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Abstract—A group is called an n-torsion group if it has a system of defining relations of the form
rn = 1 for some elements r, and for any of its finite order element a the defining relation an = 1
holds. It is assumed that the group can contain elements of infinite order. In this paper, we show
that for every odd n ≥ 665 for each n-torsion group can be constructed a theory similar to that of
constructed in S. I. Adian’s well-known monograph on the free Burnside groups. This allows us
to explore the n-torsion groups by methods developed in that work. We prove that every n-torsion
group can be specified by some independent system of defining relations; the center of any non-cyclic
n-torsion group is trivial; the n-periodic product of an arbitrary family of n-torsion groups is an n-
torsion group; in any recursively presented n-torsion group the word and conjugacy problems are
solvable.
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1. INTRODUCTION

If in a group G the identity xn = 1 is satisfied, then G is said to be a periodic group of exponent
n, or an n-periodic group. All similar groups form a variety, called a Burnside variety of exponent n.
The free groups of rank m of a variety of exponent n is denoted by B(m,n). One of the most well-
known problems in algebra and group theory, posed by W. Burnside in 1902 has a simple statement: is
any finitely generated group B(m,n) finite? Currently, the free groups B(m,n) are also called free
Burnside groups in honor of W. Burnside.

A negative answer to the Burnside problem was first obtained in a series of classical works by
S. I. Adian and P. S. Novikov. A few years later, in the monograph [1], S. I. Adian has modified and
strengthened the constructed theory and proved his celebrated theorem stating that: for all odd n ≥ 665
and m > 1 the Burnside groups B(m,n) are infinite. In addition to the study of groups B(m,n), in
the monograph [1] were constructed and studied a number of other groups possessing new unusual
properties. The structures and ideas of construction of these groups became a starting point for solution
of a series of well-known old and difficult problems of the group theory. Here we mention two important
classes of groups from [1].

The first important class of the groups, constructed in [1] by means of generating and defining
relations, is denoted by B(m,n, α), where m is the number of the generators of the group, n ≥ 665 is
an arbitrary odd number, and α is a natural parameter. In [1] it was proved that the free Burnside group
B(m,n) is the direct limit in α of the group B(m,n, α).
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The next important class of groups is connected with the known finite bases problem of group theory,
which was posed by B. Neumann in 1937. In [1] it was proved that for any odd n ≥ 1003 the following
family of identities in two variables {(xpnypnx−pny−pn)n = 1}, where the parameter p runs over the set
of all prime numbers, is irreducible, that is none of these identities follows from the others. From this it
follows that for any odd n ≥ 1003 there exists continuum of distinct varieties An(Π) corresponding to
distinct sets of prime numbers Π. Besides, for any fixed m > 1 there exists continuum of nonisomorphic
groups Γ(m,n,Π), where Γ(m,n,Π) is a relatively free group of rank m of the variety An(Π).

Observe that for fixed m and n, there is a natural homomorphism from each of the groups Γ(m,n,Π)
and B(m,n, α) onto B(m,n). Moreover, the groups Γ(m,n,Π) and B(m,n, α) possess the following
two properties:
1. each of these (m-generated) groups has a system of defining relations of the form An = 1 for some
elements A;
2. in each of these groups, for every element Y of finite order, the defining relation Y n = 1 is satisfied.

Let X be an arbitrary group alphabet, R be some set of words, written in this alphabet, n > 1 be a
fixed natural number, and

G = 〈X|Rn = 1, R ∈ R〉 (1.1)

be the presentation of some group G.

Definition 1.1. The group (2.2) is said to be an n-torsion group if for every element Y ∈ G, either
Y n = 1, or Y is of infinite order.

A cyclic group of order n and an infinite cyclic group are simple examples of n-torsion groups. Also,
it is clear that free groups of arbitrary rank n are n-torsion groups for any natural n. In [2], A. Karrass,
W. Magnus and D. Solitar proved that in any group G = 〈X|An = 1〉, where A is a simple word (that is,
a word which is not a proper power of another word), the element A has order n in G, and each element
of finite order in G conjugate to some power of the element A. This means that any group with a single
defining relation of the form An = 1 is an n-torsion group. From the result of work [3] by S. I. Adian
(see also [4]) it follows that in any finitely presented n-torsion group the algorithmic word and conjugacy
problems are solvable for all odd n ≥ 665. Besides the absolute free groups and the above mentioned
groups B(m,n), B(m,n, α), Γ(m,n,Π), m ≥ 1, studied in [1], [3]-[5], in the work [6], S. I. Adian has
investigated free groups of a variety, satisfying the identity [x, y]n = 1. Based on the result of [6], it is not
difficult to deduce that these free groups also are n-torsion groups. Some other groups that essentially
are n-torsion groups have been constructed and studied in the works by A .Yu. Olshanskii, S. V. Ivanov,
I. G. Lysenok, V. S. Atabekyan and others (see [7]–[12]).
Denote by B(X,n) the free Burnside group of period n with the same as in G system of generators X:

