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Abstract—Let f be a nonconstant meromorphic function of lower order μ (f) > 1/2 in C, and let aj

(j = 1, 2, 3) be three distinct finite complex numbers. We show that there exists an angular domain
D = {z : α ≤ arg z ≤ β}, where 0 < β −α ≤ 2π, such that if f share aj (j = 1, 2, 3) CM with its k-
th linear differential polynomial L[f ] in D, then f = L[f ]. This generalizes the corresponding results
from Frank and Schwick, Zheng and Li-Liu-Yi.
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1. INTRODUCTION

We use C and C = C ∪ {∞} to denote the whole complex plane and the extended complex plane,
respectively. In what follows, we shall suppose that the reader is familiar with standard notations and
fundamental results of the Nevanlinna theory (see [7, 14, 15]). For a nonconstant meromorphic function
f , we denote by T (r, f) the Nevanlinna characteristic function of f and by δ(a, f) the Nevanlinna
deficiency of f . Also, by λ (f) and μ (f) we denote the order and the lower order of a meromorphic
function f , respectively.

Let f and g be nonconstant meromorphic functions in the domain D ⊂ C, and let c ∈ C. If f − c and
g − c have the same zeros with the same multiplicities in D, then we say that f and g share c CM in D.
If f − c and g − c only have the same zeros, then we say that f and g share c IM in D. The zeros of f − c
imply the poles of f when c = ∞.

In 1979, Gundersen [6] and Mues-Steinmetz [10] have considered the uniqueness of a meromorphic
function f and its derivative f ′ and obtained the following result.
Theorem A (see [6, 10]). Let f be a nonconstant meromorphic function in C, and let aj (j = 1, 2, 3)
be three distinct finite complex numbers. If f and f ′ share aj (j = 1, 2, 3) IM in C, then f = f ′.

In 1992, Frank and Schwick [3] generalized Theorem A and proved the following result.
Theorem B (see [3]). Let f be a nonconstant meromorphic function in C and aj (j = 1, 2, 3) be three
distinct finite complex numbers, and let k be a positive integer. If f and f (k) share aj (j = 1, 2, 3)
IM in C, then f = f (k).
Remark 1.1. Three IM shared values in Theorem B can be replaced by two CM shared values (see Frank
and Weissenborn [4]).

In 2004, Zheng [16] has extended Theorem B from complex plane to an angular domain, and proved
the following theorem.
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Theorem C (see [16]). Let f be a transcendental meromorphic function of finite lower order
μ (f) in C such that δ(a, f (p)) > 0 for some a ∈ C and an integer p ≥ 0. Let the pairs of real
numbers {αj , βj} (j = 1, . . . , q) be such that −π ≤ α1 < β1 ≤ α2 < β2 < · · · ≤ αq < βq ≤ π with
ω = max {π/(βj − αj) : 1 ≤ j ≤ q}, and

q∑

j=1

(αj+1 − βj) <
4
σ

arcsin
√

δ
(
a, f (p)

)
/2,

where σ = max{ω, μ}. For a positive integer k, assume that f and f (k) share aj (j = 1, 2, 3) IM
in X = ∪q

j=1{z : αj ≤ arg z ≤ βj}, where aj (j = 1, 2, 3) are three distinct finite complex numbers

such that a �= aj (j = 1, 2, 3). If λ(f) > ω, then f = f (k).
In 2015, Li, Liu, and Yi [9] observed that Theorem C is invalid for q ≥ 2, and proved the following

more general result, which extends Theorem C (see [9, p. 443]).
Theorem D (see [9]). Let f be a transcendental meromorphic function of finite lower or-
der μ (f) in C and such that δ(a, f) > 0 for some a ∈ C. Assume that q ≥ 2 pairs of real
numbers {αj , βj} satisfy the conditions −π ≤ α1 < β1 ≤ α2 < β2 < · · · ≤ αq < βq ≤ π with ω =
max {π/(βj − αj) : 1 ≤ j ≤ q}, and

∑q
j=1(αj+1 − βj) < 4

σ arcsin
√

δ (a, f)/2, where σ = max{ω, μ}.
For a k-th order linear differential polynomial L[f ] in f with constant coefficients given by

