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1. INTRODUCTION

One of the important problem in the theory of set-valued mappings is the question of existence
of single-valued approximations and selections with specified properties. The question of existence of
selections possessing certain topological properties is of great importance and has various applications
in many fields of mathematics. The problem of existence of continuous selections of set-valued
mappings goes back to the classical theorem by E. Michael (see [15]). Later on this problem was widely
developed and was applied in the theory of differential embeddings, in the control systems and in the
general topology (see [1, 4]. The above quoted Michael’s theorem state that every lower semicontinuous
mapping with convex values admits a continuous selection.

In [1, 16], were given examples, illustrating the importance of convexity condition of the set-valued
mapping. In [9], it was constructed an example of a continuous mapping with star-like values that does
not admit any continuous selector (see [9], Example 1(A)). Nevertheless, the existence of continuous
selections can also be proved for some classes of mappings with nonconvex values. For instance, in the
paper [9] it was considered a subclass (mappings with star-like or right-convex values) of continuous
set-valued mappings with star-like values, admitting continuous selections (see Theorem 1 of [9]).
In the general nonconvex case, in the paper [10] to each closed set M is associated some function
h : R+ → R+ of non-convexity of the set M. In Theorem 5.1 of [10], it was proved that if a is a lower
semicontinuous mapping such that the values of the convexity function ha(x) is strictly less than some
monotone nondecreasing function α : (0,∞) → [0, 1), then a has a continuous single-valued selection.
It should be noted, however, that the definition of function h is of descriptive nature, and it is rather
difficult to construct such function for each closed set M.

Also, notice that in the papers [11, 12], by using the method of tangent cones, were extracted
differentiable or directional differentiable local selections from set-valued mappings both with convex
and nonconvex values.

In the present paper, we consider the question of existence of continuous selections for a new class
of set-valued mappings with nonconvex values, more precisely, for a class of mappings with almost
convex values. Notice that the notion of almost convexity was introduced in the papers [7, 8]. Also, the
need to study such sets arose in the theory of differential games (see [5]).
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2. SOME NOTATION AND DEFINITIONS

Let X be a metric space and Y be a Banach space. In what follows, by Br(a) we will denote a ball
with center at a and of radius r. For a closed set M ⊆ Y , by diam(M) we denote the diameter of M, and
by conv{M} the convex hull of M. We set

PrM (x) ≡ {y ∈ M/‖x − y‖ = inf
z∈M

‖x − z‖ ≡ d(x,M)}.

Next, we recall the definitions of a set-valued mapping and a selector. Let 2Y be the collection of all
nonempty subsets of Y, and let E be a subset of the space X.

A mapping a : E −→ 2Y is called a set-valued mapping. A continuous single-valued mapping
y : E −→ Y is called a continuous selection (or a continuous selector) of the mapping a if y(x) ∈ a(x),
x ∈ E.

A mapping a : E −→ 2Y is said to be lower semicontinuous at x0 ∈ E if for any ε > 0 there exists
δ > 0, such that a(x0) ⊆ a(x) + Bε(0) for any x ∈ E ∩ Bδ(x0).

A mapping a : E −→ 2Y is said to be upper semicontinuous at x0 ∈ E if for any ε > 0 there exists
δ > 0, such that a(x) ⊆ a(x0) + Bε(0) for any x ∈ E ∩ Bδ(x0).

If a mapping is lower and upper semicontinuous at x0, then it is called continuous at x0 (see [1], the
definition 1.2.43 of Hausdorff continuity). The set

graph(a) = {(x, y) ∈ E × Rm, y ∈ a(x)}
is called a graph of the mapping a.

Definition 2.1 (see [3]). Let M ⊆ Y . Define

M0 ≡ {x ∈ M : λx + (1 − λ)y ∈ M, y ∈ M, λ ∈ [0, 1]}.

The subset M0 ⊆ M is said to be the star-kernel of the set M. If M0 	= ∅, then the set M is said
to be a star-like set.

It can easily be shown that M0 is a convex set. Also, it is clear that if M is a convex set, then M = M0.