B(X,n) = 〈X |An = 1 for all words A in the group alphabet X〉.
Observe that the identical on the set of generators X mapping from G into B(X,n) can be extended
to surjective homomorphism, because by the definition of n-torsion group (2.2) all its defining relations
have the form Rn = 1, where R ∈ R. Hence, the following proposition holds.

Proposition 1.1. Every n-torsion group G = 〈X|Rn = 1, R ∈ R〉 is homomorphically mapped
onto B(X,n). In particular, every noncyclic n-torsion group is infinite, provided that n has an
odd divisor k ≥ 665 or a divisor of the form k = 16m ≥ 8000.

The second part of Proposition 1.1 follows from the above stated theorem by S. I. Adian and a theorem
by I. G. Lysenok from [9] (see also [8]).

We show that for odd n ≥ 665, for each n-torsion group can be constructed a theory similar to that of
constructed in monograph [1], which will allow us to investigate n-torsion groups by methods developed
in [1], and to study their key properties. Some of these properties we will prove in the present paper. For
exponents of the form n = 16m ≥ 8000 a similar theory can be constructed basing on the results of [8]
and [9].

We first introduce one more broad class of n-torsion groups, which is obtained by means of the
following theorem.
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Theorem 1.1. The n-periodic product of any family of n-torsion groups is also an n-torsion group
for any odd n ≥ 665.

Recall that the notion of n-periodic product of groups was introduced by S. I. Adian [13] in 1976.
It was proved that periodic products are associative, exact, hereditary by subgroups and also possess
important properties such as the Hopf property, the C∗-simplicity, the uniform non-amenability, the
SQ-universality, etc. (see [13]-[18]).

In what follows, we will assume that n ≥ 665 is an arbitrary fixed odd number.

Theorem 1.2. Every n-torsion group can be presented by some independent system of defining
relations {An = 1 : A ∈ A}, where A is some set of words in the alphabet X. Besides, each
element of a finite order from G will be conjugate to some power of an element A ∈ A.

It is well-known that the centralizer of any nontrivial element of an absolutely free group is cyclic.
According to Adian’s theorem, the centers of the groups B(m,n) and B(m,n, α) are trivial for all
odd n ≥ 665. Moreover, the centralizer of any nontrivial element of these groups is also cyclic (see [1],
Chapter 6, Theorems 3.1 and 3.2). In 2015, the authors have proved that the centralizers of any nontrivial
elements of a relatively free groups Γ(m,n,Π) also are cyclic for all odd n ≥ 1003 (see [19]). Based on
the independent system of defining relations in Theorem 1.2, we show that these properties possess any
n-torsion group.

Theorem 1.3. The centralizer of any nontrivial element of every n-torsion group is a cyclic group.

Corollary 1.1. The center of every noncyclic n-torsion group is trivial.

Corollary 1.2. Every Abelian subgroup of each n-torsion group is a cyclic group.

The next result is true for all groups, which have only cyclic centralizers for nontrivial elements (see
[20], Lemma 2.3).

Corollary 1.3. Each nontrivial normal subgroup of every noncyclic n-torsion group is infinite.

The next result concerns algorithmic problems.

Theorem 1.4. If the presentation (2.2) of an n-torsion group G is recursive, then in G the word
and conjugacy problems are solvable.

Corollary 1.4. In every finitely defined n-torsion group the word and conjugacy problems are
solvable.

In [21] were considered relatively free groups K, having only cyclic centralizers for nontrivial
elements, and it was proved that every automorphism of the semigroup of endomorphisms End(K)
of the group K from the mentioned class is uniquely determined by its action on the subgroup of inner
automorphisms Inn(K). Putting together this result and Theorem 1.3, we obtain the following result.

