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Abstract—In 1987 Harris proved-among others that for each 1 ≤ p < 2 there exists a two-
dimensional function f ∈ Lp such that its triangular Walsh-Fourier series does not converge almost
everywhere. In this paper we prove that the set of the functions from the space Lp(I2) (1 ≤ p < 2)
with subsequence of triangular partial means S�

2A(f) of the double Walsh-Fourier series convergent
in measure on I

2 is of first Baire category in Lp(I2). We also prove that for each function f ∈ L2(I2)
a.e. convergence S�

a(n)(f) → f holds, where a(n) is a lacunary sequence of positive integers.
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1. INTRODUCTION

We denote the set of all nonnegative integers by N, the set of all integers by Z and the set of dyadic
rational numbers in the unit interval I = [0, 1) by Q. In particular, each element of Q has the form p

2n for
some p, n ∈ N, 0 ≤ p ≤ 2n. Denote the dyadic expansion of n ∈ N and x ∈ I by

n =
∞∑

j=0

nj2j , nj = 0, 1, and x =
∞∑

j=0

xj

2j+1
, xj = 0, 1.

In the case of x ∈ Q chose the expension which terminates in zeros. ni, xi are the i-th coordinates of n,
x, respectively. Define the dyadic addition � as

x � y =
∞∑

k=0

|xk − yk| 2−(k+1).

Denote by ⊕ the dyadic (or logical) addition. That is, k ⊕ n =
∞∑
i=0

|ki − ni| 2i, where ki, ni are the ith

coordinate of natural numbers k, n with respect to number system based 2.
The sets In (x) = {y ∈ I : y0 = x0, ..., yn−1 = xn−1} for x ∈ I, In = In(0) for 0 < n ∈ N and

I0 (x) = I are the dyadic intervals of I. For 0 < n ∈ N denote by |n| = max {j ∈ N : nj �= 0} , that is,
2|n| ≤ n < 2|n|+1. Set ej = 1/2j+1, the i-th coordinate of ei is 1, the rest are zeros (i ∈ N).

The Rademacher system is defined by rn (x) = (−1)xn , x ∈ I, n ∈ N.
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The Walsh-Paley system is defined as the sequence of the Walsh-Paley functions:

wn (x) =
∞∏

k=0

(rk (x))nk = (−1)
∑|n|

k=0 nkxk , (x ∈ I, n ∈ N).

The Walsh-Dirichlet kernel is defined by Dn (x) =
n−1∑
k=0

wk (x) . Recall that (see [13])

D2n (x) =

⎧
⎨

⎩
2n, if x ∈ [0, 2−n)

0, if x ∈ [2−n, 1)
, (1.1)

We consider the double system
{
wn(x1) × wm(x2) : n,m ∈ N

}
on the unit square I

2 = [0, 1) × [0, 1) .

We denote by L0(I2) the Lebesgue space of functions that are measurable and finite almost every-
where on I

2. μ(A) is the Lebesgue measure of A ⊂ I
d. We denote by Lp

(
I
2
)

the class of all measurable
functions f that are 1-periodic with respect to all variable and satisfy

‖f‖p :=
(∫

I2

|f
(
y1, y2

)
|pdy1dy2

)1/p

< ∞.

If f ∈ L1

(
I
2
)
, then

f̂
(
n1, n2

)
=
∫

I2

f
(
y1, y2

)
wn1(y1)wn2(y2)dy1dy2

is the
(
n1, n2

)
-th Fourier coefficient of f.

The rectangular partial sums of double Fourier series with respect to the Walsh system are defined by

SN1,N2

(
x1, x2; f

)
=

N1−1∑

n1=0

N2−1∑

n2=0

f̂
(
n1, n2

)
wn1(x1)wn2(x2).

The triangular partial sums defined as

S�
k

(
x1, x2; f

)
=

k−1∑

i=0

k−i−1∑

j=0

f̂ (i, j) wi(x1)wj(x2).

Let a = (a(n)) be a lacunary sequence of positive integers with quotient q. That is, a(n + 1)/a(n) ≥ q >

1 for any n ∈ N. Now, set the maximal function S�
a,∗f = supn

∣∣∣S�
a(n)(f)

∣∣∣ . In 1971 Fefferman proved [2]

the following result with respect to the trigonometric system.
Let P be an open polygonal region in R

2, containing the origin. Set λP =
{(

λx1, λx2
)

:
(
x1, x2

)
∈ P
}

for λ > 0. Then for every p > 1, f ∈ Lp

(
[−π, π]2

)
it holds the relation

∑

(n1,n2)∈λP

f̂
(
n1, n2

)
exp
(
i
(
n1y1 + n2y2

))
→ f

(
y1, y2

)
as λ → ∞

for a. e.
(
y1, y2

)
∈ [−π, π]2 . That is, SλP f → f a. e. Sjulin gave [14] a better result in the case when

