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Abstract—Sampling from various kinds of distributions is an issue of paramount importance
in statistics since it is often the key ingredient for constructing estimators, test procedures or
confidence intervals. In many situations, the exact sampling from a given distribution is impossible
or computationally expensive and, therefore, one needs to resort to approximate sampling strategies.
However, it is only very recently that a mathematical theory providing non-asymptotic guarantees
for approximate sampling problem in the high-dimensional settings started to be developed. In this
paper we introduce a new mathematical framework that helps to analyze the Stochastic Gradient
Descent as a method of sampling, closely related to Langevin Monte-Carlo.
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1. INTRODUCTION

Let us first introduce the mathematical setting of Langevin sampling. The general problem is to
sample from the log-concave distribution with density π(θ) = c exp(−f(θ)), where f : R

p → R satisfies
the following two conditions:

Strong convexity : f(θ2) ≥ f(θ1) + ∇f(θ1)T (θ2 − θ1) +
m

2
‖θ1 − θ2‖2

2; (1.1)

Smoothness : ‖∇f(θ1) −∇f(θ2)‖2 ≤ M‖θ1 − θ2‖2, (1.2)

for all p-dimensional real vectors θ1 and θ2. The parameters m and M are positive numbers and ‖ · ‖2 is
the Euclidean norm on R

p. The problem of sampling from π is closely related to the problem of finding
the minimum of the function f : R

p → R. Indeed, suppose we manage to sample from the distribution
πβ(θ) = cβ exp(−βf(θ)), where β is a large positive number. Then πβ will mainly be concentrated
around the unique minimum point of f and it will have some kind of a spike form. Thus, a sample from
πβ is a high probability approximation of the minimum point. Therefore considering f to be convex
will facilitate our task for characterizing the convergence of the considered sampling method. For more
details see [5] and [10].

Langevin Monte-Carlo algorithm is one of the methods for the approximate sampling from the
target distribution π. The idea comes from the following Stochastic Differential Equation (SDE), named
Langevin diffusion:

dX(t) = −∇f(X(t))dt +
√

2dW (t). (1.3)

Here W is the standard Wiener process or Brownian motion in R
p. The solution of (1.3) is a Markov

process having π as invariant distribution [1]. In order to use this fact for our goal, we will use Euler-
Maruyama discretization of (1.3), which can be found in [15]. It goes as follows:

θk+1 = θk − hk+1∇f(θk) +
√

2hk+1ξk+1, (1.4)
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where ξ1, ξ2, . . . , ξk, . . . follow Gaussian distribution N (0, Ip) and are independent from each other and
θ0. The latter is the starting point for the algorithm and it can be random as well. In particular when
the step-sizes hk are constantly equal to h and h is small, then for large enough k’s the distance
(Wasserstein, Total Variation) between the distribution of θk and π is small. This algorithm is called
Gradient Langevin Dynamics (GLD) or Langevin Monte-Carlo (LMC) and it is actively studied
nowadays ([3]–[9]).

In this paper, however we are not going to study the convergence of LMC algorithms. Instead we will
review Stochastic Gradient Descent as a sampling method and represent it as a sampling algorithm. Let
us recall SGD for the case of optimization. Often in Machine Learning problems we need to minimize
the empirical risk. The latter is usually a sum-decomposable function

f : R
p �→ R : f(x) =

n∑

i=1

gi(x),

where n is the sample size and gi : R
p → R, for every i = 1, . . . , n. The classical algorithm to solve a

minimization problem, when mild assumptions are satisfied, is the Gradient Descent. Unfortunately
when the sample size is large then every step of Gradient Descent is becoming computationally
expensive. That is why Stochastic Gradient Descent is introduced. The main idea of SGD is to replace
the full gradient in GD with its unbiased estimate. There are various ways to do it, but the most common
one is the so called Batch Gradient Descent. In the latter case, one just samples a mini-batch B (a
subset of {1, 2, . . . , n}) and replaces the gradient by cB

∑
i∈B ∇gi, where cB is a constant depending on

|B|. Thus the update rule becomes θk+1 = θk − cB
∑

i∈B ∇gi. For more details see [2].

The problem of our interest however is not directly related to optimization, but to sampling. We show
that in the case of a smooth and strongly convex potential function f SGD yields a convergence of
order Õ(κ2p/ε2) 1 in Wasserstein error. If in addition to these conditions we also have second-order
smoothness, then the rate improves to Õ(κ2p/ε2

∧
κ
√

np/ε).