Corollary 1.5. If an automorphism of the semigroup End(K) of a relatively free n-torsion group
K acts identically on the subgroup of inner automorphisms Inn(K), then it acts identically on
the whole semigroup End(K).

Corollary 1.6. For any relatively free n-torsion group K, the group of automorphisms Aut(End(K))
is canonically embedded into the group Aut(Aut(K))

Corollaries 1.5 and 1.6 generalize Theorem 1.2 and Corollary 4 from [19], respectively, proved for the
groups Γ(m,n,Π) for odd n ≥ 1003.

Theorem 1.1 we prove in Section 2. In Section 3, for each n-torsion group, we construct a special
independent system of defining relations, which will be used to prove Theorems 1.2 and 1.3 in Sections
4 and 5, respectively.

In what follows, we will frequently cite the monograph [1]. To cite the results from [1] we will use
standard notation, for instance, the notation II.5.3 [1] means item 3, section 5, chapter II of [1].
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2. PROOF OF THEOREM 1.1

We prove that the n-periodic product of every family of n-torsion groups is an n-torsion group.
Recall that the periodic product of exponent n (or the n-periodic product) of a family of groups

{Gi}i∈I is defined to be the group that is obtained by adding to the relations of free product F =
∏

i∈I

∗Gi

all the defining relations of the form An = 1, where A is an elementary period of some rank α for a
specified classification of periodic words of the free product F (see the definition in item 8 of [13]).

By Theorem 2 of [13] the equality Xn = 1 in the group
∏

i∈I

nGi is satisfied for any word X from the

free product F , which in the group G =
∏

i∈I

nGi is not conjugate to any element of subgroups Gi, i ∈ I.

Besides, by Theorem 3 of [13], each factor Gi, i ∈ I is identically embedded into the n-periodic product
G (see also [16] and [18]).

Assume that all the factors Gi of a given n-periodic product G =
∏

i∈I

nGi are n-torsion groups. Then

each of the groups Gi will have a presentation of the form Gi = 〈aik, k ∈ Si| gn
il, l ∈ Ji〉 for some sets of

indices Si, Ji, i ∈ I, and hence, the free product F will have the presentation:
∏

i∈I

∗Gi = 〈aik, k ∈ Si, i ∈ I| gn
il, l ∈ Ji, i ∈ I〉 .

As it was mentioned above, the n-periodic product of a family of groups {Gi}i∈I is obtained by adding to
the relations of free product

∏

i∈I

∗Gi all the defining relations of the form An = 1, where each element A is

an elementary period of some rank α for a specified classification of periodic words in the group alphabet
{aik}k∈Si,i∈I of the free product

∏

i∈I

∗Gi. Thus, the n-periodic product G has a presentation, in which all

the defining relations have the form rn = 1 (where r = gil, l ∈ Ji, i ∈ I or r = A, and A is an elementary
period).

Further, by Theorem 2 of [13], the equality Xn = 1 in the group
∏

i∈I

nGi is satisfied for each word X

from the free product
∏

i∈I

∗Gi, which in the group
∏

i∈I

nGi is not conjugate to any element of subgroups

Gi, i ∈ I. And, if X in the group
∏

i∈I

nGi is conjugate to some element of one of the subgroups Gi, i ∈ I,

then either X has infinite order, or Xn = 1, because, by assumption, each group Gi, i ∈ I, is an n-
torsion group, and in addition, by Theorem 3 of [13], each factor Gi, i ∈ I is identically embedded into
the n-periodic product G. Theorem 1.1 is proved.

3. INDEPENDENT SYSTEMS OF DEFINING RELATIONS FOR n-TORSION GROUPS

Let the group G with presentation (2.2) be an arbitrary n-torsion group. For each such group,
by induction on natural parameter α, we construct some presentation by means of generators of X
and a new system of defining relations {An = 1;A ∈

⋃∞
α=1 Eα}. We use the notation and the system

of references adopted in [1]. The presented in sections I.4 and VII.2 of the monograph [1] system of
definitions by complicated simultaneous induction on natural parameter, called rank, was based on the
notion of (signed) elementary words of the form An, where n is a fixed odd number ≥ 1003. To prove
Theorem 1.2, we construct a similar system of notions, using a given set of words R.

We first can assume that all the words R ∈ R in the presentation (2.2) are cyclically uncancellable
and simple, that is, any word R ∈ R is not a proper power of some other word. Indeed, if, for instance,
Rk

1 = R ∈ R, then R1 in G will have a finite order, and since G is an n-torsion group, then Rn
1 = 1 in G.