L[f ] = bkf
(k) + bk−1f

(k−1) + · · · + b1f
′, (1.1)

where k is a positive integer, bk, bk−1, · · · , b1 are constants and bk �= 0, assume that f and L[f ]
share aj (j = 1, 2, 3) IM in X = ∪q

j=1{z : αj ≤ arg z ≤ βj}, where aj (j = 1, 2, 3) are three distinct
finite complex numbers such that a �= aj (j = 1, 2, 3). If λ(f) �= ω, then f = L[f ]. Based on Theorem
D, we naturally arise the following question.
Question 1.1. Does there exist an angular domain D = {z : α ≤ arg z ≤ β}, where 0 < β − α ≤ 2π,
such that if f and L[f ] share aj (j = 1, 2, 3) CM or IM in D, then f = L[f ] in Theorem D?

In this paper, we investigate the above question and prove the following result, which generalizes
Theorems C and D.
Theorem 1.1. Let f be a nonconstant meromorphic function of lower order μ (f) > 1/2 in C, aj

(j = 1, 2, 3) be three distinct finite complex numbers, and let L[f ] be given by (1.1). Then there
exists an angular domain D = {z : α ≤ arg z ≤ β}, where 0 < β − α ≤ 2π, such that if f and L[f ]
share aj (j = 1, 2, 3) CM in D, then f = L[f ].

As an immediate consequence of Theorem 1.1, we have the following result.
Corollary 1.1. Let f be a nonconstant meromorphic function of lower order μ (f) > 1/2 in C, aj

(j = 1, 2, 3) be three distinct finite complex numbers, and let k be a positive integer. Then there
exists an angular domain D = {z : α ≤ arg z ≤ β}, where 0 < β − α ≤ 2π, such that if f and f (k)

share aj (j = 1, 2, 3) CM in D, then f = f (k).
In order to prove our results, we recall the Nevanlinna theory on an angular domain. Let f be a

meromorphic function in D = {z : α ≤ arg z ≤ β}, where 0 < β − α ≤ 2π. Nevanlinna [5, 11] defined
the following symbols.

Aα,β (r, f) =
ω

π

∫ r

1

(
1
tω

− tω

r2ω

){
log+

∣∣f
(
teiα

)∣∣ + log+
∣∣∣f

(
teiβ

)∣∣∣
} dt

t
, (1.2)

Bα,β (r, f) =
2ω
πrω

∫ β

α
log+

∣∣∣f
(
reiθ

)∣∣∣ sin ω (θ − α) dθ, (1.3)

Cα,β (r, f) = 2
∑

1<|bm|<r

(
1

|bm|ω − |bm|ω
r2ω

)
sinω (θm − α) , (1.4)

Sα,β(r, f) = Aα,β(r, f) + Bα,β(r, f) + Cα,β(r, f), (1.5)
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where ω = π/ (β − α), and bm = |bm|eiθm are the poles of f in D counting multiplicities. If we
ignore their multiplicities, then we replace Cα,β(r, f) by Cα,β(r, f). Also, Sα,β(r, f) will stand for the
Nevanlinna’s angular characteristic function in D.

Throughout the paper, we denote by R(r, ∗) a quantity satisfying R(r, ∗) = O {log(rT (r, ∗))}, r �∈ E,
where E denotes a set of positive real numbers with finite linear measure, which will not necessarily be
the same in each occurrence. Also, we need the following definitions.
Definition 1.1 (see [8, cf.1]). Assume that f is a meromorphic function of infinite order in C. Then
there exists a proximate order ρ(r) of f such that:

(i) ρ(r) is continuous and nondecreasing for r ≥ r0, and ρ(r) → +∞ as r → +∞;

(ii) U(r) = rρ(r) (r ≥ r0) satisfies the condition lim
r→+∞

log U(R)
log U(r) = 1, R = r + r

log U(r) ;

(iii) lim
r→+∞

log T (r,f)
ρ(r) log r = 1.