This article is organized as follows: Section 2 gives some notions about the prior work in Langevin
sampling. In Section 3 we introduce the theoretical setting that we are going to work with. In Section
4 we propose a mathematical framework which helps to analyze the convergence. The main results that
provide non-asymptotic upper bounds to convergence rate are presented in Section 5.

2. PRIOR WORK

The first and probably the most influential work providing probabilistic analysis of the asymptotic
properties of the LMC algorithm is decsribed in [15]. However, one of the recommendations made by
the authors of that paper is to avoid using Langevin algorithm as it is defined in (1.4) or to use it very
cautiously, since the ergodicity of the corresponding Markov chain θk is very sensitive to the choice of the
parameter h. Even in the cases where the Langevin diffusion is geometrically ergodic, the inappropriate
choice of h may result the transience of the Markov chain. These findings have strongly influenced the
subsequent studies since all the ensuing research focused essentially on the Metropolis adjusted version
of the LMC, known as Metropolis adjusted Langevin algorithm (MALA) and its numerous modifications
([11]–[16]). In contrast to this, it is shown that under the strong convexity assumption imposed on f
coupled with the Lipschitz continuity of the gradient of f , one can ensure the non-transience of the
Markov chain θk by a suitable choice of hk. Later by [5] and [8] it was shown that the convergence rate
in TV distance is Õ(p/ε2) for any initial vector θ0.

Another problem of interest is the convergence in Wasserstein distance. In the next section the reader
can find our reasoning to choose Wasserstein distance instead of TV. The convergence of LMC with this
error was recently studied by [6] and [8] and a rate of Õ(p/ε2) was achieved. In addition to this, in [6]
it was shown, that imposing additional smoothness for function f , meaning Lipschitz-continuity of its
Hessian matrix, implies a better convergence rate of Õ(

√
p/ε) for LMC. It turns out that in the case

of sum-decomposable potential function, a modified version of LMC achives a better convergence rate.

1We denote the condition number Mg/mg by κ, Õ is the big-O notation, ignoring logarithmic factors.
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Some of these algorithms have their roots in optimization, like SAGA [4], which was originally proposed
in a paper by Defazio et al. [7] for the problem of optimization.

The convergence in terms of Wasserstein error was studied by many authors. [8] proved the rate
O(p/ε2) for any deterministic starting point θ0. The same convergence with improved coefficients was
later shown in [6]. In this section we will formulate two theorems from [6], which will be used later on.
Before we state the theorems, let us define W2 Wasserstein distance. For two probability measures μ and
ν defined on (Rp,B(Rp)), W2 distance is defined by

W2(μ, ν) =
{

inf
η∈Γ(μ,ν)

∫

Rp×Rp

‖θ − θ′‖2
2dη(θ, θ′)

}1/2

, (2.1)

where the infimum is taken with respect to all joint distributions η having μ and ν as marginal
distributions. Let us compare this distance to total variation distance. If we have small Wasserstein
for some μ and ν, then it implies that their first order moments are also close. This property does not
hold for the total variation distance. As an example one can check that ‖δθ − δ′θ‖TV = 1θ �=θ′ , whereas
W2(δθ, δ

′
θ) = ‖θ − θ′‖2 is a smooth function increasing function of Euclidean distance between θ and θ′.

Let us now present a non-asymptotic convergence bound for Wasserstein error, when the constant
step-size LMC .

Theorem 2.1 (Theorem 1 from [6]). Assume that h ∈ (0, 2/M). Let f satisfy conditions (1.1) and
(1.2) , thus the following claims hold:

if h ≤ 2
m + M

, then W2(νK , π) ≤ (1 − mh)KW2(ν0, π) +
1.65M

m
(hp)1/2;

if h ≥ 2
m + M

, then W2(νK , π) ≤ (Mh − 1)KW2(ν0, π) +
1.65Mh

2 − Mh
(hp)1/2.

In practice, a relevant approach to get an accuracy of at most ε is to minimize the upper bound
provided by Theorem 2.1 with respect to h, for a fixed K. Then, one can choose the smallest K for which
the obtained upper bound is smaller than ε. One useful observation is that the second upper bound is an
increasing function of h. Its minimum is always attained at h = 2/(m + M), which means that one can
always look for a step-size in the interval (0, 2/(m + M)] by minimizing the first upper bound. This can
be done using standard methods of optimization.

