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Abstract—In this paper, we prove that if {nk} is an arbitrary increasing sequence of natural
numbers such that the ratio nk+1/nk is bounded, then the nk-th partial sum of a series by Franklin
system cannot converge to +∞ on a set of positive measure. Also, we prove that if the ratio nk+1/nk

is unbounded, then there exists a series by Franklin system, the nk-th partial sum of which converges
to +∞ almost everywhere on [0, 1].

MSC2010 numbers : 42C05
DOI: 10.3103/S1068362319060049

Keywords: Franklin system; Franklin series; convergence to +∞.

1. INTRODUCTION

In 1915, N. N. Lusin [1] has posed the following problem: can a trigonometric series converge to
+∞ on a set of positive measure? Since then many mathematicians have investigated the question of
convergence or summability to +∞ of orthogonal series on a set of positive measure.

Yu. B. Germeier [2] proved that a trigonometric series cannot be summed by the Riemann method
to +∞ on a set of positive measure. N. N. Lusin and I. I. Privalov [3] have constructed an example of
trigonometric series, which is almost everywhere Abel summable to +∞. D. E. Men’shov [4] proved
that for any function f , not necessarily finite almost everywhere, there exists a trigonometric series that
converges to f in measure. In particular, there exists a trigonometric series that converges to +∞ in
measure on [−π, π]. A.A. Talalyan [5] proved that for any measurable on [−π, π] function f there exists
a trigonometric series that converges to f in measure and almost everywhere on the set where f in finite.
Finally, in 1988 S. V. Konyagin [6] solved the above posed Lusin’s problem by proving the following
theorem.

Theorem 1.1. Let S(x) and S(x) be the lower and upper limits of the partial sums of a trigono-
metric series, respectively. Then

μ
({

x ∈ [−π, π] : −∞ < S(x) ≤ S(x) = +∞
})

= 0.

In particular, a trigonometric series cannot converge to +∞ on a set of positive measure.

For series by Haar and Walsh systems we mention the following results. A. A. Talalyan and F. G.
Arutyunyan [7] proved that the series by Haar and Walsh systems cannot converge to +∞ on a set of
positive measure. In papers [8] and [9] can be found more simple proofs of this result. However, there exist
uniformly bounded orthonormal systems of functions, the series by which can converge to +∞ on a set
of positive measure for any permutation of the terms of the series (see [10]). N. B. Pogosyan [11] proved
that for each complete orthonormal system there exists a series, which after an appropriate permutation
converges to +∞ almost everywhere. In [12], G. G. Gevorkyan proved that a series by Franklin system
cannot converge to +∞ on a set of positive measure.
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Theorem 1.2 (see [12]). Let Sn(x) be the partial sum of a series by Franklin system. Then

μ

({
x ∈ [0, 1] : lim

k→∞
S2k(x) = +∞

})
= 0.

In the present paper we study the possibility of convergence to +∞ of partial sums Snk
(x) of series

by Franklin system on a set of positive measure.

2. NECESSARY DEFINITIONS AND STATEMENT OF MAIN RESULTS

Let n = 2μ + ν, where μ = 0, 1, 2, . . . and 1 ≤ ν ≤ 2μ. Define

sn,i =

⎧
⎨

⎩

i
2μ+1 , 0 ≤ i ≤ 2ν,
i − ν

2μ
, 2ν < i ≤ n.

Also, we set sn,−1 = sn,0 = 0 and sn,n+1 = sn,n = 1.

By Sn we denote the space of functions that are continuous and piecewise linear on [0, 1] with knots
{sn,i}n

i=0, that is, f ∈ Sn if f ∈ C [0, 1] and it is linear on each segment [sn,i−1, sn,i] , i = 1, 2, . . . , n.
It is clear that dimSn = n + 1 and the set {sn,i}n

i=0 is obtained by adding the point sn,2ν−1 to the set
{sn−1,i}n−1

i=0 . Hence there exists a unique (up to the sign) function fn ∈ Sn, which is orthogonal to Sn−1

and ‖fn‖2 = 1. Setting f0(x) = 1 and f1(x) =
√

3 (2x − 1) for x ∈ [0, 1], we obtain an orthonormal
system {fn(x)}∞n=0, which in equivalent manner was defined by Franklin in [13].

