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Abstract—In this paper, we prove that if {n;} is an arbitrary increasing sequence of natural
numbers such that the ratio ngy1/ny is bounded, then the ng-th partial sum of a series by Franklin
system cannot converge to +o00 on a set of positive measure. Also, we prove that if the ratio ngy1 /ng
is unbounded, then there exists a series by Franklin system, the nj-th partial sum of which converges
to 400 almost everywhere on [0, 1].
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1. INTRODUCTION

In 1915, N. N. Lusin [1] has posed the following problem: can a trigonometric series converge to
+00 on a set of positive measure? Since then many mathematicians have investigated the question of
convergence or summability to +o0o of orthogonal series on a set of positive measure.

Yu. B. Germeier [2] proved that a trigonometric series cannot be summed by the Riemann method
to 400 on a set of positive measure. N. N. Lusin and I. I. Privalov [3] have constructed an example of
trigonometric series, which is almost everywhere Abel summable to +o0c. D. E. Men’shov [4] proved
that for any function f, not necessarily finite almost everywhere, there exists a trigonometric series that
converges to f in measure. In particular, there exists a trigonometric series that converges to +oo in
measure on [—, 7]. A.A. Talalyan [5] proved that for any measurable on [—7, ] function f there exists
a trigonometric series that converges to f in measure and almost everywhere on the set where f in finite.
Finally, in 1988 S. V. Konyagin [6] solved the above posed Lusin’s problem by proving the following
theorem.

Theorem 1.1. Let S(x) and S(x) be the lower and upper limits of the partial sums of a trigono-
metric series, respectively. Then

p({z € [-mm]:—o0 < S(x) < S(x) = +o0}) = 0.

In particular, a trigonometric series cannot converge to +oo on a set of positive measure.

For series by Haar and Walsh systems we mention the following results. A. A. Talalyan and F. G.
Arutyunyan [7] proved that the series by Haar and Walsh systems cannot converge to 400 on a set of
positive measure. In papers [8] and [9] can be found more simple proofs of this result. However, there exist
uniformly bounded orthonormal systems of functions, the series by which can converge to +oc0 on a set
of positive measure for any permutation of the terms of the series (see [10]). N. B. Pogosyan [11] proved
that for each complete orthonormal system there exists a series, which after an appropriate permutation
converges to 400 almost everywhere. In[12], G. G. Gevorkyan proved that a series by Franklin system
cannot converge to +oo on a set of positive measure.
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Theorem 1.2 (see[12]). Let S, (x) be the partial sum of a series by Franklin system. Then

L <{x €[0,1]: lim Syr(z) = +oo}> =0.

k—oo

In the present paper we study the possibility of convergence to +oo of partial sums S,,, () of series
by Franklin system on a set of positive measure.

2. NECESSARY DEFINITIONS AND STATEMENT OF MAIN RESULTS
Letn =2+ v, where u =0,1,2,...and 1 < v < 2*. Define

gurrs  0<i< 2,
Spyi = 1—V

ou 2v <i<n.

Also, we set s, —1 = sp0 =0and s, py1 = Sppn = 1.

By S,, we denote the space of functions that are continuous and piecewise linear on [0, 1] with knots
{sn,i}i_q, thatis, f € S, il f € C[0,1] and it is linear on each segment [s,,;_1,sn4],7 =1,2,...,n.
It is clear that dimS,, = n + 1 and the set {snﬂ-}?zo is obtained by adding the point s, 2,1 to the set
{sn_17i}?:_01. Hence there exists a unique (up to the sign) function f,, € S, which is orthogonal to S,,_1

and ||fu|l2 = 1. Setting fo(z) =1 and fi(z) = V3 (2 — 1) for « € [0,1], we obtain an orthonormal
system { fn(x)}°,, which in equivalent manner was defined by Franklin in [13].

n=0’
Let {ny} be an arbitrary increasing sequence of natural numbers. By ox(z), k = 1,2, ..., we denote
the sums of the first ng 4+ 1 terms of the series:
S anfula), (2.1)
n=0
ng
that is, ok (z) = > a,fn(x). The main results of this paper are the following theorems.
n=0

Theorem 2.1. /fsup "'*' < 400, then

keN
M <{x €[0,1]: lim oy() = +oo}> = 0.

Theorem 2.2. [f sup ”Z:l = 400, then there exists a series by Franklin system such that
keN
klim or(z) = +oo almost everywhere on [0, 1].

Theorem 2.3. For an increasing sequence {ny} the condition

" ({m € [0,1] : lim oy (x) = —i—oo}) =0

is satisfied for all series of the form (2.1) if and only if sup n;;:l < 4o00.
keN

Note that Theorem 2.3 follows from Theorems 2.1 and 2.2.