Definition 2.2 (see [7]). We say that a set M ⊆ Y satisfies the almost convexity condition with
a constant θ ≥ 0 if for any xj ∈ M , λj ≥ 0, j ∈ J, where J is a finite set of indices such that∑

j∈J λj = 1, we have
∑

j∈J

λjxj ∈ M + θr2B1(0),

where r ≡ maxi,j∈J ‖xi − xj‖.
If no necessity to specify the constant θ, then we will say that the set M is almost convex. Notice that

if θ = 0, then M is a convex set. The class of almost convex sets is sufficiently broad.

3. EXAMPLES

Example 3.1. The set M = {a, b} consisting of two points is almost convex. Indeed, we have

conv{a, b} ⊆ M +
1

2‖a − b‖‖a − b‖2B1(0),

that is, in this case as a constant θ of almost convexity can be taken 1/(2‖a − b‖).
Example 3.2. An arc of a circle is an almost convex set. This immediately follows from the suf-
ficiency condition of almost convexity (see [8], Theorem 2). To determine the constant θ of almost
convexity, we first assume that the arc M is smaller than the semicircle, and the arc contains the
set Q = {x1, x2, ..., xk}. Let A = x1, B = xk, d = diam(Q) = AB. Then the set conv{Q} is in an α-
neighborhood of the set M, where α = CD (see Fig. 1). Hence, we have

DC = R −
√

R2 − d2

4
.
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Now the constant θ can be determined from the inequality DC ≤ θd2, that is,

1

R +
√

R2 − d2

4

≤ θ.

It is clear that the numbers θ ≥ 1/4R satisfy the last inequality. If the arc M is larger than the semicircle,
then the almost convexity of M with some constant ϑ follows from Theorem 3 of [8]. If Q = {a, b}, then
the set conv{Q} is in a β-neighborhood of the set M, where β = ‖a − b‖/2 (see Fig. 1). Thus, we have
θ ≥ 1

2‖a−b‖ , and hence θ → ∞ as ‖a − b‖ → 0.

Fig. 1.

Example 3.3. A circle M of radius R is an almost convex set with constant θ ≥ 1/(
√

3R). Indeed, let
Q ≡ {x1, x2, ..., xk} ⊂ M. Consider two cases. First, let 0 /∈ conv{Q}. This means that the set belongs
to some semicircle. Hence, by Example 3.2, we have

conv{Q} ⊆ M +
1

4R
(diam(Q))2B1(0). (3.1)

Now let 0 ∈ intQ. Then in convQ there exists an acute-angled triangle, for which the center 0 of the
circle is an interior point, implying that the circle is circumscribed this triangle. Therefore, some of the
sides of this triangle is of length at least R

√
3, implying that diam(Q) ≥

√
3R.

It is clear that the set Q lies in a R-neighborhood of M. Now we choose the number θ to satisfy

R ≤ θ(diam(Q))2. (3.2)

Observe that this inequality holds if θ ≥ 1/(
√

3R). If the point O is on the boundary of the set conv{Q},
then diam(Q) = 2R. Hence, the inequality (3.2) is satisfied if θ ≥ 1/4R. In the general case, taking into
account the inclusion (3.1), we obtain

conv{Q} ⊆ M +
1√
3R

(diam(Q))2B1(0),

implying that the set M is almost convex with constant 1/(
√

3R).
Now we give an example of a set that is almost convex and star-like, but is not convex.

Example 3.4. In Fig. 2, the shaded domain M with closed boundary ACBDA is a star-like set. We
show that this set is almost convex. To this end, we choose θ > 0 to satisfy

DE = R −
√

R2 − d2

4
≤ θd2, where d ≡ AB.

Observe that this inequality will be satisfied if we take θ = 1
4R . Also, it is easy to see that the domain M

is an almost convex set with a constant θ. Notice that if DO = R → ∞, then θ → 0, and the domain
ACDBA becomes into the triangle ACB.
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Fig. 2. Almost convex and star-like set

4. PROPERTIES OF ALMOST CONVEX SETS

Proposition 4.1 ([8], Theorem 3). Let M ⊆ Rn be a closed set satisfying almost convexity condi-
tion with constant θ > 0. If ε ≤ 1/(16θ), then the mapping x −→ PrM (x) is single-valued on the
set M + Bε(0), and