Let {nk} be an arbitrary increasing sequence of natural numbers. By σk(x), k = 1, 2, . . ., we denote
the sums of the first nk + 1 terms of the series:

∞∑

n=0

anfn(x), (2.1)

that is, σk(x) =
nk∑

n=0
anfn(x). The main results of this paper are the following theorems.

Theorem 2.1. If sup
k∈N

nk+1

nk
< +∞, then

μ

({
x ∈ [0, 1] : lim

k→∞
σk(x) = +∞

})
= 0.

Theorem 2.2. If sup
k∈N

nk+1

nk
= +∞, then there exists a series by Franklin system such that

lim
k→∞

σk(x) = +∞ almost everywhere on [0, 1].

Theorem 2.3. For an increasing sequence {nk} the condition

μ

({
x ∈ [0, 1] : lim

k→∞
σk(x) = +∞

})
= 0

is satisfied for all series of the form (2.1) if and only if sup
k∈N

nk+1

nk
< +∞.

Note that Theorem 2.3 follows from Theorems 2.1 and 2.2.
In the proof of Theorem 1.1 a key role will play the notion of scalar product of the series (2.1) and a

function from space Sn, defined in [14], and then successfully applied in the study of uniqueness problems
of series by the Franklin system (see also [15]).
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By S we formally denote the series (2.1). From the the definition of Franklin system it follows that if
g ∈ Sm and n > m, then

∫ 1

0
fn(x)g(x)dx = 0.

Hence the scalar product of the series S and a function g ∈ Sm can be defined by formula:

(S, g) =
∞∑

n=0

an

∫ 1

0
fn(x)g(x)dx =

m∑

n=0

an

∫ 1

0
fn(x)g(x)dx.

It is clear that if g1 ∈ Sm1 and g2 ∈ Sm2 , then for any α, β, we have

(S,αg1 + βg2) = α (S, g1) + β (S, g2) .

Let δij be the Kronecker symbol, that is, δij = 1 if i = j, and δij = 0 if i �= j. For n ≥ 2 we define

Nn,i (sn,j) = δij , j = 0, . . . , n and Nn,i(t) is linear on [sn,j−1, sn,j] , j = 1, . . . , n, i = 0, 1, ..., n.

Observe that the functions {Nn,i(t)}n
i=0 are normed in the space C[0, 1], and from Nn,i (sn,j) = δij , it

follows that the system {Nn,i(t)}n
i=0 forms a basis in Sn. Denoting

Mn,i(t) =
2

sn,i+1 − sn,i−1
Nn,i(t),

we obtain another basis in Sn, which is normed in L[0, 1].

Taking into account that below we will work only with functions Mn,i for n = nk, for simplicity of
notation, instead of Mnk,i we will write Mk

i

Also, we denote τk
i = snk,i and Δk

i = suppMk
i =

[
τk
i−1, τ

k
i+1

]
. The lemmas that follow can be found

in papers [12], [14], [16].

Lemma 2.1. Let ϕ be a function that is linear on the segments
[
τk
i−1, τ

k
i

]
and

[
τk
i , τk

i+1

]
. Then

(
ϕ,Mk

i

)
=
∫ 1

0
ϕ(t)Mk

i (t) =
1
6
ϕ
(
τk
i−1

)
+

2
3
ϕ
(
τk
i

)
+

1
6
ϕ
(
τk
i+1

)
,

if τk
i+1 − τk

i = τk
i − τk

i−1, and

(
ϕ,Mk

i

)
=
∫ 1

0
ϕ(t)Mk

i (t) =
1
9
ϕ
(
τk
i−1

)
+

2
3
ϕ
(
τk
i

)
+

2
9
ϕ
(
τk
i+1

)
,

if τk
i+1 − τk

i = 2
(
τk
i − τk

i−1

)
.