Remark 2.1. These two upper bounds contain W2(ν0, π), computation of which can be involving.
In order to avoid it, we will bound it from above. If f ≥ 0, we can replace it by

√
p/m +

√
2f(θ0)/m.

Indeed,

W2(ν0, π) ≤
√

p

m
+ ‖θ0 − θ‖2 ≤

√
p

m
+

√
2
m

(
f(θ0) − f(θ∗)

)
≤

√
p

m
+

√
2f(θ0)

m
.

The first inequality is a corollary from Proposition 1 of [8]. Combining Theorem 2.1 with its remarks
we obtain the following. Suppose that we choose h and K so that

h ≤ min
( 2

m + M
,

m2ε2

11M2p

)
and hK ≥ 1

m
log (Q(p, ε)) , (2.2)

where Q(p, ε) = 2f(θ0)+mp
0.5mε is a real-valued rational function. Then each of the components from the

right-hand side of Theorem will be less than 0.5ε, thus W2(νK , π) ≤ ε.

Now, let us discuss the convergence rate of LMC in the case of additional smoothness. Below we
present a theorem that quantifies the non-asymptotic behavior of LMC, when the potential function has
a Lipschitz-continuous Hessian. That is, for every x, y ∈ R

p we have

‖∇2f(x) −∇2f(y)‖ ≤ L‖x − y‖2, (2.3)

where ‖ · ‖ is the operator norm of matrices.
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Theorem 2.2 (Theorem 4 from [6]). Let νK be the distribution of K-th iterate of the LMC algorithm
iterations. Assume that the function f : R

p → R satisfies (1.1), (1.2) and it is also L-Hessian-
Lipschitz. Then for every h < 2/(m + M),

W2(νK , π) ≤ (1 − mh)KW2(ν0, π) +
Lhp

2m
+

11M
3
2 h

√
p

5m
.

Remark 2.2. In order for the improvement of the rate to be visible, let us take a closer look to
the order of step-size h and dimension p. Here we have O(hp) meanwhile Theorem 2.1 gives only
O(

√
hp), which is worse as h is considered to be small.

Remark 2.3. Doing analogous analysis as we did for the previous theorem, one can deduce that
the convergence rate is Õ(

√
p/ε).

3. PROPOSED FRAMEWORK TO ANALYZE SGD

In the following sections we will discuss a special case for potential function f , in particular when f
is a sum-decomposable function, that is

f(θ) =
n∑

i=1

g(θ, Zi),

where n is a very large positive integer, g : R
p ×Z → R is a given smooth function and Z1, . . . , Zn are iid

random variables with values in some probability space Z. To ease notation, we write gi(θ) = g(θ, Zi).
We assume here that the functions gi are strongly convex with a coefficient mg and its gradient is Mg

Lipschitz-continuous. Therefore f is a convex and gradient-Lipschitz function as well, with coefficients
nmg and nMg. So we have

∇f(θ) =
n∑

i=1

∇gi(θ).

In order to avoid the computation of n gradients ∇gi at each iteration of the LMC, we will use the
classic Stochastic Gradient Descent algorithm in order to sample approximately. Let us first recall the
algorithm. At each iteration k of the algorithm, we choose a subset Bk independent of all the past
randomness and update θk+1 by

θk+1 = θk − hn

b

∑

i∈Bk

∇gi(θk).

The latter can be rewritten as θk+1 = θk − h∇f(θk) + hζk, where the noise vectors ζk are of the form

ζk = n

{
1
b

∑

i∈Bk

∇gi(θk) −
1
n

n∑

i=1

∇gi(θk)
}

.

If b is large, the distribution of ζk (conditionally to θk) is approximately Gaussian Np(0,Σk) where the
covariance matrix Σk is given by

Σk =
1
n

n∑

i=1

∇gi(θk)∇gi(θk)� −
{

1
n

n∑

i=1

∇gi(θk)
}{

1
n

n∑

i=1

∇gi(θk)
}�

.

Below we study a particular case of SGD when the noise vector ζk is a normal random vector with a
covariance proportional to identity matrix. We will assume, that Σk = σ2Ip, where σ2 = n(n − b)/b.
The choice of σ2 is intuitive. For details see the Appendix. Let us formulate the framework we are going
to work with.

Assumptions: Suppose gi : R
p → R

p for i = 1, . . . , n and f =
∑

i gi. We will assume that the
functions g1, g2, . . . , gn satisfy the assumptions (1.1) and (1.2) with coefficients mg and Mg , respectively.
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Iterative method:

θk+1 = θk − h∇f(θk) + hζk, (3.1)

where ζk ∼ N
(
0, n(n−b)

b Ip

)
, for k = 1, 2, . . . , n.