‖PrM (x1) − PrM (x2)‖ ≤ 2‖x1 − x2‖.
It should be noted that if the set M is convex and closed, then any point from Rn has a unique projection
onto M and the projection operator PrM satisfies the Lipschitz condition with constant 1.
Remark 4.1. Clarke et al. [14], have defined the notion of a proximal smooth set to be the set such that
the distance of a space point to this set is a continuously differentiable function in some neighborhood of
that set with the exception of the set itself. In the same paper (see Theorem 4.11 of [14]), it was proved
that in the Hilbert spaces the condition of proximal smoothness of a set M is equivalent to the fact that
the metric projection of any point from sufficiently small neighborhood of M onto M exists, is unique and
depends on the projected point continuously. Then, in [13] a similar result was proved in some uniformly
convex and smooth Banach spaces. From Proposition 4.1 it follows that if M ⊆ Rn and M is almost
convex, then it is also proximal smooth. Thus, in the space Rn, the almost convex sets constitute some
subclass in the family of proximal smooth sets.
Proposition 4.2. If M ⊆ Rn is a closed, star-like and almost convex set, then for small enough
ε > 0, the set M + Bε(0) is also star-like and almost convex.
Proof. Let the set M be closed and almost convex with a constant θ. It is known (see [8], Theorem 3
and Corollary 3) that if ε ≤ 1/(16θ), then the set M + Bε(0) is almost convex with constant 4θ. Also, it
is easy to show that (M0 + Bε(0)) ⊆ (M + Bε(0))0. Hence M is a star-like set.
Theorem 4.1. Let a : [a, b] −→ 2Rn

be a set-valued mapping with almost convex valued and a
constant θ. Then through each point of the graph of a can be passed a continuous selection of the
mapping a.
Proof. Since the mapping a is Hausdorff continuous on the segment [a, b], then it is also uniformly
continuous on [a, b]. This means that for any ε > 0, a number δ > 0 can be found so that for a partition
of the segment into partial segments [xi−1, xi] with lengths less than δ, the oscillation of the mapping a
on each such partial segment will be less than ε. Choosing ε < 1/(16θ), we have

a(xi−1) ∈ a(x) + Bε(0), x ∈ [xi−1, xi].

Let y0 ∈ a(x0). We set y0(x) = Pra(x)y0 (x ∈ [x0, x1]). Since, according to Proposition 4.1, the projec-
tion of the point y0 onto the set a(x) is unique and the mapping a is continuous, then the mapping y0 is
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also continuous (see [2], Section 3.5, Lemma 3, p. 344). We choose a point y0(x1) and project it onto the
set a(x) (x ∈ [x1, x2]). We set y1(x) = Pra(x)y0(x1), and observe that, according to above arguments,
y1 is a continuous mapping. Continuing this process, we can construct a continuous mapping y(x),
defined on the whole segment [a, b] such that

y(x) = yi(x), x ∈ [xi−1, xi], i = 1, 2, ..., n.

Theorem 4.1 is proved.
Remark 4.2. The mapping y, constructed in Theorem 4.1, also depends on the initial point y0. Using
the result of Proposition 1, we easily see that the mapping y satisfies Lipschitz condition with respect to
the variable y0 uniformly on x. Therefore, the mapping y is continuous by the pair (x, y0).

Now we give an example of a continuous set-valued mapping a : R2 −→ R2 with almost convex and
compact values, which does not admit any continuous selector.

Example 4.1. Let

a(x) = S1 \ B‖x‖(
x

‖x‖), x 	= 0, a(0) = S1.

In [1], Example 1.4.6, p.58 it was proved that the mapping a is continuous and does not admit any
continuous selector. Also, observe that the mapping a is of almost convex values. Indeed, since the set
a(x) is an arc on the circle S1, then by Example 3.4 it is almost convex. Besides, if the arc a(x) is smaller
than the semicircle, then it is almost convex with constant θ = 1/4, while if the arc a(x) is larger than
the semicircle, then it is almost convex with some constant θ. And, the unit circle S1 is almost convex
with constant 1/

√
3.

5. MAIN RESULTS

Let a : E → 2Rm
be a set-valued mapping. Define a set-valued mapping a0 : E → 2Rm

as follows:
a0(x) ≡ (a(x))0 ∀x ∈ E. It is clear that such defined mapping a0 has convex values.