Lemma 2.2. For any Mν0
j0

and ν > ν0 there exist numbers αj such that Mν0
j0

=
∑

j
αjM

ν
j , and

∑

j

αj = 1, αj ≥ 0 and αj = 0 if Δν
j �⊂ Δν0

j0
.

Lemma 2.3. If (S,Mn,i) =: A < 0, then

μ

({

x ∈ Δn,i :
n∑

i=0

aifi(x) <
A

2

})

>
μ (Δn,i)

9
.
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3. PROOF OF THEOREM 2.1

Observe first that from the condition sup
k∈N

nk+1

nk
< +∞ it follows that there is an absolute constant

C ∈ (0, 1) such that for any l ∈ N, i = 0, 1, . . . , nl, and j = 0, 1, . . . , nl−1, we have

μ
(
Δl

i

)
> Cμ

(
Δl−1

j

)
. (3.1)

Denote E =
{

x ∈ [0, 1] : lim
k→∞

σk(x) = +∞
}

, and assume that μ (E) > 0. Then a segment Δk0
i0

can be

found such that

μ
(
Δk0

i0
∩ E

)
> (1 − 0.0001C) μ

(
Δk0

i0

)
. (3.2)

Therefore, there is a number L < 0 such that

μ (EL) < 0.0001Cμ
(
Δk0

i0

)
, where EL =

{
x ∈ Δk0

i0
: inf

k
σk(x) < L

}
. (3.3)

For an integrable function g we denote

M2 (g, x) = sup
k,i:Δk

i �x

1
μ
(
Δk

i

)
∫

Δk
i

|g(t)| dt.

It is clear that M2 (g, x) does not exceed the Hardy-Littlewood maximal function of g, and hence, we
have

μ (D) < 0.01μ
(
Δk0

i0

)
, where D =

{
x ∈ Δk0

i0
: M2 (χEl

, x) >
C

15

}
. (3.4)

By Lemma 2.3 we have
(
σk,M

k
i

)
> 2L, if Δk

i ⊂ Δk0
i0

and Δk
i �⊂ D. (3.5)

Now we show that by using induction on k, for any k > k0 one can find the following representation:

Mk0
i0

=
k∑

l=k0

∑

j∈Λl

α
(l)
j M l

j +
∑

j∈Bk

β
(k)
j Mk

j , (3.6)

where

α
(l)
j ≥ 0, β

(k)
j ≥ 0,

k∑

l=k0

∑

j∈Λl

α
(l)
j +

∑

j∈Bk

β
(k)
j = 1, (3.7)

and the sets Λl and Bk will be specified below.

Indeed, note first that (3.4) implies that Δk0
i0

�⊂ D. In the case k = k0, denoting Λk0 = ∅, Bk0 = {i0},

we get Mk0
i0

=
∑

j∈Bk

Mk
j . Now assuming that (3.6) is true for k we prove it for k + 1. To this end, observe

first that by Lemma 2.2, each function Mk
i , i ∈ Bk, can be represented in the form of a linear combination

of functions Mk+1
i with positive coefficients. Substituting these representations into the second sum in

(3.7), we obtain
∑

j∈Bk

β
(k)
j Mk

j =
∑

j∈Λk+1

α
(k+1)
j Mk+1

j +
∑

j∈Bk+1

β
(k+1)
j Mk+1

j , (3.8)

where

Λk+1 =
{

j : Δk+1
j ⊂ D ё αk+1

j �= 0
}

, (3.9)

JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS Vol. 54 No. 6 2019



ON CONVERGENCE OF PARTIAL SUMS OF FRANKLIN SERIES 351

Bk+1 =
{

j : Δk+1
j �⊂ D ё βk+1

j �= 0
}

. (3.10)

Instead of the second sum in (3.6), substituting the sums on the right-hand side of (3.8), we obtain