Definition 1.2 (see [13, cf.1, 8]). Let f be a meromorphic function of infinite order in C, and let ρ(r)
be the proximate order of f . A direction arg z = θ0 is called a Borel direction of proximate order
ρ(r) of f if for arbitrarily small ε > 0 the following relation holds:

lim
r→+∞

log n(r, θ0, ε, f = a)
ρ(r) log r

= 1

for all a ∈ C except at most two exceptional values, where n(r, θ0, ε, f = a) denotes the number of
the zeros of f − a counting multiplicities in the sector | arg z − θ0| < ε, |z| ≤ r.
Definition 1.3 (see [12]). Let f be a meromorphic function of finite order λ (f) > 0 in C. A direction
arg z = θ0 is called a Borel direction of order λ (f) if for arbitrarily small ε > 0 the following
relation holds:

lim
r→+∞

log n(r, θ0, ε, f = a)
log r

= λ (f)

for all a ∈ C except at most two exceptional values, where n(r, θ0, ε, f = a) is as in Definition 1.2.

2. SOME LEMMAS

Lemma 2.1 (see [5, 11]). Let f be a meromorphic function in C. Then for any a ∈ C the following

relation holds: Sα,β

(
r, 1

f−a

)
= Sα,β(r, f) + O(1).

Lemma 2.2 (see [5, 11, cf.2]). Let f be a meromorphic function in C. Then
(i) for q (≥ 3) distinct complex numbers aj ∈ C (j = 1, 2, · · · , q) we have

(q − 2)Sα,β (r, f) ≤
∑q

j=1 Cα,β

(
r, 1

f−a

)
+ R(r, f);

(ii) for a positive integer k we have Aα,β(r, f (k)/f) + Bα,β(r, f (k)/f) = R(r, f);
(iii) if f is of finite order, then R(r, f) = O(1);
(iv) if f is of infinite order and of proximate order ρ(r), then R(r, f) = O(log U(r)), where

U(r) = rρ(r) is as in Definition 1.1.
Lemma 2.3 (see [7]). Let f be a meromorphic function in C, and let L[f ] be given by (1.1). Then
T (r, L[f ]) ≤ (k + 1)T (r, f) + O (log rT (r, f)) .

Lemma 2.4 (see [12]). Let f be a meromorphic function of finite order λ (f) > 0 in C. Then f has at
least one Borel direction arg z = θ0 (0 ≤ θ0 < 2π) of order λ (f).
Using the same arguments applied in Lemma 1.3 of [15, p.14], we can easily obtain the following result.
Lemma 2.5. Let f be a nonconstant meromorphic function in C, and let aj ∈ C (j = 1, 2, · · · , q) be
q distinct complex numbers. Then we have

q∑

j=1

(Aα,β + Bα,β)
(
r, (f − aj)−1

)
= (Aα,β + Bα,β)

⎛

⎝r,

q∑

j=1

(f − aj)−1

⎞

⎠ + O(1).
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Lemma 2.6. Let f be a nonconstant meromorphic function in C, aj (j = 1, 2, 3) be three distinct fi-
nite complex numbers, and let L[f ] be given by (1.1). Suppose that f and L[f ] share aj (j = 1, 2, 3)
CM in D = {z : α ≤ arg z ≤ β}, where 0 < β − α ≤ 2π. If f �≡ L[f ], then Sα,β (r, f) = R (r, f).
Proof. By Lemma 2.5, the Nevanlinna basic reasoning (see [7], p. 5), the definition (1.5) of Sα,β (r, ∗),
Lemma 2.1, and Lemma 2.2(ii), we can write

3∑

j=1

(Aα,β + Bα,β)
(
r, (f − aj)−1

)
= (Aα,β + Bα,β)

⎛

⎝r,

3∑

j=1

(f − aj)−1

⎞

⎠ + O(1)

≤ (Aα,β + Bα,β)

⎛

⎝r,
3∑

j=1

L[f ]
f − aj

⎞

⎠ + (Aα,β + Bα,β)
(

r,
1

L[f ]

)
+ O(1)

≤
3∑

j=1

(Aα,β + Bα,β)
(

r,
L[f ]

f − aj

)
+ Sα,β

(
r,

1
L[f ]

)
+ O(1) ≤ Sα,β (r, L[f ]) + R (r, f) ,

that is,
∑3

j=1 (Aα,β + Bα,β)
(
r, (f − aj)−1

)
≤ Sα,β (r, L[f ]) + R (r, f) . Therefore, we have

3∑

j=1

(Aα,β + Bα,β)
(

r,
1

f − aj

)
+

3∑

j=1

Cα,β

(
r,

1
f − aj

)
≤ Sα,β (r, L[f ]) +

3∑

j=1

Cα,β

(
r,

1
f − aj

)
+ R (r, f) ,

which together with definition (1.5) of Sα,β (r, ∗) and Lemma 2.1 implies that

3Sα,β (r, f) ≤ Sα,β (r, L[f ]) +
3∑

j=1

Cα,β

(
r, (f − aj)−1

)
+ R (r, f) . (2.1)

