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1. INTRODUCTION

In this paper we study the solvability of a class of regular hypoelliptic equations in R
n. The obtained

results generalize the results by G.V. Demidenko [1]-[3], where using a special integral representation
(obtained by S.V. Uspenski [4]) were constructed approximate solutions for quasielliptic equations in the
whole space. The study of regular hypoelliptic equations is more challenging problem. The issue is that
the principal parts of elliptic and quasielliptic operators are homogeneous and generalized homogeneous,
respectively, while the principal part of a regular hypoelliptic operator is multi-nonhomogeneous. Notice
that the regular operators were introduced and studied by S.M. Nikol’skii [5] and V.P. Mikhailov [6])
(see also [7]). In derivation of our results, we essentially use a special integral representation of functions
through a multianisotropic kernel and estimates of such kernels obtained in [8]-[11]. Notice that this
approach goes back to the classical work by S.L. Sobolev [12], where has been obtained integral
representations of functions through the function itself and its derivatives. Later on, these results were
extended for functions belonging to generalized homogeneous spaces (see [13]-[15]).

In the present paper, we prove the unique solvability of regular equations in the special weighted
functional spaces. Similar spaces in the case σ = 1, for elliptic operators have been studied in [16]-
[17], and for quasielliptic operators in [18]. For an arbitrary σ ∈ (0, 1), such spaces were introduced and
studied by G.V. Demidenko (see [1]).

2. APPROXIMATE SOLUTIONS FOR REGULAR EQUATIONS AND THEIR PROPERTIES

Let R
n be the n-dimensional Euclidean space and Z

n
+ be the set of multiindices from R

n. For ξ, η ∈
R

n, α ∈ Z
n
+ and t > 0 we introduce the following notation: |α| = α1 + · · · + αn, ξα = ξα1

1 . . . ξαn
n , tη =

(tη1 , . . . , tηn), Dk = 1
i

∂
∂xk

(k = 1, . . . , n), and let Dα = Dα1
1 . . . Dαn

n denote the generalized Sobolev
derivative of order α.

For a given collection of multiindices, by N we denote the minimal convex polyhedron containing
all points of that collection. The polyhedron N is said to be completely regular if N has a vertex at the
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origin and vertices on all coordinate axes, and the exterior normals to all (n − 1)-dimensional non-
coordinate sides of N have positive coordinates. We denote by N

n−1
i (i = 1, . . . , In−1, In−1 ≥ n) the

(n − 1)-dimensional non-coordinate sides of the polyhedron N, by ∂′N the set of all multiindices that
belong to at least one (n − 1)-dimensional non-coordinate side of the polyhedron N, N(0) = N \ ∂′N,
and let {α1, α2, . . . , αM} denote the set of all different from zero vertices of the polyhedron N.

Let μi (i = 1, . . . , In−1) be that exterior normal to the side N
n−1
i , for which the equation of the

hyperplane containing that side is given by formula (α, μi) = 1 (i = 1, . . . , In−1). In what follows, we will
assume that the polyhedron N has (n− 1)-dimensional sides, containing the points {α1, . . . , αn} \ {αi}
(i = 1, . . . , n), where αi = (0, . . . , 0, li, 0, . . . , 0). The exterior normal to the ith side we denote by μi

(i = 1, . . . , n), and let λi = 1
li

(i = 1, . . . , n) and λ = (λ1, . . . , λn).

Let γ = (γ1, . . . , γn) be the intersection point of hyperplanes, containing the n-dimensional sides
with exterior normals μ1, . . . , μn, and, for simplicity, we assume that γ1 < γ2 < · · · < γn−r ≤ γn−r+1 ≤
· · · ≤ γn, where r = 0, 1, . . . , n − 1. Consider the differential operator

P (D) =
∑

α∈∂′N

aαDα (2.1)

with real coefficients aα. Assume that the operator P (D) is regular, that is, there exists a constant χ > 0
such that for any ξ ∈ R

n the following inequality holds:

|P (ξ)| =

∣∣∣∣∣
∑

α∈∂′N

aαξα

∣∣∣∣∣ ≥ χ
∑

α∈∂′N

|ξα| . (2.2)

For a positive parameter ν and a natural number k, define the functions G0(ξ, ν) = e−(νP (ξ))2k
and

G1(ξ, ν) = 2ke−(νP (ξ))2k
(νP (ξ))2k−1, and by Ĝ0(t, ν) and Ĝ1(t, ν) denote the Fourier transforms of

G0(ξ, ν) and G1(ξ, ν), respectively. For functions Ĝl(t, ν) (l = 0, 1), we have the following estimates
(see [10]).