Theorem 5.1. Let E be a compact subset of a metric space X and a : E → 2Rm
be a continuous set-

valued mapping with compact, star-like and almost convex values. Assume that the constants
θ(x) of almost convexity of the sets a(x), (x ∈ E) satisfy the condition:

sup
x∈E

θ(x) = η < ∞.

Let (x0, y0) ∈ graph(a). Then there exists a continuous selection y for the mapping a, passing
through the point (x0, y0), that is,

y(x0) = y0, y(x) ∈ a(x), x ∈ E.

The proof is based on a number of lemmas that follow.

Lemma 5.1. Let X be a metric space and Y be a Banach space, and let a : X → 2Y and b : X → 2Y

be set-valued mappings with compact and star-like values. Let the mappings a, a0 and b, b0 be
continuous at a point x0 and

0 ⊆ int (a0(x0) − b0(x0)). (5.1)

Then the mapping c(x) ≡ a(x)
⋂

b(x) is continuous at x0.

Proof. We first prove the lower semicontinuity of the mapping c at x0. Since the lower semicontinuous
mapping Γ ≡ a0 − b0 has convex closed values, and the inclusion (5.1) is satisfied, then there exist a
number τ > 0 and a neighborhood U of x0, such that

Bτ (0) ⊆ Γ(x) = (a0(x) − b0(x)), x ∈ U. (5.2)

Indeed, since the mapping Γ is semicontinuous at x0, there exist a number τ > 0 and a neighborhood U
of x0, such that

B2τ (0) ⊆ Γ(x) + Bτ (0) :
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Hence, for any continuous liner functional y∗ with ‖ y∗ ‖= 1, we have

max
u∈B2τ (0)

< y∗, u >≤ max
u∈Γ(x)

< y∗, u > + max
u∈Bτ (0)

< y∗, u >,

implying that

2τ ≤ max
u∈Γ(x))

< y∗, u > +τ,

that is, τ ≤ maxu∈Γ(x) < y∗, u > . Therefore, taking into account that Γ(x) is a convex closed set in
the Banach space Y , we get Bτ (0) ⊆ Γ(x), x ∈ U. Next, since the set-valued mapping b is upper
semicontinuous in a neighborhood U, then it is bounded on U, that is, there exists a bounded set G, such
that b(x) ⊆ G, x ∈ U. Let diam(G) = D, and let ε > 0 be such that ε < 2D. We set α = τε/(2D − ε)
and choose τ > 0 small enough to satisfy α < ε/2. Since a and b are lower semicontinuous mappings
at x0, a neighborhood U ⊆ U of x0 can be found to satisfy

a(x0) ⊆ a(x) + Bα/2(0), b(x0) ⊆ b(x) + Bα/2(0), x ∈ U.

Let x ∈ U. Then for any y ∈ c(x0) there exists a vector yx ∈ b(x) such that

yx ∈ a(x) + Bα(0) and ‖y − yx‖ ≤ α. (5.3)

We set θ = τ/(α + τ) < 1. Multiplying the inclusion (5.3) by θ, and observing that θα = (1 − θ)τ, we
obtain

θyx ∈ θa(x) + θαB1(0) = θa(x) + (1 − θ)τB1(0). (5.4)

Now multiplying the inclusion (5.2) by (1 − θ), we get

(1 − θ)τB1(0) ⊆ (1 − θ)a0(x) − (1 − θ)b0(x).

Hence, in view of (5.4), there exists a vector y′ ∈ b0(x) such that

θyx + (1 − θ)y′ ∈ a(x) (5.5)

On the other hand, since yx ∈ b(x) and y′ ∈ b0(x), we have

y ≡ θyx + (1 − θ)y′ ∈ b(x). (5.6)

From (5.5) and (5.6) it follows that y ∈ c(x).

Fig. 3. Intersection of continuous mappings with star-like values

Next, we show that ‖y − y‖ ≤ ε. Indeed, we have

‖y − y‖ ≤ ‖y − (θyx + (1 − θ)y′)‖ = ‖θy + (1 − θ)y − θyx − (1 − θ)y′‖
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≤ θ‖y − yx‖ + (1 − θ)‖y − y′‖ ≤ α +
α

α + τ
D ≤ ε/2 + ε/2 = ε.