Problem: Find a solution to this optimization problem
{

Minimize Kb;
Subject to min

h
W2(νK,h,b, π) ≤ ε,

where νK,h,b is the distribution of the K-th iterate of the SGD with step-size h and batch-size b. In other
words, what is the minimum amount of overall gradient evaluations in order to have an error of ε.

4. MAIN RESULTS

In this section we present two theorems that solve the problem stated above in two slightly different
cases.

Theorem 4.1. Suppose that the following conditions are satisfied:

h=
ε2

4κ2p
, b =

hn2

2 + hn
, n ≥ 9 and

3κ
√

p

n
≤ ε ≤

2κ
√

p
√

nMg

.

If

Kb ≥ 4pκ2n log(Q′(p, ε))
mg(8pκ2 + ε2n)

, (4.1)

where Q′ is a rational function given by formula

Q′(p, ε) =
2f(θ0) + mgp

0.1mgε
,

then W2(νK,h,b, π) ≤ ε.

Before we bring the proof let us state some remarks regarding this theorem.

Remark 4.1. Since the batch-size b is between 1 and n, hn2/(2 + hn) must also satisfy this
condition. In order to verify that, let us substitute h with its value. Therefore we have

b =
n2ε2

8κ2p + nε2
·

The latter is a monotonically increasing function with respect to ε2. Thus taking into account that
n is larger than 9,

b =
n2

8κ2p
ε2 + n

≥ n2

8n2

9 + n
≥ 1. (4.2)

The inequality b ≤ n is obvious.

Remark 4.2. One can notice that, if n → ∞, then Kb has an order of Õ
(

4pκ2

ε2

)
.

Proof. As the function f is a sum of n strongly-convex and gradient-Lipschitz functions, then it is
also a strongly-convex and gradient-Lipschitz function with coefficients m = nmg and M = nMg,
respectively. First let us express the step-size h in terms of the batch-size b. From the formula of b,
we obtain h = 2b/n(n − b). Thus if we can rewrite the iterative method in the following way:

θk+1 = θk − h∇f(θk) − hζk = θk − h∇f(θk) + h

√
n(n − b)

b
ηk = θk − h∇f(θk) +

√
2hηk,
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where η1, η2, . . ., as usual, are independent standard normal p-dimensional random vectors. Therefore
we got the classic LMC update rule. From the definition of h we have

h=
ε2

4κ2p
≤ 1

nMg
.

Thus Theorem 2.1 yields W2(νK , π) ≤ (1− nmgh)KQ(p, ε) + 1.65κ
√

ph. We will give upper bounds for
each component of the right-hand side. Substituting h with its value in κ

√
ph we obtain, that

κ
√

ph = κ

√

p
ε2

4κ2p
=

ε

2
.

Now let us discuss the other component. As we mentioned in previous sections, if

K ≥ log(Q′(p, ε))
mgnh

=
4pκ2

mgnε2
· log(Q′(p, ε)), (4.3)

then (1 − nmgh)KW2(ν0,h,b, π) will be less than 0.1ε. In order to complete the proof we just need to
multiply this lower bound on K by b. Thus we obtain

Kb ≥ 4pκ2b

mgnε2
· log(Q′(p, ε)). (4.4)

Using the definition of h, we obtain the following formula for b

b =
n2ε2

8κ2p + nε2
.

Substituting the latter in (4.4), we get the required .

5. CONVERGENCE OF SGD WITH SECOND-ORDER SMOOTHNESS

In this section we analyze the convergence of Stochastic Gradient Descent in terms of Wasserstein
distance when the Hessian matrix of the function f is Lipschitz-continuous.

Theorem 5.1. Suppose that the following conditions are satisfied:

h =
ε

4κLg

√
Mgp max(p, n)

, b =
hn2

2 + hn
,

2
√

p max(p, n)
n(n − 1)

≤ ε

4κLg

√
Mg

≤
√

p max(p, n)
Mgn

.

If

Kb ≥ 4nκLg

√
Mgp max(p, n)

mg(8κLg

√
Mgp max(p, n) + nε)

· log(Q′′ (p, ε)) , (5.1)

where

Q′′(p, ε) =
2f(θ0) + mgp

0.3mgε
,

then W2(νK,h,b, π) ≤ ε.