Then, the relation Rn = 1 can be replaced by the relation Rn
1 = 1.

For rank 0, all the notions remain the same. In particular, all the uncancellable words are called
reduced at the rank 0, and any cyclically uncancellable word is a period of rank 1.

All the words R ∈ R are minimal periods of rank 1, by their cyclically uncancellability and simplicity
(see Definition I.4.9 [1]). Among all reduced at the rank 0 words (the set of which is denoted by R0)
we can extract all elementary periods of rank 1, according to Definition I.4.10 from [1]. An elementary
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period E of rank 1 is called signed (at the rank 0), if some cyclic shift of the word E or of its inverse
belongs to the set R. Otherwise, an elementary period E of rank 1 is called unsigned. Next, we introduce
reversals of rank 1 for all periodic words, the periods of which are signed at rank 0 elementary periods of
rank 1. These reversals have usual form:

PAtA1Q → P (A−1)n−t−1A−1
2 Q, (3.1)

where either A or A−1 is a signed elementary period of rank 1 or some its cyclic shift, A ≡ A1A2, and the
words AtA1 and (A−1)n−t−1A−1

2 contain at least p = 9 sections, that is, are p-powers.
In a natural manner we define the real reversals of rank 1. Based on real reversals we define the notion

of a kernel of rank 1 for the words W ∈ N1, where the set of words N1 is defined according to I.4.21 from
[1]. Further, according to I.4.26 from [1] we define the sets R1,K1,L1,M1, the equivalence relation

of rank 1, denoted by 1∼, as well as all other notions of rank 1. The proofs of all necessary properties
introduced in I.4 of [1] of notions of rank 1 remain the same. New is only the restriction of the class of
elementary words by signed elementary words of period 1. Finally, for any words B,C ∈ R1 we define
the binary operation [B,C]1 of coupling of rank 1 similar to Definition I.4.36 [1]:

[B,C]1 = PQ ↔ ∃T (B 1∼ PT & C
1∼ T−1Q & PQ ∈ R1).

Further, using simultaneous induction on rank α, all the introduced notions can be defined for all natural
ranks. Let the signed periods of rank α and the analogs of all notions, that were defined in I.4 of [1], be
already defined for all ranks ≤ α. Then we define them at rank α + 1.

If W ∈ R0 and W ≡ xi1xi2 · · · xik , where xi1 , xi2 , · · · , xik belong to the set of generators X (the
symbol ≡ stands for graphic equality), then by [W ]α we denote the result of the following sequence of
couplings of rank α:

[[· · · [[xi1 , xi2 ]α, · · · ]α, xik ]α.

Thus, we have

[W ]α ≡ [[· · · [[xi1 , xi2 ]α, · · · ]α, xik ]α ∈ Rα. (3.2)

An elementary period A of rank α + 1 is called a signed elementary period (at the rank α), if words B
and R ∈ R can be found to satisfy

[R]α
α∼ [BAjB−1]α (3.3)

for some integer j. Otherwise, an elementary period of rank α + 1 is called a unsigned elementary
period of rank α + 1. It is easy to check that for α = 1 the definition of signed elementary period
of rank α coincides with the above given definition of signed elementary period of rank 1, because if

BEjB−1 0∼ R ∈ R, then BEjB−1 = R in the free group. Then we have |j| = 1, since the word R is
simple. Therefore, one of the words E or E−1 is a cyclic shift of the word R, by cyclically uncancellability
of elements from R and elementary period E.

Using the definition of signed elementary period, by analogy with VII.2 of [1], we make some changes
in the definitions of some notions given in I.4 of [1]. Namely, in all places where the phrase "normalized
occurrence of elementary words of rank α" appears, it should be understood as "marked elementary
periods of rank α". All the remaining definitions formally remain without any change. All the assertions
of the chapters II-V of [1], as well as all the assertions from items 2.3, 2.4 and 2.7-2.10 of chapter VII
[1], and Lemma 2.6 of [22] (which are true not only for odd n ≥ 1003, but also for odd n ≥ 665) and
their proofs formally remain the same and are true within the above given correction on the notion of
marked elementary period. Notice, in particular, that according to Lemma V.1.8 [1] the binary operation
of coupling of rank α is an associative operation for any α ≥ 0.