Thus, c(x0) ⊆ c(x) + Bε(0) ∀x ∈ U, showing that the mapping c is lower semicontinuous at x0.
Similarly it can be proved upper semicontinuity of the mapping c. Lemma 5.1 is proved.
Example 5.1. Let the domain on Fig. 3 with closed boundary OADBCO represents the set a(t),
t ∈ [0, 1/2]. Then a0(t) is the triangle ODC. We set b(t) ≡ {(x1, x2) ∈ [0, 1] × [0, 1]/x2 = tx1 }, t ∈ R.
It is easy to see that the mappings a and b with star-like values are continuous, but their intersection a∩ b
is discontinuous at point t = 1/2. This is because here the condition (5.1) is violated at point t = 1/2.

Now we give an example of a continuous set-valued mapping a for which the mapping a0 is not
continuous.

Example 5.2. Let the domain on Fig. 4 with boundary OAFDHO represents the set a(t), t ∈ [1/2, 1].
Then a(t) is a star-like set, and its kernel a0(t) is the set with boundary OFEHO. For t = 1 the set of
values of mapping a0 is the square OAEH. It is clear that the set-valued mapping a : [1/2, 1] −→ 2R2

is continuous at all points of the segment [1/2, 1], but the mapping a0 has discontinuity at point 1. Also,
notice that the values a(t), t ∈ [1/2, 1) of the mapping a are not almost convex, because any point on
the bisectrix of the angle ∠AFD has two projections on the set a(t), which contradicts Proposition 4.1.

Fig. 4. The mapping a is continuous, while the mapping a0 is not continuous

In the general case, we have the following result on continuity of the mapping a0.

Proposition 5.1. Let E ⊆ X be a compact subset of a metric space X and Y be a Banach space,
and let a : E → 2Y be a continuous mapping with compact star-like values. Then the interior of
points, where a0 is not continuous, is empty.
Proof. We first prove that the mapping a0 : E → 2Rm

is upper semicontinuous. Let xn → x0, yn ∈
a0(xn), and yn → y0. We show that y0 ∈ a0(x). Let z0 ∈ a(x0). Since a is a lower semicontinuous
mapping, there exists a sequence zn ∈ a(xn) such that zn → z0.

On the other hand, since yn ∈ a0(xn), for any λ ∈ [0, 1] we have

λzn + (1 − λ)yn ∈ a(xn),

implying that λz0 + (1− λ)y0 ∈ a(x0). This means that y0 ∈ a0(x0). Thus, the mapping a0 has a closed
graph. Now we can apply Theorem 10 from [6] (see Section 1.1, p. 118) to conclude that the interior of
the set of points, where a0 is not continuous, is empty. Proposition 5.1 is proved.

As an illustration of the result stated in Proposition 5.1, can be considered Example 5.2, where the
mapping a0 is defined on the segment [1/2, 1] and it is discontinuous only at point t = 1. However, if
the values of a continuous mapping a are star-like and almost convex sets, then the mapping a0 will be
continuous. More precisely, we have the following lemma.
Lemma 5.2. Let E ⊆ X be a compact subset of a metric space X, and let a : E → 2Rm

be a
continuous mapping. Further, let the sets a(x) be compact, star-like and satisfy the convexity
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condition with some constant θ(x). Assume that int a0(x) 	= ∅ for each x and η = supx∈E θ(x) <
∞. Then the mapping a0 is continuous.
Proof. Observe first that the upper semicontinuity of the mapping a0 was proved in Proposition 5.1.
Now we show that a0 is lower semicontinuous. Let y0 ∈ int a0(x0). Assume that there exist a sequence
xk → x0 and a number δ > 0 such that d(y0, a0(xk)) ≥ δ for sufficiently large k. Then, we can assume
that Bδ(y0) ⊆ a0(x0), but Bδ(y0)

⋂
a0(xk) = ∅ for large k. Since the mapping a is pointwise continuous

(see [1], Theorem 1.3.8, p. 45), there exists a neighborhood Bδ0(y0) ⊆ Bδ(y0) such that Bδ0(y0) ⊆ a(xk)
for sufficiently large k. Therefore, since y0 /∈ a0(xk), there exists a point yk ∈ a(xk), which is not visible
from the point y0, that is, on the segment [y0, yk] there exists a point yk /∈ a(xk).