P is a rectangle. He proved a. e. convergence for the class f ∈ L
(
log+ L

)3 log log L and for functions

f ∈ L
(
log+ L

)2 log log L when P is a square. This result for squares is improved by Antonov [1]. There
is a sharp constraint between the trigonometric and the Walsh case. In 1987 Harris proved [8] for the
Walsh system that if S is a region in [0,∞) × [0,∞) with piecewise C1 boundary not always paralled to
the axes and 1 ≤ p < 2, then there exists an f ∈ Lp

(
I
2
)

such that SλP f does not converges a. e. and in
Lp norms as λ → ∞. In particular, from theorem of Harris follows that for any 1 ≤ p < 2 there exists an

f ∈ Lp

(
I
2
)

such that S�
2Af does not converges a. e. as A → ∞.
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In this paper we improve this result of Harris for triangular partial sums (P = �), In particular,
let 1 ≤ p < 2, then we prove that the set of the functions from the space Lp(I2) with subsequence of

triangular partial means S�
2A(f) of the double Walsh-Fourier series convergent in measure on I

2 is of first

Baire category in Lp(I2). We also prove that for each function f ∈ L2(I2) a.e. convergence S�
a(n)(f) → f

holds, where a(n) is a lacunary sequence of positive integers.
For results with respect to convergence of rectangular and triangular partial sums of Walsh-Fourier

series see [6, 7, 9–12, 15].

2. MAIN RESULTS

Theorem 2.1. Let 1 ≤ p < 2. The set of the functions from the space Lp(I2) with subsequence of
triangular partial sums S�

2A(f) of the double Walsh-Fourier series convergent in measure on I
2 is

of first Baire category in Lp(I2).

Theorem 2.2. The operator S�
a,∗ is of strong type (L2, L2). More precisely, ‖S�

a,∗f‖2 ≤ Cq‖f‖2.

By Theorem 2.2 and by the usual density argument we have

Corollary 2.1. As n → ∞ we have S�
a(n)(f) → f a.e. for every f ∈ L2(I2), where a(n) is a lacunary

sequence of positive integers.

The following theorem is proved in [4, 5].

Theorem GGT. Let {Tm}∞m=1 be a sequence of linear continues operators, acting from space Lp(I2)
in to the space L0(I2). Suppose that there exists the sequence of functions {ξk}∞k=1 from unit bull
Sp(0, 1) of space Lp(I2), sequences of integers {mk}∞k=1 and {λk}∞k=1 increasing to infinity such
that

ε0 = inf
k

μ{
(
x1, x2

)
∈ I

2 : |Tmk
ξk

(
x1, x2

)
| > λk} > 0.

Then the set of functions f from space Lp(I2)), for which the sequence {Tmf} converges in measure
to an a. e. finite function is of first Baire category in space Lp(I2).
Proof of Theorem 2.1. First we prove that there exists a function hA for which

‖hA‖p ≤ 1 (2.1)

and

μ

{
(
x1, x2

)
∈ I

2 :
∣∣∣S�

2A

(
x1, x2;hA

)∣∣∣ >
2A/p

√
A

}
≥ A

2A+3
. (2.2)

Let

fA

(
x1, x2

)
=

A−1∑

k=0

2A−1∑

l=0

w2k⊕l

(
x1
)
wl

(
x2
)
, hA

(
x1, x2

)
=

w2A−1

(
x1
)

2A(1−1/p)
√

A
fA

(
x1, x2

)
.

We can write

‖fA‖p =

(∫

I2

∣∣∣∣∣

A−1∑

k=0

w2k

(
x1
)
D2A

(
x1 � x2

)
∣∣∣∣∣

p

dx1dx2

)1/p

=

(∫

I

∣∣∣∣∣

A−1∑

k=0

w2k

(
x1
)
∣∣∣∣∣

p(∫

I

Dp
2A

(
x1 � x2

)
dx2

)
dx1

)1/p
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=

(∫

I

∣∣∣∣∣

A−1∑

k=0

w2k

(
x1
)
∣∣∣∣∣

p

dx1

(∫

I

Dp
2A

(
x2
)
dx2

))1/p

≤

⎛

⎝
∫

I

(
A−1∑

k=0

w2k

(
x1
)
)2

dx1

⎞

⎠
1/2

2A(1−1/p) =
√

A2A(1−1/p).