Based on the above introduced notions we construct a new presentation for the group G. Let ΓG(X, 0)
be a free group with generators X. We first construct auxiliary groups ΓG(X,α), using induction on the
rank α (by analogy with Definition VI.2.2 of groups B(m,n, α) from [1]).

Assume that α > 0 and that all the groups ΓG(X, γ) are already constructed for all γ ≤ α− 1. By Eα

we denote the set consisting of those marked elementary periods A of rank α, for which the following
conditions are satisfied:
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(a) for every marked elementary period E of rank α there is one and only one word A ∈ Eα such that
in the group ΓG(X,α − 1) the period E is conjugate with the period A, or with the period A−1.

(b) if A ∈ Eα, then for some words P and Q the inclusion PAnQ ∈ Mα−1 holds.
Remark. The existence of elementary periods A with the above properties (a) and (b) is proved in
Lemma 3.5 below.

Denote by ΓG(X,α) the group with the same generators X and the system of defining relations
An = 1, where A ∈

⋃n
α=1 Eα:

ΓG(X,α) = 〈X |An = 1, A ∈
n⋃

α=1

Eα〉.

Also, denote

E =
∞⋃

α=1

Eα. (3.4)

By the definition, the group ΓG(X) is generated by generators X and has the system of defining relations
An = 1, where A ∈ E :

ΓG(X) = 〈X |An = 1, A ∈
∞⋃

α=1

Eα〉. (3.5)

Proposition 3.1. The groups G and ΓG(X) coincide:

G = ΓG(X) = 〈X |An = 1, A ∈
∞⋃

α=1

Eα〉. (3.6)

To prove Proposition 3.1 we need some lemmas. The proof of the next lemma is similar to that of
Lemma VI.2.8 of [1], with the only difference that the group B(m,n, α) should be replaced by the group
ΓG(X,α).

Lemma 3.1. For any two words C,D ∈ Rα (α ≥ 0) the following relation holds:

C
α∼D ⇔ C = D in ΓG(X,α).

Lemma 3.2. For any rank α and any word C in ΓG(X,α) we have C = [C]α.

Proof. We use induction on the length ∂(C) of the word C. For ∂(C) = 0 the assertion is obvious. Let
C ≡ C1xk, where xk ∈ X. By the definition we have [C]α = [[C1]α, xk]α. By induction assumption we
have [C1]α = C1 in ΓG(X,α). Next, by Lemma V.1.4 of [1], a word C2 ∈ Kα can be found such that
[C1]α

α∼ C2 and [[C1]α, xk]α = [C2, xk]0. Then by Lemma 2.10 we have [C1]α = C2 in ΓG(X,α), and
hence in ΓG(X,α) we have

C = C1xk = [C1]αxk = C2xk = [[C1]α, xk]α = [C]α.

Lemma 3.3. For any rank α and any word C, a word D ∈ Kα can be found to satisfy C = D in
ΓG(X,α). If α ≥ ∂(C), then such D can be found in Aα+1.

Proof. The proof is similar to that of Lemma VI.2.4 of [1], by using induction on the length ∂(C) of the
word C.

Lemma 3.4. A period E is a marked elementary period of rank α if and only if words R ∈ R and
B can be found, such that R = BAjB−1 in the group ΓG(X,α − 1) for some integer j.

Proof. The result follows from the definition of marked elementary period, the equivalence (3.3), and
Lemmas 2.10 and 3.2.
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Lemma 3.5. Each marked elementary period E of rank α ≥ 1 is conjugate in the group ΓG(X,α−
1) to some elementary period A of rank α such that for some words P and Q the inclusion
PAnQ ∈ Mα−1 holds. In addition, if E is a marked (unmarked) elementary period of rank α,
then A is a marked (unmarked) elementary period of rank α as well.

Proof. Let E be an arbitrary elementary period of rank α ≥ 1 and P ∗ F ∗ Q be a normal generating
occurrence into some word Y ∈ Integ (X,α,E)). By Lemma IV.3.12 of [1] one can find a word

Z ∈ Mα−1 such that Z
α−1∼ Y . According to II.2.16 [1], to within a cyclic shift of the period E, we can

assume that the occurrence P ∗ F ∗ Q has the form P1 ∗EkE1 ∗Q1, where E1 is the beginning of E. By
II.4.1 [1], the occurrence fα−1(P ∗F ∗Q;Y,Z) has the form P2 ∗AkA1 ∗Q2, where A is the image of the
period E in fα−1(P ∗ F ∗ Q;Y,Z). Then, by II.4.3 [1] the word A is a period of rank α, and a generating
occurrence P ′ ∗ F ∗Q′ into some word Y ′ ∈ Per (α,E) can be found such that ρα,E(X) = ρα,A(Y ′) and
MutNorm α−1(P ∗ F ∗ Q,P ′ ∗ F ∗ Q′).