Since a(xk) is a closed set, there is a ball Vk with center at yk such that Vk

⋂
a(xk) = ∅. We will

shift this ball from point yk to yk along the segment [y0, yk]. By the compactness of a(xk), among these
balls there is a ball V ′

k which touches the set a(xk) only at one point zk ∈ a(xk). It is clear that the
tangent to V ′

k at point zk, the hyperplane Lk, strongly separates the point y0 from the set a0(xk). Let Hzk

be the half-space containing the point y0. Note that, by construction, this half-space contains the ball
V ′

k. Without loss of generality, we can assume that zk → z0 ∈ a(x0). Since the mapping a satisfies the

convexity condition with a specified constant, there exists a ball Ṽk of a fixed radius r = 1/(8η), which
also touches the set at zk and which is in the half-space Hzk

(see Lemma 2.7 of [7] and Theorem 1 of
[8]).

Next, we can assume that the sequence of balls Ṽk converges in the Hausdorff metric to some ball
V0 of radius r. The limiting hyperplane L0 touches the ball V0 at point z0. Notice that if u ∈ int V0,

then there exists a number ε0 > 0 such that Bε0(u) ⊆ Ṽk for sufficiently large k. Hence, we have
int B0

⋂
a(x0) = ∅. Also, observe that the limiting closed half-space Hz0 contains the ball V0 and the

point y0. Thus, the ball Bδ(y0) contains points that are not visible from z0. But this is impossible, because
the ball Bδ(y0) entirely is contained in the kernel of the set a(x0). The obtained contradiction completes
the proof of Lemma 5.2.
Lemma 5.3. Let E ⊆ X be a compact subset of a metric space X, and let a : E → 2Rm

be a
set-valued mapping with compact and star-like values, such that int a0(x) 	= ∅ for any x. Also,
assume that the mappings a and a0 are continuous. Then for any (x0, y0) ∈ graf(a) there exists a
continuous mapping y(x) such that y(x) ∈ a(x) ∀x ∈ E and y(x0) = y0.

Proof. Observe first that since the mapping a0 is lower semicontinuous, there exists a continuous
mapping ỹ(x) such that ỹ(x) ∈ inta0(x), x ∈ Rn. Indeed, since the mapping a0 is pointwise continuous,
then for any y ∈ int a0(x) there exist neighborhoods V (y), Uy(x), such that V (y) ⊆ a0(x′) ∀x′ ∈
Uy(x). Denote Uy =

⋃
x∈E Uy(x), and observe that the family of open sets {Uy}y∈Y , (Y ≡

⋃
x∈E a0(x))

forms an open covering of the compact set E. Let {Uyj}j∈J be a finite subcovering from this covering.
Consider the partition of unity {pyj}j∈J , corresponding to the covering {Uyj}j∈J , and define a continu-
ous mapping y as follows: ỹ(x) =

∑
j∈J pyj (x)yj. It is easy to check that ỹ(x) ∈ int a0(x), x ∈ E. Next,

consider a mapping b defined as follows:

b(x) = {y : y = λy0 + (1 − λ)ỹ(x), λ ∈ [0, 1]}.
It is clear that b is lower semicontinuous, and for any x we have 0 ∈ int(a0(x) − b(x)). Then by Lemma
5.1, the mapping c(x) ≡ a(x)

⋂
b(x) is lower semicontinuous. Also, it is clear that c(x) has convex

closed values. Therefore, according to Michael’s theorem, through the point (x0, y0) ∈ graf(c) can be
passed a continuous selection y of the mapping c(x). Lemma 5.3 is proved.
Proof of Theorem 5.1. Let ε < 1/(16η). Consider the set-valued mapping a(x) + Bε(0), and observe
that, in view of Proposition 5.1, it satisfies the conditions of Lemma 5.3. Hence, through the point
(x0, y0) ∈ graph(a) can be passed a continuous single-valued mapping ỹ such that ỹ(x) ∈ a(x) +
Bε(0), x ∈ E. Since ỹ(x) ∈ a(x) + B1/(16θ(x))(0), according to Proposition 5.1, the projection y(x) of
the point ỹ(x) onto the set a(x) is single-valued. Also, since the mappings a and ỹ are continuous,
then as it was pointed out above, the mapping y will also be continuous. It is clear that y is the desired
mapping. Theorem 5.1 is proved.