In the proof of Theorem 1.1 a key role will play the notion of scalar product of the series (2.1) and a
function from space S,,, defined in [14], and then successfully applied in the study of uniqueness problems
of series by the Franklin system (see also [15]).
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By S we formally denote the series (2.1). From the the definition of Franklin system it follows that if
g € S, and n > m, then

1
/ fn(x)g(x)dx = 0.
0

Hence the scalar product of the series S and a function g € Sy, can be defined by formula:

o'} 1 m 1
<s,g>=n§:joan /0 fn<m>g<m>dx:;:0an /0 ful@)g(z)d.

[t is clear that if g1 € Sy, and g2 € Sy, then for any «, 3, we have

(S,ag1 + Bg2) = a(S,g1) + B (S, 92) -
Let 6;; be the Kronecker symbol, that is, §;; = 1if ¢ = j, and §;; = 0if ¢ # j. Forn > 2 we define
Npi(snj) =0i,7=0,...,n and N, ;(t) islinearon [s, j_1,5n4],j=1,...,n, i=0,1,..,n.

Observe that the functions {N,(t)};", are normed in the space C[0, 1], and from Ny ; (s5,5) = d;5, it
follows that the system { N, ;(t)}"_, forms a basis in .S,,. Denoting
2
Mnyl(t) = Nn,l(t)a
Snyi+1 — Sn,i—1
we obtain another basis in S, which is normed in L0, 1].

Taking into account that below we will work only with functions M, ; for n = ny, for simplicity of
notation, instead of M,,, ; we will write M

Also, we denote 7 = s, ; and A¥ = suppM} = [rF |, 7F,]. The lemmas that follow can be found

in papers [12], [14], [16] Z

Lemma 2.1. Let ¢ be a [unction that is linear on the segments [7F |, 7F] and [7F,7F]. Then

(o.M) = [ o0k = g () + 5o (7F) + o (7ha).

k— -k _ k
T, and

if iy =i =

(e 0) = [ oty = o () + o () + 2o (750,
if Tikﬂ —TF=2 (Tf —7F,).

Lemma 2.2. Forany M}? and v > vy there exist numbers o such that M0 = a; My, and
J

> aj=1, a;>0and o; =0if A} ¢ AP
j

Lemma 2.3. /] (S, M,,;) =: A <0, then
Anii iJi R
u({me , ;:()af(m)<2}>> 9
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3. PROOF OF THEOREM 2.1

Observe first that from the condition sup n;szl < 400 it follows that there is an absolute constant
keN

C € (0,1) such thatforanyl € N,i=0,1,...,n;,and 5 =0,1,...,n;_1, we have
1 (A§> > Cp (Ag—l) . (3.1)
Denote E = <z € [0,1] : klim or(x) = +oo}, and assume that o (E) > 0. Then a segment Afg can be
found such that
k() kO
u (Aio N E) > (1 - 0.0001C) (AZ.O) . (3.2)
Therefore, there is a number L < 0 such that
w(Er) < 0.0001Cu (Aﬁ?) , Where Ep, = {ac € Af{f : iléfak(x) < L} . (3.3)
For an integrable function g we denote

1
My (g,z) = sup / 9(0)] dt.
kﬂ':Afo w (Af) A?

[t is clear that My (g, x) does not exceed the Hardy-Littlewood maximal function of g, and hence, we
have

C
1 (D) < 0.01p (Afg) , where D = {x € AR My (g, o) > 15} . (3.4)
By Lemma 2.3 we have
(ak,Mf) > 2L, if AF C Al and AF ¢ D. (3.5)
Now we show that by using induction on &, for any k& > kg one can find the following representation:
k
M =33 oM+ > g Mk (3.6)
l=kg jEAl JEBy
where
k
o 20, gP20 33l + 3 V=1, (37)
l=ko JEN; JEBy

and the sets A; and By, will be specified below.
Indeed, note first that (3.4) implies that Afg ¢ D.Inthe case k = ko, denoting Ay, = 0, By, = {io},

we get MZ-]‘(’;O = > M]k Now assuming that (3.6) is true for k we prove it for & + 1. To this end, observe
JEBy

first that by Lemma 2.2, each function M¥, i € By, can be represented in the form of a linear combination

of functions Mf“ with positive coefficients. Substituting these representations into the second sum in

(3.7), we obtain

(k) ark _ (k+1) 4 rk+1 (k+1) g rk+1
D BTME= oM Y T g M (3.8)
JEB JEAE+1 JEBk+1
where
Apoy = {j L ARTLC DEaktt £ o}, (3.9)

JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS Vol.54 No.6 2019



ON CONVERGENCE OF PARTIAL SUMS OF FRANKLIN SERIES 351
Bk+1={j:A§+1 gzDéﬁf“;éo}. (3.10)