(3.6) for k + 1. The inequalities α
(l)
j ≥ 0 and β

(k)
j ≥ 0 in (3.7) follow from the fact that the coefficients in

Lemma 2.2 are nonnegative. The equality in (3.7) follows from the fact that the integrals of all functions
in (3.6) are equal to 1. Now we prove that

(
S,Mk

i

)
> 2L for i ∈ Λk. (3.11)

Assume the opposite, that is,
(
S,Mk

i

)
≤ 2L. Then by Lemma 2.3 we have

μ
({

x ∈ Δk
i : σk(x) < L

})
>

μ
(
Δk

i

)

9
. (3.12)

From the definition of Λl in representation (3.6) we have that if i ∈ Λk, then there exists j ∈ Bk−1 such
that Δk

i ⊂ Δk−1
j . By (3.1) and (3.12) we have

μ
({

x ∈ Δk−1
j : σk(x) < L

})
>

μ
(
Δk

i

)

9
>

Cμ
(
Δk−1

j

)

9
.

This implies that (see also (3.3) and (3.4)), Δk−1
j ⊂ D for some j ∈ Bk−1, which contradicts (3.10), and

so, (3.11) is proved. Thus, for any k ≥ k0 we have the representation (3.6), and the relations (3.7) and
(3.11). Then for any k we have

d =
(
S,Mk0

i0

)
=

k∑

l=k0

∑

j∈Λl

α
(l)
j

(
S,M l

j

)
+
∑

j∈Bk

β
(k)
j

(
S,Mk

j

)
(3.13)

=
k∑

l=k0

∑

j∈Λl

α
(l)
j

(
σl,M

l
j

)
+
∑

j∈Bk

β
(k)
j

(
σk,M

k
j

)
=: I1 (k) + I2 (k) .

For I1 (k), in view of (3.11), we have

I1 (k) ≥ 2L
k∑

l=k0

∑

j∈Λl

α
(l)
j . (3.14)

For an arbitrary positive L0 > −100L we denote Ωk =
{
i ∈ Bk : σk

(
τk
i

)
> L0

}
. Then for i ∈ Ωk we

have Δk
i �⊂ D, and hence

μ
([

τk
i−1, τ

k
i

]
∩ EL

)
<

C

5

(
τk
i − τk

i−1

)
, (3.15)

μ
([

τk
i , τk

i+1

]
∩ EL

)
<

C

5

(
τk
i+1 − τk

i

)
. (3.16)

Denote ω1 = σk

(
τk
i−1

)
, ω2 = σk

(
τk
i

)
, and ω3 = σk

(
τk
i+1

)
. From (3.15) and linearity of functions σk on[

τk
i−1, τ

k
i

]
, it follows that if ω1 < L, then ω2−ω1

L−ω1
> 5

C . Therefore, in any case, we have ω1 > 5L
5−C − C

5−C ω2.

Similarly, from (3.16), we get ω3 > 5L
5−C − C

5−C ω2. Hence, by Lemma 2.1, we obtain

(
σk,M

k
i

)
≥ min

{
1
6
ω1 +

2
3
ω2 +

1
6
ω3,

1
9
ω1 +

2
3
ω2 +

2
9
ω3

}

≥ 2
3
ω2 +

1
3

(
5L

5 − C
− C

5 − C
ω2

)
≥ 7

12
ω2 −

0.05L0

12
>

L0

2
, for i ∈ Ωk. (3.17)
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From (3.13), (3.14), (3.5), (3.10) and (3.17), it follows that

d ≥ 2L

⎛

⎝
k∑

l=k0

∑

j∈Λl

α
(l)
j +

∑

j∈Bk\Ωk

β
(k)
j

⎞

⎠+ 0.5L0

∑

j∈Ωk

β
(k)
j . (3.18)