Next, since f and L[f ] share aj (j = 1, 2, 3) CM in D, by the Nevanlinna basic reasoning [7, p. 5],
Lemma 2.1, the definition (1.5) of Sα,β (r, ∗), and Lemma 2.2(ii), we can write

3∑

j=1

Cα,β

(
r, (f − aj)−1

)
≤ Cα,β

(
r,

1
f − L[f ]

)
≤ Sα,β (r, f − L[f ]) + O(1)

≤ (Aα,β + Bα,β) (r, f − L[f ]) + Cα,β (r, f − L[f ]) + O(1)

≤ (Aα,β + Bα,β)
(

r,
f − L[f ]

f

)
+ (Aα,β + Bα,β) (r, f) + Cα,β (r, L[f ]) + O(1)

≤ Aα,β (r, f) + Bα,β (r, f) + Cα,β (r, f) + kCα,β (r, f) + R (r, f)

≤ Sα,β (r, f) +
k

k + 1
Cα,β

(
r, f (k)

)
+ R (r, f) ≤ Sα,β (r, f) +

k

k + 1
Sα,β (r, L[f ]) + R (r, f) .

Combining this with (2.1), we get

2Sα,β (r, f) ≤ 2k + 1
k + 1

Sα,β (r, L[f ]) + R (r, f) . (2.2)

Set F = 1/(f − c) and L1[f ] = 1/(L[f ] − c), where c ∈ C (c �∈ {a1, a2, a3}), and observe that f and
L[f ] share aj (j = 1, 2, 3) CM in D. Since f and L[f ] always share ∞ IM in D, F and L1[f ] share 0 IM,
and 1/(aj − c) (j = 1, 2, 3) CM in D, then by Lemma 2.1, Lemma 2.2(i), the definition of Rα,β (r, ∗),
and Lemma 2.3 we get

2Sα,β (r, L1[f ]) ≤
3∑

j=1

Cα,β

(
r,

1
L1[f ] − 1/(aj − c)

)
+ Cα,β

(
r,

1
L1[f ]

)
+ R (r, L1[f ])

≤ Cα,β

(
r,

1
F − L1[f ]

)
+ R (r, f) ≤ Sα,β (r, F − L1[f ]) + R (r, f)
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≤ Sα,β (r, F ) + Sα,β (r, L1[f ]) + R (r, f) ,

implying that Sα,β(r, L1[f ]) ≤ Sα,β(r, F ) + R(r, f). Hence, by Lemma 2.1 we have

Sα,β (r, L[f ]) ≤ Sα,β (r, f) + R (r, f) . (2.3)

In view of (2.2) and (2.3) we obtain the conclusion of Lemma 2.6.

Lemma 2.7. Let f be a meromorphic function in D = {z : α ≤ arg z ≤ β} (0 < β − α ≤ 2π), and
ω = π/ (β − α). Then for any c ∈ C and arbitrarily small ν > 0, we have

n (r,Dν , f = c) ≤ KrωCα,β

(
2r,

1
f − c

)
,

where K is a positive constant, Dν = {z : α + ν ≤ arg z ≤ β − ν}, and n (r,Dν , f = c) denotes the
number of zeros of f − c counting multiplicities in Dν ∩ {z : |z| ≤ r}.

Proof. Let ηm be the zeros of f − c counting multiplicities in D. Put n(∗) := n (∗,Dν , f = c) for the
sake of simplicity. Then for arbitrarily small ν > 0 we can write

Cα,β

(
2r,

1
f − c

)
= 2

∑

1<|ηm|<2r,α<θm<β

(
1

|ηm|ω − |ηm|ω
(2r)2ω

)
sin ω (θm − α) r

≥ 2
∑

1<|ηm|<r,α+ν<θm<β−ν

(
1

|ηm|ω − |ηm|ω
(2r)2ω

)
sin ω (θm − α)

≥ 2 sin(ων)
∑

1<|ηm|<r,α+ν<θm<β−ν

(
1

|ηm|ω − |ηm|ω
(2r)2ω

)

= 2 sin(ων)
(∫ r

1

dn (t)
tω

−
∫ r

1

tω

(2r)2ω
dn (t)

)

= 2 sin(ων)
(

n (r)
rω

+ ω

∫ r

1

n (t)
tω+1

dt − n (r)
4ωrω

+
ω

(2r)2ω

∫ r

1
tω−1n (t) dt

)

≥ 2 sin(ων)
(

n (r)
rω

− n (r)
4ωrω

)
= 2 sin(ων)

n (r)
rω

4ω − 1
4ω

≥ K
n (r)
rω

.