By Lemma 2.6 of [22] (which is a strengthening of Lemma II.7.15 [1]), the periods E and A are
conjugate in ΓG(X,α − 1). In view of Z ∈ Mα−1 and II.7.10 [1] it follows that the period An occurs in
some word from Mα−1. This proves the first assertion of the lemma.

Let E = TAT−1 in ΓG(X,α − 1) and E be a marked elementary period of rank α. By Lemma 3.4,
can be found words R ∈ R and B, such that R = BEjB−1 in the group ΓG(X,α − 1) for some integer
j. Then R = (BT )Aj(BT )−1 in the group ΓG(X,α − 1), and A is marked by Lemma 3.4.

Lemma 3.6. If E is a marked elementary period of some rank γ ≥ 1 (or if E ∈ Eγ), then E has
order n in the group ΓG(X, γ) (and in the group ΓG(X)).

Proof. By definition, every marked elementary period E of some rank γ ≥ 1 is conjugate in the group
ΓG(X, γ − 1) to some elementary period A ∈ Eγ or to its inverse. Since An = 1 is one of the defining
relations of the group ΓG(X, γ), then En = 1 in ΓG(X, γ) as well.

The fact that the order of the elementary period A ∈ Eγ is not less than n in the group ΓG(X), follows
in standard manner from Lemma IV.2.16 [1].

Lemma 3.7. If E is an unmarked elementary period of some rank γ, then E has an infinite order
in the group ΓG(X).

Proof. By Lemma 3.5, an elementary period E of rank γ ≥ 1 is conjugate in the group ΓG(X,α − 1) to
some elementary period A of rank γ, such that for some words P and Q the inclusion PAnQ ∈ Mγ−1

holds. By Lemma IV.2.1 of [1] we have the inclusion Aq ∈ Kγ−1. If E is an unmarked elementary period
of rank γ, then by Lemma VII.2.9 of [1] for every i > 10 and α ≥ γ we have Ai ∈ Rα. Then, by Lemma
IV.2.16 of [1] and Lemma 2.10 we obtain that the period A has an infinite order in the group ΓG(X,α)
for every α ≥ γ.

Lemma 3.8. For every word C, which is not equal to 1 in the group ΓG(X), can be found words
T and E, such that C = TErT−1 in ΓG(X) for some integer r, where either E ∈ E , or E is an
unmarked elementary period of some rank γ, and the word Eq occurs in some word from the class
Mγ−1.

Proof. The proof is similar to that of Lemma VI.2.5 of [1], the only difference is that instead of the group
B(m,n) should be considered the group ΓG(X), and instead of Lemmas 1.2, 2.3 and 2.4 of chapter VI
of [1] should be applied Lemma VII.2.7 of [1] and Lemmas 2.10 and 3.3, respectively.

Lemma 3.9. The group ΓG(X) is an n-torsion group.

JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS Vol. 54 No. 6 2019



326 ADIAN, ATABEKYAN

Proof. The result is an immediate consequence of Lemmas 3.8, 3.6 and 3.7.
Now we are in position to prove Proposition 1.1. We prove that in the groups G and ΓG(X) are

satisfied the same defining relations.
Let R ∈ R. According to Lemma 3.8, if the word R is not equal to 1 in the group ΓG(X), then some

words T and E can be found to satisfy C = TErT−1 in ΓG(X) for some integer r, where either E ∈ E ,
or E is a unmarked elementary period of some rank γ, and the word Eq occurs in some word from the
class Mγ−1. The equality R = TErT−1 in ΓG(X) implies the equality T−1RT = Er in ΓG(X,α) for
some α ≥ γ. According to Lemma 3.3, we can assume that T−1RT,Er ∈ A =

⋃∞
β=1 Aβ =

⋂∞
β=1 Rβ .

Then, by Lemma 2.10, we get T−1RT
α∼Er .