Taking into account that the integrals of functions M l
j , l ≥ k0, l ∈ Λk are equal to 1, and (3.6) is satisfied,

we obtain
k∑

l=k0

∑

j∈Λl

α
(l)
j =

k∑

l=k0

∑

j∈Λl

α
(l)
j

∫

Δl
j

M l
j(x)dx ≤

∫

F1

Mk0
i0

(x)dx,

where F1 =
k⋃

l=k0

⋃

j∈Λk

Δl
j . By the definition of Λk we have F1 ⊂ D. Therefore, μ (F1) ≤ 0.01μ

(
Δk0

i0

)
, and

hence
k∑

l=k0

∑

j∈Λl

α
(l)
j ≤ μ (F1)

∥∥
∥Mk0

i0

∥∥
∥
∞

≤ 0.02. (3.19)

Now we prove that for large enough k the following inequality holds:
∑

j∈Bk\Ωk

β
(k)
j ≤ 0.9. (3.20)

Denote

Γk
0 =

{
i : Δk

i ⊂ Δk0
i0

}
, m = card

(
Γk

0

)
+ 1, (3.21)

and observe that for each i ∈ Γk
0 , we have

1
2m

μ
(
Δk0

i0

)
≤
∣∣
∣τk

i+1 − τk
i

∣∣
∣ ≤

2
m

μ
(
Δk0

i0

)
. (3.22)

Denoting Δ̃k
j =

[
τk
j−1+τk

j

2 ,
τk
j +τk

j+1

2

]
, we can write

∑

j∈Bk\Ωk

β
(k)
j =

∑

j∈Bk\Ωk

β
(k)
j Mk

j

(
τk
j

) τk
j+1 − τk

j−1

2
≤

∑

j∈Bk\Ωk

Mk0
i0

(
τk
j

) τk
j+1 − τk

j−1

2

≤
∑

j∈Bk\Ωk

j �∈{i1,i2}

∫

Δ̃k
j

Mk0
i0

(t)dt + Mk0
i0

(
τk0
i0

) τk
i1+1 − τk

i1−1

2
+ Mk0

i0

(
τk
i2

) τk
i2+1 − τk

i2−1

2
, (3.23)

where i1 and i2 are chosen to satisfy τk
i1

= τk0
i0

and τk
i2+1 − τk

i2
= 2

(
τk
i2
− τk

i2−1

)
(if there is no such i2,

then instead of the last term in (3.23) should be taken 0). From (3.22) and (3.23) we get

∑

j∈Bk\Ωk

β
(k)
j ≤

∑

j∈Bk\Ωk

j �∈{i1,i2}

∫

Δ̃k
j

Mk0
i0

(t)dt +
4
m

Mk0
i0

(
τk0
i0

)
μ
(
Δk0

i0

)
. (3.24)

It is clear that if τk
i , τk

i+1 ∈ Bk \ Ωk, then σk(x) < L0, for x ∈
[
τk
i , τk

i+1

]
. Hence, taking into account

(3.22) and that for large enough k the following estimate holds:

μ
({

x ∈ Δk0
i0

: σk(x) > L0

})
> 0.999μ

(
Δk0

i0

)
,
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we obtain card
{
Γk

1

}
≤ 0.002m for large enough k, where Γk

1 = {i ∈ Bk \ Ωk : i + 1 ∈ Bk \ Ωk}. There-
fore, from (3.22), we get

∑

j∈Γk
1

∫

Δ̃k
j

Mk0
i0

(t)dt ≤ card
(
Γk

1

)
· 2
m

μ
(
Δk0

i0

) ∥∥
∥Mk0

i0

∥∥
∥
∞

≤ 0.008. (3.25)

On the other hand, if Γk
2 = {i ∈ Bk \ Ωk : i + 1 �∈ Bk \ Ωk and i �∈ {i1, i2}}, then we have

1 =
∫

Δ
k0
i0

Mk0
i0

(t)dt ≥
∑

j∈Γk
2

∫

Δ̃k
j

Mk0
i0

(t)dt +
∑

j∈Γk
2

∫

Δ̃k
j+1

Mk0
i0

(t)dt ≥ 9
8

∑

j∈Γk
2

∫

Δ̃k
j

Mk0
i0

(t)dt. (3.26)

From (3.24)-(3.26), for large enough k, we obtain
∑

j∈Bk\Ωk

β
(k)
j ≤ 0.9. Thus, the estimate (3.20) is

proved. It follows from (3.20), (3.19) and (3.7) that
∑

j∈Ωk

β
(k)
j ≥ 0.08. (3.27)

Finally, from (3.18)-(3.20) and (3.27), for any L0 > −100L and for large enough k, we obtain d >
0.01L0, that is, the number d is greater than any number. The obtained contradiction completes the
proof of the theorem. Theorem 2.1 is proved.