Hence (2.1) is proved. From simple calculation we obtain that

ĥA (i, j) =
∫

I2

hA

(
y1, y2

)
wi

(
y1
)
wj

(
y2
)
dy1dy2

=
1

2A(1−1/p)
√

A

∫

I2

fA

(
y1, y2

)
w2A−1

(
y1
)
wi

(
y1
)
wj

(
y2
)
dy1dy2

=
1

2A(1−1/p)
√

A

∫

I2

fA

(
y1, y2

)
w2A−1−i

(
y1
)
wj

(
y2
)
dy1dy2

=
1

2A(1−1/p)
√

A
f̂A

(
2A − 1 − i, j

)
.

Hence

S�
2A

(
x1, x2;hA

)
=
∑

i+j<2A ĥA (i, j) wi

(
x1
)
wj

(
x2
)

= 1
2A(1−1/p)

√
A

∑
i+j<2A f̂A

(
2A − 1 − i, j

)
wi

(
x1
)
wj

(
x2
)

= 1
2A(1−1/p)

√
A

∑2A−1
i=0

∑2A−i−1
j=0 f̂A

(
2A − 1 − i, j

)
wi

(
x1
)
wj

(
x2
)

= 1
2A(1−1/p)

√
A

∑2A−1
i=0

∑i
j=0 f̂A (i, j) w2A−1−i

(
x1
)
wj

(
x2
)
.

Consequently,

S�
2A

(
x1, x2;hA

)
=

w2A−1

(
x1
)

2A(1−1/p)
√

A

A−1∑

k=0

∑

l≤2k⊕l

w2k⊕l

(
x1
)
wl

(
x2
)
.

We see that l ≤ 2k ⊕ l holds if and only if lk = 0. Hence, we have

S�
2A

(
x1, x2;hA

)
=

w2A−1

(
x1
)

2A(1−1/p)
√

A

A−1∑

k=0

w2k

(
x1
) ∑

l∈{l=0,1,...,2A−1:lk=0}
wl

(
x1 � x2

)
.

Let
(
x1, x2

)
∈ GA,s = IA (t0, ..., ts−1, 1, ts+1, ..., tA−1) × IA (t0, ..., ts−1, 0, ts+1, ..., tA−1) .

Since x1 � x2 = IA (es) , we can write

∑

l∈{l=0,1,...,2A−1:lk=0}
wl

(
x1 � x2

)
=

1∑

l0=0

· · ·
1∑

lk−1=0

1∑

lk+1=0

· · ·
1∑

lA−1=0

(−1)ls =

⎧
⎨

⎩
2A−1, if k = s

0, k �= s
.

Hence,

∣∣∣S�
2A

(
x1, x2;hA

)∣∣∣ ≥
2A−1

2A(1−1/p)
√

A

A−1∑

s=0

IGA,s

(
x1, x2

)
=

2A/p

2
√

A

A−1∑

s=0

IGA,s

(
x1, x2

)
. (2.3)

Set

ΩA :=
A−1⋃

s=0

1⋃

t0=0

· · ·
1⋃

ts−1=0

1⋃

ts+1=0

. . .

1⋃

tA−1=0

GA,s
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From estimation (2.3) we get

μ

{
(
x1, x2

)
∈ I

2 :
∣∣∣S�

2A

(
x1, x2;hA

)∣∣∣ >
2A/p

2
√

A

}
≥ μ (ΩA) =

1
22A

A−1∑

s=0

1∑

x0=0

...

1∑

xs−1=0

1∑

xs+1=0

...

1∑

xA−1=0

=
A

2A+1
.

Now, we prove that there exists
(
x1

1, x
2
1

)
, ...,
(
x1

p(A), x
2
p(A)

)
∈ I

2, p (A) :=
[
2A+3/A

]
+ 1, such that

μ

⎛

⎝
p(A)⋃

j=1

(
ΩA �

(
x1

j , x
2
j

))
⎞

⎠ ≥ 1
2
. (2.4)

Indeed,

μ

⎛

⎝
p(A)⋃

j=1

(
ΩA �

(
x1

j , x
2
j

))
⎞

⎠ = 1 − μ

⎛

⎝
p(A)⋂

j=1

(
ΩA �

(
x1

j , x
2
j

))
⎞

⎠ (2.5)

= 1 −
∫

I2

IΩA

(
t1 � x1

1, t
2 � x2

1

)
· · · IΩA

(
t1 � x1

p(A), t
2 � x2

p(A)

)
dt1dt2.

Interpreting IΩA

(
t1 � x1

1, t
2 � x2

1

)
· · · IΩA

(
t1 � x1

p(A), t
2 � x2

p(A)

)
as a function of the 2p (A) + 2 vari-

ables t1, t2,
(
x1

1, x
2
1

)
, ...,
(
x1

p(A), x
2
p(A)

)
and integrating over all variables, each over I

2, we note that
∫

I2

· · ·
∫

I2

∫

I2

IΩA

(
t1 � x1

1, t
2 � x2

1

)
· · · IΩA

(
t1 � x1

p(A), t
2 � x2

p(1)

)
dt1dt2dx1

1dx2
1 · · · dx1

p(A)dx2
p(A)

=
∫

I2

(∫

I2

IΩA

(
t1 � x1

1, t
2 � x2

1

)
dx1

1dx2
1

)
...