Therefore n(r) ≤ KrωCα,β

(
2r, 1

f−c

)
, where K is a positive constant not necessarily the same for each

occurrence. This completes the proof of Lemma 2.7.

Lemma 2.8 (see [13]). Let f be a meromorphic function of infinite order in C, and let ρ(r) be a
proximate order of f . Then f has at least one Borel direction arg z = θ0 (0 ≤ θ0 < 2π) of proximate
order ρ(r).

Lemma 2.9 (see [12]). Let f be a meromorphic function of infinite order in C, and let ρ(r) be a
proximate order of f . Then a direction arg z = θ0 is a Borel direction of proximate order ρ(r) of f ,
if and only if for arbitrarily small ε > 0 we have

lim sup
r→+∞

log Sθ0−ε,θ0+ε (r, f)
ρ(r) log r

= 1.

3. PROOF OF THEOREM 1.1

Suppose that f �≡ L[f ]. Since λ (f) ≥ μ (f) and μ (f) > 1/2, it follows that λ (f) > 1/2. Now we
consider the following two cases.

Case 1. Assume that 1/2 < λ (f) < +∞. Choose ω such that 1/2 < ω < λ (f), where ω = π/ (β − α)
and 0 < β − α ≤ 2π. Then for one given angular domain D = {z : α ≤ arg z ≤ β}, we have λ (f) > ω.
Thus, by Lemma 2.4, we can assume that f has at least one Borel direction arg z = θ0 in D of order
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λ (f). Therefore, in view of Definition 1.3 there exists a finite complex number c such that for arbitrarily
small ε > 0,

lim sup
r→+∞

log n (r, θ0, ε, f = c)
log r

= λ (f) > ω. (3.1)

Next, since f and L[f ] share aj (j = 1, 2, 3) CM in D, by Lemma 2.6 and Lemma 2.2(iii), we have
Sα,β (r, f) = R (r, f) = O(1). On the other hand, for arbitrarily small ν > 0, by Lemma 2.7 we get

n (r,Dν , f = c) ≤ KrωCα,β (2r, 1/(f − c)) , (3.2)

where K is a positive constant, Dν = {z : α + ν ≤ arg z ≤ β − ν}, and n (r,Dν , f = c) denotes the
number of zeros of f − c counting multiplicities in Dν ∩ {z : |z| ≤ r}. Thus, by (3.2), Sα,β (r, f) = O(1),
and Lemma 2.1 it follows that
n (r, θ0, ε, f = c) ≤ n (r,Dν , f = c) ≤ KrωCα,β (2r, 1/(f − c)) ≤ Krω (Sα,β (2r, f) + O(1)) ≤ O(rω),

and hence, we have n (r, θ0, ε, f = c) = O(rω). This contradicts (3.1) and so we obtain f ≡ L[f ].
Case 2. Assume that λ (f) = +∞ and ρ(r) is a proximate order of f . Then in view of Lemma 2.8 we
can assume that f has at least one Borel direction arg z = θ0 in D of proximate order ρ(r). Moreover,
by Lemma 2.2(iv) and Lemma 2.6 we have Sα,β (r, f) = R (r, f) = O(log U(r)), U(r) = rρ(r), implying
that

Sθ0−ε,θ0+ε (r, f) = O(log U(r)), U(r) = rρ(r). (3.3)

Now by Lemma 2.9, for arbitrarily small ε > 0, we have

lim sup
r→+∞

log Sθ0−ε,θ0+ε (r, f)
ρ(r) log r

= 1. (3.4)

Combining (3.3) and (3.4) we arrive at a contradiction. This completes the proof of Theorem 1.1.
Acknowledgments. The author would like to thank the referees for their thorough comments and
helpful suggestions.
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