The period E is an elementary period of rank γ ≤ α. Therefore in Er do not occur active kernels
of ranks ≥ γ. Hence, by Lemma IV.2.13 of [1] and the equivalence T−1RT

α∼Er it follows that

T−1RT
γ−1∼ Er . By Lemma 2.10 we obtain T−1RT = Er in ΓG(X, γ − 1). Therefore, by Lemma 3.4,

the period E is a marked elementary period of rank γ. By Lemma 3.6 in the group ΓG(X) the relation
En = 1 holds, and hence, by the equality R = TErT−1, in the group ΓG(X) the relation Rn = 1 is
satisfied as well.

Now we prove the inverse assertion. We use induction on rank α ≥ 1 to show that if An = 1 is an
arbitrary defining relation of the group ΓG(X), then the relation An = 1 is also satisfied in the group G.
Since A ∈ Eα, then A is a marked elementary period of rank α. According to Lemma 3.4, a word R ∈ R
can be found such that R = BAjB−1 in the group ΓG(X,α − 1) for some word B and an integer j.

For α = 1 we have R = BA±1B−1 in the free group ΓG(X, 0) due to the simplicity of the word R.
Since Rn = 1 in G, we get An = 1 in G as well.

Let α ≥ 2 and the assertion be true for all defining relations of the form An
1 = 1 with elementary

periods A1 ∈ E of rank ≤ α − 1. Since in ΓG(X,α − 1) the equality R = BAjB−1 holds, then by the
induction assumption it holds also in the group G. By the relation Rn = 1 in G we have Ajn = 1.
Therefore the period A has a finite order in G. Since G is an n-torsion group, then An = 1 in G.
Proposition 3.1 is proved.

Proposition 3.2. The system of defining relations {An = 1, A ∈
⋃∞

α=1 Eα} of the group G in (3.6)
is an independent system of relations, that is, any of these relations does not follow from the
others.

Proof. To prove that the system of defining relations of the n-torsion group G from the presentation (3.6)
is an independent system, we use the proof of independence constructed in VI.2.2. of [1] of the system
of defining relations of the group B(m,n). This proof is given in [23]. So, to prove the proposition, we
can repeat the arguments of the proof from [23] with the only difference that the group B(m,n) should
be replaced by the group ΓG(X), and the set E =

⋃∞
α=1 Eα in VI.2.1 [1] should be replaced by the set E

defined by the equality (3.4).

4. PROOF OF THEOREMS

Proof of Theorem 1.2. We prove that every n-torsion group can be specified by means of some
independent system of defining relations {An = 1 : A ∈ A}, such that each element of a finite order
from G will be conjugate to some power of certain element A ∈ A.

By Proposition 3.1, every n-torsion group has a presentation of the form (3.6). According to
Proposition 3.2, the system of defining relations {An = 1, A ∈

⋃∞
α=1 Eα} of the group G from (3.6) is

an independent system of defining relations. By Lemma 3.8, for each nontrivial element C from G, some
words T and E can be found such that C = TErT−1 in G for some integer r, where either E ∈ E , or E
is an unmarked elementary period of some rank γ, and the word Eq occurs in some word from the class
Mγ−1. In addition, by Lemmas 3.6 and 3.7, if C has a finite order, then E ∈ E =

⋃∞
α=1 Eα. Choosing the

set E to be the mentioned in the theorem set of words A, we complete the proof of Theorem 1.2.
Proof of Theorem 1.3. To prove Theorem 1.3, it is enough to repeat the arguments of the proof of
Theorem 1 of [19], in which it is stated that the centralizer of every non-identity element of a relatively
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free group Γ = Γ(m,n,Π) is a cyclic group. It should only be applied the corresponding lemmas from §3
of this paper instead of lemmas from §2 of [19], and the groups Γ(m,n,Π) and Γ(m,n,Π, α) should be
replaced by the groups ΓG(X) and ΓG(X,α), respectively. Theorem 1.3 is proved.
Proof of Theorem 1.4 Observe first that the solvability of the problem of recognition of equality of
words in all the constructed intermediate groups ΓG(X,α) and in G = ΓG(X) naturally follows from
the recursivity of the sets of relations in the presentation (3.6) and the algorithmic efficiency (see the
efficiency principle in I.5.4 [1]) of all the definitions similar to that of as it was obtained in [1] for the
groups B(X,n, α).

The solvability of the conjugacy problem for the group G, we obtain basing on the obtained
presentation (3.6) of the group G exactly in the same way as in VI.3.5 from [1], where was proved the
solvability of the conjugacy problem for the free Burnside group B(m,n). Theorem 1.4 is proved.
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