(∫

I2

IΩA

(
t1 � x1

p(A), t
2 � x2

p(A)

)
dx1

p(A)dx2
p(A)

)
dt1dt2

=
(
μ
(
ΩA

))p(A) = (1 − μ (ΩA))p(A) ≤
(

1 − 1
p (A)

)p(A)

≤ 1
2
.

Consequently, there exists
(
x1

1, x
2
1

)
, ...,
(
x1

p(A), x
2
p(A)

)
∈ I

2 such that
∫

I2

IΩA

(
t1 � x1

1, t
2 � x2

1

)
· · · IΩA

(
t1 � x1

p(A), t
2 � x2

p(A)

)
dt1dt2 ≤ 1

2
. (2.6)

Combining (2.5) and (2.6) we conclude that

μ

⎛

⎝
p(A)⋃

j=1

(
ΩA �

(
x1

j , x
2
j

))
⎞

⎠ ≥ 1 − 1
2

=
1
2
.

Hence (2.4) is proved. Let
(
t := t1 � t2 ∈ I

)

FA

(
x1, x2, t

)
=

1

(4p (A))1/p

p(A)∑

j=1

rj

(
t1 � t2

)
hA

(
x1 � x1

j , x
2 � x2

j

)

=
1

(4p (A))1/p

p(A)∑

j=1

rj (t) hA

(
x1 � x1

j , x
2 � x2

j

)
.

Then it is proved in ([3], pp. 7-12) that there exists t0 ∈ I, such that

∫

I

∣∣FA

(
x1, x2, t0

)∣∣p dx1dx2 ≤ 1, μ

⎧
⎨

⎩
(
x1, x2

)
∈ I

2 :
∣∣∣S�

2A

(
x1, x2;FA

)∣∣∣ >
2A/p/

(
2
√

A
)

(p (A))1/p

⎫
⎬

⎭ ≥ 1
8
.

(2.7)
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Set ξA

(
x1, x2

)
:= FA

(
x1, x2, t0

)
. Then from (2.7) we have ‖ξA‖p ≤ 1 and

μ
{(

x1, x2
)
∈ I

2 :
∣∣∣S�

2A

(
x1, x2; ξA

)∣∣∣ > 21−3/pA1/p−1/2
}
≥ 1

8
and using Theorem GGT we complete the proof of Theorem 2.1.

Proof of Theorem 2.2. First, we suppose that q ≥ 2. Let S�
n (f) be n-th square partial sums of

the two-dimensional Walsh-Fourier series. It is easy to see that the spectrums of the polynomials
S�

a(n)(f) − S�
a(n)(f), n = 1, 2, ... are pairwise disjoint that implies

∥∥∥∥sup
n

∣∣∣S�
a(n)(f)

∣∣∣
∥∥∥∥

2

2

≤ 2
∥∥∥∥sup

n

∣∣∣S�
a(n)(f)

∣∣∣
∥∥∥∥

2

2

+ 2
∥∥∥∥sup

n

∣∣∣S�
a(n)(f) − S�

a(n)(f)
∣∣∣
∥∥∥∥

2

2

≤ 2
∥∥∥∥sup

n

∣∣∣S�
a(n)(f)

∣∣∣
∥∥∥∥

2

2

+ 2
∑

n

∥∥∥S�
a(n)(f) − S�

a(n)(f)
∥∥∥

2

2
≤ 2
∥∥∥∥sup

n

∣∣∣S�
a(n)(f)

∣∣∣
∥∥∥∥

2

2

+ 2 ‖f‖2
2 ≤ c ‖f‖2

2 ,

where the last inequality is obtained from the L2 boundedness of the square partial sums majorant
operator (see [13]). This completes the proof of Theorem 2.2 in the case of q ≥ 2. If 2 > q > 1, then let Q
the least natural number for which qQ ≥ 2. For any fixed j = 0, . . . , Q − 1 we have that the quotient of
lacunary sequence n integers (a(Qn + j)) is at least 2 since a(Q(n + 1) + j) ≥ qQa(Qn + j). From the
above written we have

∥∥∥∥sup
n

∣∣∣S�
a(Qn+j)f

∣∣∣
∥∥∥∥

2

2

≤ C ‖f‖2
2

and consequently we also have
∥∥∥S�

a,∗f
∥∥∥

2

2
≤ Cq ‖f‖2

2 .
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