Instead of the second sum in (3.6), substituting the sums on the right-hand side of (3.8), we obtain

(3.6) for k + 1. The inequalities a§l) > 0 and BJ(-k) > 0in(3.7) follow from the fact that the coefficients in

Lemma 2.2 are nonnegative. The equality in (3.7) follows from the fact that the integrals of all functions
in (3.6) are equal to 1. Now we prove that

(S, Mﬁ) > 2L fori € Ay, (3.11)
Assume the opposite, that is, (S, MF) < 2L. Then by Lemma 2.3 we have
k. p(AF)
i ({x e AF: oy(z) < L}) >0 (3.12)

From the definition of A; in representation (3.6) we have that if i € Ay, then there exists j € By_1 such
that A¥ ¢ AY~1. By (3.1)and (3.12) we have

1 ({x € A?‘l cop(z) < L}) S K (9Af) > cn <§f_1) .

This implies that (see also (3.3) and (3.4)), A;‘?—l C D forsome j € By_1, which contradicts (3.10), and

so, (3.11) is proved. Thus, for any k > kg we have the representation (3.6), and the relations (3.7) and
(3.11). Then for any k we have

d— (S, MZ.'ZO) _ zk: 3ol (S, Mj-) + 5 ™ (5, Mf) (3.13)

I=ko JEN; JEBy

:iz .<al,Ml> 3 (ak,Mf) = I, (k) + I (k).

l=ko JEN; JEBy

0
For I (k), in view of (3.11), we have

k
K)>203" 3 ol (3.14)

l=ko jEN;

For an arbitrary positive Ly > —100L we denote €, = {i € By, : 0y, (1) > Lo} . Then for i € Q we
have A¥ ¢ D, and hence

7 ([Tf_l,Tﬂ N EL) < g (Tl-k — Tik_1> , (3.15)
k C i k
/L([T 7‘ }HEL) 5 (Ti+1—Ti). (3.16)
Denote wy = oy, (7F.,), wa = 0y, (7F), and w3 = ak (7F.1). From (3.15) and linearity of functlons o) on

[7F,,7F], itfollows thatifw; < L, then e > 2. Therefore, in any case, we havew; > °%, — .C wo.

Similarly, from (3.16), we get wg > 5_0 5_ch2. Hence, by Lemma 2.1, we obtain

( M>>m1n 1w+2w+1 L +2 —|—2w
Ok, W1 T g2 6w3’9w1 3w2 gWs

2 1/ 5L 05Lg L
wy + <5 ¢ >>7 0.05L0 _ Lo i e q. (3.17)

> — _
=3 5-C 5-c“?) 7 12*27 19
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From (3.13), (3.14), (3.5), (3.10) and (3.17), it follows that

k
d>20 (Y S o+ S | vosLe Y . (3.18)
l=ko jEAl ]EBk\Qk JEQ

Taking into account that the integrals of functions M!, 1 > kg, 1 € Ay, are equal to 1, and (3.6) is satisfied,
we obtain

k
S Y A= ZZ ® AlMl r)de < [ MM (x)de,

I=ko jEA; I=ko jEA; "
k
where 1 = | U Ag.. By the definition of A we have Fy C D. Therefore, u (F1) < 0.01p (Af(?), and
I=ko jE€A

hence

k
> o) < u(F |||

l=ko jJEN;

< 0.02. (3.19)

Now we prove that for large enough k the following inequality holds:

S % <o (3.20)
JEBE\Q
Denote
r’f:{z':Achfg}, m = card (F’5>+1, (3.21)
and observe that for each i € T'¥, we have
1 ko k k k
) < |gF L — 7 o) .
o b (AR) < ey — k| <~ (af) (3.22)
; Ak AT T ;
Denoting A¥ = o 77, , we can write

Z ﬁ(k Z [3 ( >]k+1 Tf_1< Z ko (7_]?) Tf+1—Tf_1
2 - io \'J 9

JEBI\ Qs JEBE\ JEBR\
ko (4 ko T T Tho ko () a1~ iy
< X[ M+ M (o) et e () T (3.23)
JEBI\
jg{ilﬂé}
where 41 and 4 are chosen to satisfy 7% Cand 7 —7F =2(7F —7F_,) (if there is no such iy,

then instead of the last term in (3.23) should be taken 0). From (3.22) and (3.23) we get
(k) ko ko ko ko
o< 3 /M ME@dt+ * (ko) e (ak0). (3.24)
J

JEBK\Q JEBR\Q,
]Q{Zl 7i2}

It is clear that if 7%, 7/, € By, \ Qy, then oy (z) < Lo, for z € [7F,7F |]. Hence, taking into account
(3.22) and that for large enough £ the following estimate holds:

i ({x € Af(? cog(z) > Lo}) > 0.9994 (Af(?) )
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we obtain card {T'} } < 0.002m for large enough k, where I'f = {i € B, \ Q4 : i + 1 € By, \ Qi }. There-
fore, from (3.22), we get