The next theorem contains a sufficient condition for existence of continuous selections of set-valued
mappings with almost convex values (without star-like condition).
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Theorem 5.2. Let E ⊆ X be a compact subset of a metric space X, and let a : E → 2Rm
be a

continuous mapping, such that for any x ∈ E the set a(x) is compact and the convexity condition
with a constant θ(x) is satisfied. Also, assume that

η = sup
x∈E

θ(x) < ∞, diam(a(x)) ≤ 1
4θ(x)

, (5.7).

Then through any point of the graph of the mapping a can be passed a continuous selection y of
the mapping a.

Proof. We first assume int a(x) 	= ∅, and show that the mapping a is pointwise continuous. Let
y0 ∈ int a(x0). Then, according to lower semicontinuity of the mapping a, for any ε > 0 can be chosen
a neighborhood U of point x0 to satisfy y0 + B2ε ⊆ a(x) + Bε(0) for any x ∈ U. This implies that

y0 + Bε(0) ⊆
⋂

s∈Bε(0)

(a(x) + Bε(0) − s). (5.8)

Next, since a(x) satisfies the convexity condition with a constant θ(x), by Lemma 2.11 of [7] (see also
[8], Theorem 5), for ε ≤ 1/16η the right-hand side of the inclusion (5.8) is equal to a(x). Hence, we have
y0 + Bε(0) ⊆ a(x) ∀x ∈ U. Now we show that there exists a continuous mapping ỹ(x), such that

ỹ(x) ∈ a(x) + [diam(a(x))]2θ(x)B1(0).

Indeed, let ux ∈ int a(x). Then, in view of pointwise continuity, there exists a neighborhood U(x), such
that ux ∈ int a(x) ∀x ∈ Ux ≡ U(x).

The family of open neighborhoods {Ux}x∈E forms a covering of the compact set E. Let {Uxj}j∈J be
a finite subcovering from this covering. Consider the partition of unity {pj}j∈J , corresponding to this
covering, and define a continuous mapping ỹ as follows: ỹ(x) =

∑
j∈J pj(x)uj . Denote J(x) = {j ∈ J :

x ∈ Uxj}, and observe that if x ∈ U(xj), then uj ∈ a(x), and hence we have

ỹ(x) =
∑

j∈J(x)

pj(x)uj ∈ a(x) + θ( max
i,j∈J(x)

‖uj − ui‖)2B1(0) ⊆ a(x) + θ(x)[diam(a(x))]2B1(0).

Now if θ(x)[diam(a(x))]2 ≤ 1/16θ(x), that is, diam(a(x)) ≤ 1/4θ(x), then according to Proposition
4.1 there exists a unique projection y(x) of point ỹ(x) on the set a(x). Since the mapping a with compact
values is continuous, then the mapping y(x) also is continuous.

Now we consider the general case. We set b(x) = a(x) + Bε(0), ε < 1/(16η), and use Proposition
4.2 to conclude that b(x) is almost convex with constant 4θ(x). Also, it is clear that diam(b(x)) =
diama(x) + ε. Hence, according to above arguments, through any point of the graph of the mapping
can be passed a continuous selection of that mapping, provided that

diam b(x) ≤ 1
4(4θ(x))

=
1

16θ(x)
.

Therefore, if

diam a(x) ≤ 1
16θ(x)

− ε <
1

4θ(x)
,

then there exists a continuous mapping y such that y(x0) = y0, y(x) ∈ b(x) for any x ∈ E. It is easy to
see that y(x) = Pra(x)y(x) is the desired mapping. Theorem 5.2 is proved.

Remark 5.1. For Example 4.1, the inequality (5.7) in Theorem 5.2 is not satisfied. Indeed, for unit circle
S1 we have diam(S1) = 2, θ = 1/

√
3, implying that the inequality diam(S1) ≤ 1/4θ is violated. The

inequality supx∈Eθ(x) < ∞ is also violated, because Example 3.2 shows that supx∈Eθ(x) = ∞.
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