4. PROOF OF THEOREM 2.2
Lemma 4.1. For any p, q ∈ N with q > p + 2 and any i = 0, 1, . . . , 2p − 1 there exists a function
ϕi

p,q ∈ S2q satisfying the following conditions:

1) supp
(
ϕi

p,q

)
=
[

i
2p , i+1

2p

]
,

2) μ
({

x ∈ [0, 1] : ϕi
p,q(x) = 1

})
= 1

2p − 1
2q−2 ,

3)
∫ 1
0 fn(x)ϕi

p,q(x)dx = 0, for n ∈ N \ {2p, 2p + 1, . . . , 2q}.

Proof. Let p, q ∈ N and q > p + 2. Consider the following function defined on [0, 1]:

ϕi
p,q(x) =

⎧
⎪⎨

⎪⎩

1, for x ∈
[

i
2p + 1

2q−1 , i+1
2p − 1

2q−1

]
,

3
2 − 2q−p−1, for x ∈

{
i

2p + 1
2q , i+1

2p − 1
2q

}
,

0, for x /∈
[

i
2p , i+1

2p

]
,

and which is piecewise linear with knots:
{

0,
i

2p
,

i

2p
+

1
2q

,
i

2p
+

1
2q−1

,
i + 1
2p

− 1
2q−1

,
i + 1
2p

− 1
2q

,
i + 1
2p

, 1
}

.

It is easy to check that for this function the conditions 1) and 2) of the lemma are satisfied. Next, from
ϕi

p,q ∈ S2q and the definition of Franklin system it follows that
∫ 1
0 fn(x)ϕ(x)dx = 0, for n > 2q. If n < 2p,

then fn is linear on the segment
[

i
2p , i+1

2p

]
. Let

fn(x) = a + b

(
x − 2i + 1

2p+1

)
, x ∈

[
i

2p
,
i + 1
2p

]
.

From the equality

ϕi
p,q

(
x +

2i + 1
2p+1

)
= ϕi

p,q

(
x − 2i + 1

2p+1

)
, x ∈

[
i

2p
,
i + 1
2p

]

it follows that
∫ 1

0
fn(x)ϕi

p,q(x)dx = a

∫ 1

0
ϕi

p,q(x)dx + b

∫ i+1
2p

i
2p

(
x − 2i + 1

2p+1

)
ϕi

p,q(x)dx = 0,

showing that the condition 3) of the lemma is satisfied. Lemma 4.1 is proved.
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Lemma 4.2. For any p, q ∈ N with q > p + 2 there exists a function ψp,q ∈ S2q satisfying the
following conditions:

1) μ ({x ∈ [0, 1] : ψp,q(x) �= 1}) = 1
2q−p−2 ,

2)
∫ 1
0 fn(x)ψp,q(x)dx = 0, for n ∈ N \ {2p, 2p + 1, . . . , 2q}.

Proof. Let p, q ∈ N and q > p + 2. Denote ψp,q =
2p−1∑

i=0
ϕi

p,q, where ϕi
p,q is as in Lemma 4.1. Observe that

the assertion 2) of the lemma immediately follows from Lemma 4.1. Next, we have

μ ({x ∈ [0, 1] : ψp,q(x) �= 1}) = 1 − 2p

(
1
2p

− 1
2q−2

)
=

1
2q−p−2

,

and assertion 1) of the lemma follows. Lemma 4.2 is proved.
Proof of Theorem 2.2. Let pk = [log2(nk)] + 1 and qk = [log2(nk+1)] − 1. From the conditions of
the theorem it follows that lim sup(qk − pk) = +∞. Therefore, for each j ∈ N there exists a strictly
increasing sequence kj ∈ N such that 1