Z /M Mko )dt < card (Fk) (Ak0> HMkO

jery

< 0.008. (3.25)

On the other hand, if T5 = {i € By, \ Q :i+ 1 ¢ By, \ Q and i & {i1,i2}}, then we have

_ ko > ko ko > ko
1 /A{COM t)dt Z/ M dt+Z/JHM t)dt Z/MM )dt.  (3.26)
0

jerk erk jerk

From (3.24)-(3.26), for large enough k, we obtain > ﬁ < 0.9. Thus, the estimate (3.20) is
JEBK\
proved. It follows from (3.20), (3.19) and (3.7) that

S 8% > 0.08. (3.27)
JEQ

Finally, from (3.18)-(3.20) and (3.27), for any Lo > —100L and for large enough k, we obtain d >
0.01Lg, that is, the number d is greater than any number. The obtained contradiction completes the
proof of the theorem. Theorem 2.1 is proved.

4. PROOF OF THEOREM 2.2

Lemma 4.1. For any p,q € Nwith ¢>p+2and any i =0,1,...,2P — 1 there exists a [unction
©p.q € S2a satisfying the following conditions:

1) supp (¢hq) = [20- ZSZI]J
2) n({z €0,1] 1 g g(2) =1}) = o~ 902
3)f0fn )b (x)de =0, Jorn e N\ {2/,2P +1,...,29}.

Proof. Let p,q € Nand ¢ > p + 2. Consider the following function defined on [0, 1]:

1 il 1
1 forxe[ + gem1s G — 2q_1],

PpqlT) = 2 =207 forz e {5, + 00 ' — e b
0, forz ¢ [, 5],

and which is piecewise linear with knots:
OZ'Z' 1 =3 1 i+1 1 i+1 12'—1—11
’2p’2p+2q’2p+2q—1’ op 9917 9p  9q’ 9p [
[t is easy to check that for this function the conditions 1) and 2) of the lemma are satisfied. Next, from
©! 4 € Saa and the definition of Franklin system it follows that fol fu(z)p(x)dz = 0,forn > 29.1fn < 2P,

then f,, is linear on the segment [}, , “$;']. Let

2t+1 v o141
fn(a;):a+b<a:— 2p+1>, m€[2p, o ]

i 2i+1 g 2i4+1 1 141
Ppa T+ op+1 = Ppag \ T T op+1 )7 T e o0’ 9p

i+1

! i b 2» 2i+1Y\
; fu(@)pp o(T)dz = a ; ©pq(T)dr +b Z_ T opit Ppq(T)dz =0,

2P
showing that the condition 3) of the lemma is satisfied. Lemma 4.1 is proved.

From the equality

it follows that
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Lemma 4.2. For any p,q € N with q > p+2 there exists a [unction 1y, € Saa satisfying the
following conditions:
])N({‘TG[O 1]”‘/’?#1( )7&1}) 2qp2’
2) fo fa(@)Yp g(z)dx =0, forn € N\ {2P,2P +1,...,29}.
2r—1
Proof. Let p,q € Nand ¢ > p+ 2. Denote ¢, , = Z cppq, where gopq isasin Lemma 4.1. Observe that

the assertion 2) of the lemma immediately follows from Lemma 4.1. Next, we have
1 1 1
/L({l‘ € [07 1] : 7[);041(33) 7é 1}) =1-2° <2p B 2q—2> - 29—p—2’

and assertion 1) of the lemma follows. Lemma 4.2 is proved.

Proof of Theorem 2.2. Let p; = [logy(ng)] + 1 and g = [logy(ng+1)] — 1. From the conditions of
the theorem it follows that lim sup(qx — px) = +oo. Therefore, for each j € N there exists a strictly
increasing sequence k; € N such that ! < 112. From Lemma 4.2 it follows that for any j € N

2111%.—;01%.*2
there exists ¢; € S ax; such that:
Du({ze [0 1] () £ 1) < b,
2) [ fal@)v;(z)de = 0,forn € N\ {27,275 +1,... 2%},
Let B; = {z e [O 1] 1 ¢j(xz) =1}, 5 € N. Observethatforanym eN

C C 1
H ﬂEJ =1l-u UE] 21—2 (E5) ij’
j=m j=m j=m j=m
and hence
7 <lim inf Ej> =1. (4.1)
j—o00

qk

From 2) it follows that ¢; = Z a fn, and, from (4.1) we get Z Z an fn = 400 almost
n=2"ki J=1—oPk;
everywhere on [0, 1], which completes the proof of Theorem 4.2.
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