Remark 5.1. Again the condition on ε is brought to make the choice of parameters possible. In
particular, as mentioned before, b is an integer between 1 and n. Doing simple calculations and
using the aforementioned condition, one can verify that our formula b satisfies this criteria.
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Remark 5.2. Let us interpret a little the result of the theorem. In the case when our sample size n
tends to infinity, we have O

(
κ
√

np log (Q(p, ε)) /ε
)

complexity.

Proof. The proof is similar to the one for Theorem 4.1. Using the same reasoning as before f satisfies
(1.1), (1.2), (2.3) with m = nmg, M = nMg and L = nLg, respectively. As in the previous proof we will
represent our iterative method as a classic Langevin Monte-Carlo update step. We have that

h =
ε

4κLg

√
Mgp max(p, n)

≤ 1
nMg

,

therefore 2.2 can be applied:

W2(νK,h,b, π) ≤ (1 − nmgh)KW2(ν0,h,b, π) +
Lghp

2mg
+

11
5

κh
√

Mgpn.

Let us express b in terms of ε, p and n:

b =
hn2

2 + hn
=

n2

2
h + n

=
εn2

8κLg

√
Mgp max(p, n) + εn

.

Thus the condition (5.1) is equivalent to

K ≥ 4κLg

√
Mgp max(p, n)
mgnε

· log
(
Q′′(p, ε)

)
=

log (Q′′(p, ε))
mgnh

.

From the analysis shown above, this yields that (1− nmgh)KW2(ν0,h,b, π) ≤ 0.3ε. Let us proceed to the
second component, Lghp/2mg . From the formula of h, which is given in the statement of the theorem,

Lghp

2mg
=

Lgp

2mg
· ε

4κLg

√
Mgp max(p, n)

≤ ε

8
.

The latter inequality is true, if we assume that Lg, Mg and κ are greater than 1. Similarly,

11M
3
2
g h

√
pn

5mg
=

11M
3
2
g
√

pn

5mg
· ε

4κLg

√
Mgp max(p, n)

≤ 11ε
20

.

Summing up these three inequalities we obtain that, W2(νK,h,b, π) ≤ ε.

6. APPENDIX: THE CHOICE OF THE NOISE VARIANCE

In this section we give a little insight on why and how we chose the distribution of the noise vectors
in 3. Suppose we have a set of n numbers A = {a1, a2, . . . , an}. A random variable X is designed in
the following way. We take a uniformly random subset I of A with a fixed size b from the class Cb of all
subsets of fixed size b. Afterwards we calculate the value of n

b

∑
i∈I ai and assign it to X. One can easily

claim that E[X] =
∑n

i=1 ai and therefore if we assume ai’s to be of the same order, then E[X] = O(n).
Important detail to notice is that it does not depend on b. Unfortunately the order of the variance is not
that easy to guess, so we will hereby calculate it.

Proposition 6.1. Let us define the variance of X by Var[X]. Then

Var[X] = O

(
n(n − b)

b

)
.

Proof.

Var[X] =
1

Cb
n

∑

I∈Cb

[
∑

i∈I

ai

]2

−
(

n∑

i=1

ai

)2

=
n2

b2Cb
n

∑

I∈Cb

⎡

⎣
∑

i∈I

a2
i +

∑

i�=j;i,j∈I

2aiaj

⎤

⎦ −
(

n∑

i=1

ai

)2
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=
n2Cb−1

n−1

b2Cb
n

n∑

i=1

a2
i +

n2Cb−2
n−2

b2Cb
n

∑

i�=j

aiaj −
n∑

i=1

a2
i −

∑

i�=j

aiaj =
n − b

b

n∑

i=1

a2
i +

b − n

nb − b

∑

i�=j

aiaj .

We know that
∑n

i=1 a2
i = O(n) and

∑
i�=j 2aiaj = O

(
n(n − 1)

)
. Therefore the order of the variance is

O (n(n − b)/b) .

Conclusion. In this paper we have introduced a new mathematical framework which helps to analyze
Stochastic Gradient Descent as a sampling method, where the potential function is strongly convex and
has a Lipschitz gradient. Considering the particular case, where the stochastic term is a normal random
vector with a diagonal covariance matrix, we have shown a convergence rate of Õ(p/ε2). The latter is a
massive improvement compared to the classic LMC which was giving only Õ(np/ε2). In the case when
we also assumed second-order smoothness, we have got Õ(p/ε2

∧
κ
√

np/ε) convergence rate.
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