2
qki

−pki
−2 ≤ 1

i2 . From Lemma 4.2 it follows that for any j ∈ N

there exists ψj ∈ S
2

qkj such that:

1) μ ({x ∈ [0, 1] : ψj(x) �= 1}) ≤ 1
j2 ,

2)
∫ 1
0 fn(x)ψj(x)dx = 0, for n ∈ N \

{
2pkj , 2pkj + 1, . . . , 2qkj

}
.

Let Ej = {x ∈ [0, 1] : ψj(x) = 1}, j ∈ N. Observe that for any m ∈ N

μ

⎛

⎝
∞⋂

j=m

Ej

⎞

⎠ = 1 − μ

⎛

⎝
∞⋃

j=m

Ec
j

⎞

⎠ ≥ 1 −
∞∑

j=m

μ
(
Ec

j

)
≥ 1 −

∞∑

j=m

1
j2

,

and hence

μ

(
lim inf
j→∞

Ej

)
= 1. (4.1)

From 2) it follows that ψj =
2

qkj∑

n=2
pkj

a
(j)
n fn, and, from (4.1) we get

∞∑

j=1

2
qkj∑

n=2
pkj

a
(j)
n fn = +∞ almost

everywhere on [0, 1], which completes the proof of Theorem 4.2.

REFERENCES
1. N. N. Lusin, Integral and Trigonometric Series (GITTL, Moscow-Leningrad, 1951).
2. Yu. B. Germeier, Derivatives of Riemann and Vallée Poussin and their application to problems from

the theory of trigonometric series (Candidate’s Dissertation, Phys-Math. Sciences, Moscow, 1946).
3. I. I. Privalov, Boundary Properties of Analytic Functions (GITTL, Moscow, 1950).
4. D. E. Men’shov, “On convergence in measure of trigonometric series”, Trudy MIAN SSSR, 32, 3-97, 1950.
5. A. A. Talalyan, “Trigonometric series which are universal with respect to subseries”, Izv. Akad. Nauk SSSR,

Ser. Mat., 27 (3), 621-660, 1963.
6. S. V. Konyagin, “Limits of indeterminacy of trigonometric series”, Mat. Zametki, 44 (6), 770-784, 1988.
7. A.A. Talalyan, F.G. Artuyunyan, “On convergence of a series in a Haar system to ∞”, Mat. Sb., 66 (2),

240-247, 1965.
8. R. F. Gundy, “Martingale theory and pointwise convergence of certain orthogonal series”, Trans. Amer. Math.

Soc., 124 (2), 228-248, 1966.
9. V. A. Skvortsov, “Differentiation with respect to nets and Haar series”, Mat. Zametki, 4 (1), 33-40, 1968.

10. R.I. Ovsepyan, A.A. Talalyan, “On convergence of orthogonal series to ∞”, Mat. Zametki, 8 (2), 129-135,
1970.

11. N. B. Pogosyan, “Representation of measurable functions by bases in Lp[0, 1], p > 2”, DAN Arm. SSR, 63
(4), 205-209, 1976.

12. G. G. Gevorkyan, “On convergence of Franklin series to +∞”, Math. Notes, 106 (3), 334Ц341, 2019.
13. Ph. Franklin, “A set of continuous orthogonal functions”, Math. Annalen, 100, 522-529, 1928.
14. G. G. Gevorkyan, “On the uniqueness of series in the Franklin system”, Mat. Sb., 207 (12), 30-53, 2016.
15. G. G. Gevorkyan, “Uniqueness theorems for Franklin series converging to integrable functions”, Mat. Sb.,

209 (6), 25-46, 2018.
16. G. G. Gevorkyan, “Uniqueness theorem for multiple Franklin series”, Mat. Zametki, 101 (2), 199-210, 2017.

JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS Vol. 54 No. 6 2019


