f, — f — 0 uniformly on compact subsets of D as r — 1.
Moreover, the operator K. is compact on B and || K,||s—5 < 1(see[10]). By a similar argument it can be
proved that the operator K. is compact on Lip,, and || K ||Lip_ —Lip, < 1. Let {r;} C (0,1) be a sequence
such that r; — 1 as j — oo. Then for all positive integer j, the operator CgKrj : Lip,, = Z is compact.
By the definition of the essential norm, we get

1Clle,Lip,—z < limsup [|CF — CIK, ||Lip, —z-
j—roo
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Forany f € Lip,, such that [|f[[L;,, <1,

1(CE — CLE ) fllz < [(CLO)] + 1(f = £r,) ((0))g(0)] + igg(l — 2P)g' I(f = fr;) (0(2))]

+sup(l - 1212)g(2)¢" (I(f = fr,)" (0(2))]

<limsup sup (1—|z|*)|¢d'(2)|(f — frj),(SO(Zm

=00 p(2)|<rn
NS ~ v
My

+limsup  sup (1= [2[*)]g'()I(f = f,) ((2))]
e le@lra _
Ma

+limsup sup (1 — |2[*)|g(2)¢’ (2)|(f = fr,)" (0(2))]
\J_WO le(2)|<rn _
M3

+limsup sup (1= [2[*)|g(2)¢" ()I(f = fr,)" (9(2))]
\J_>°° lo(2)[>rN _
My

where N € N is large enough such that r; > % forall j € N. Since C% : Lip, — Z is bounded, by (3.3)
and (3.4), we have

EziyfmmﬂM<w,EzinyMﬂmmww@MM<w.

Since r; ., — f' uniformly on compact subsets of D as j — oo, so

Mgﬁzﬁywﬁmeﬂ,%sﬁzﬁywﬁmwmnwwwmza
Next we consider M. We have My < limsup;_,,(Q1 + Q2), where
Q= swp (1= P @Eg)¢ (), Q2= sup (1 —|z)r|(f (e(2)]lg(2)¢ (2)].

lo(2)[>rN lo(2)|>rN
Using the fact that || f||1jpo < 1and (1.1), we obtain
_ 1— 22 / / (1- |90(z)|2)1_a (j — a)e(z)
Q1 \@(iﬁgmv( 12 (e(2)llg(2)¢ ()] G- a)p(z)  (1-|p(2)2)i-e

y (j— Oz)HfHLipa (1- ‘Z|2)|g(2)g0,(2)| (J —a)p(2)

- N o (2)|>r (1= [ep(z)[2) 1
(J—a)p(2) )
< sup  (1—12P)[g(2)¢' (2)] o, = osup [CY(fap)ll, =12
lo(2)[ > (1 = [e(2)[*)? s

Taking the limit as N — oo, we obtain

limsup @1 < limsup HC’g(fa,j)Hg.

j—ro0 |a]—o0
Similarly,
limsup Q2 < limsup |[C(fa,;)llz-

Jj—o0 |a]—o00

Hence, we get My < max{A;, Ay}. Similarly, it can be shown that My < max{A;, As}. This completes
the proof of the theorem. U
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