Lemma 2.1. Let γ1 < γ2 < · · · < γn−r ≤ γn−r+1 ≤ · · · ≤ γn (r = 0, 1, . . . , n − 1). Then for any mul-
tiindex m = (m1,m2, . . . ,mn) and for any even number N (N > N0) there exist constants Ci

(i = 0, 1, . . . , n − 1), such that for every ν : 0 < ν < 1 the following inequalities are satisfied:

∣∣∣DmĜl (t, ν)
∣∣∣ ≤

ν
− max

i=1,...,In−1
(|μi|+(m,μi))

(Cn−1|ln ν|n−1 + ... + C1| ln ν| + C0)
(1 + ν−N (tNγ + tNβ + · · · + tNσ))...(1 + ν−N (tNγ + tNδ + ... + tNτ ))

, (2.3)

where ({γ, β, . . . , σ}, . . . , {γ, δ, . . . , τ}) is some set of n vectors and l = 0, 1.

Lemma 2.2. Let the vector γ be as in Lemma 2.1. Then there exist constants Ci (i = 0, 1, . . . , l) and
a natural number N0, such that for any number N : N > N0 and any ν : 0 < ν < 1 the following
inequality holds:

∫ ∞

0
. . .

∫ ∞

0

dt1dt2 . . . dtn
(1 + ν−N (tNγ + tNβ + · · · + tNσ)) . . . (1 + ν−N (tNγ + tNδ + · · · + tNτ ))

≤ ν
min

i=1,...,r+1
|μi| (

Cl|ln ν|l + · · · + C1| ln ν| + C0

)
, (2.4)

here l is the number of equalities between the coordinates of the vector γ = (γ1, . . . , γn).

Lemma 2.3. There exists a constant C > 0 such that for any ν > 1 the following inequality holds:
∣∣∣DmĜl(t, ν)

∣∣∣ ≤
Cν−(|λ|+(m,λ))

1 + ν−N |t|Nλ
, (2.5)

where |t|λ =
(
t2l1
1 + · · · + t2ln

n

)1/2
, and l = 0, 1.
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For a function f ∈ Lp(Rn), we denote (see [8])

Uh(x) =
1

(2π)
n
2

∫ h−1

h
dν

∫

Rn

f(t)
∫

Rn

e−i(t−x,ξ)G1(ξ, ν)dξdt. (2.6)

By means of the vertices αi : αi �= 0 (i = 1, . . . ,M) of the polyhedron N we introduce the mul-

tianisotropic distance: ρN(x) =
(∑M

i=1 x2αi
)1/2

and the weighted spaces W N
p,σ(Rn), which are the

completions of the space C∞
0 (Rn) by the norm

‖U‖W N
p,σ(Rn) =

∑

α∈N

∥∥∥∥(1 + ρN(x))
−σ(1−max

i
(μi,α))

Dα
xU(x)

∥∥∥∥
Lp(Rn)

, (2.7)

where 0 < σ < 1. Let Lp,γ(Rn) be the space of summable functions, having finite norm

‖U‖Lp,γ(Rn) =
∥∥(1 + ρN(x))−γU(x)

∥∥
Lp(Rn)

.

Denote by Lp,σ,N(Rn the subspace of functions f ∈ Lp(Rn)
⋂

L1,γ(Rn), γ = −(σ + N |λ|), such that∫
Rn xβf(x)dx = 0, |β| = 0, 1, . . . , N − 1.

Lemma 2.4. Let β ∈ ∂′N. Then there exists a constant C > 0 such that for every f ∈ Lp(Rn)
⋂

L1(Rn)
∥∥∥DβUh

∥∥∥
Lp(Rn)

≤ C‖f‖Lp(Rn) 0 < h < 1, (2.8)

∥∥∥DβUh1 − DβUh2

∥∥∥
Lp(Rn)

≤ ε(h1, h2)‖f‖Lp(Rn) for 0 < h1 < h2 < 1, (2.9)

where ε(h1, h2) → 0 as h1, h2 → 0.

Proof. Let β ∈ ∂′N, that is, there exists μi0 such that (β, μi0) = 1. From the representation of Uh(x) we
have

Dβ
xUh(x) =

1

(2π)
n
2

∫ h−1

h
dν

∫

Rn

f(t)
∫

Rn

e−i(t−x,ξ)ξβG1(ξ, ν)dξdt.

Hence, applying Fubini’s theorem, we get

Dβ
xUh(x) =

∫ h−1

h
dν

∫

Rn

f̂(ξ)ξβei(x,ξ)G1(ξ, ν)dξ.

Again applying Fubini’s theorem, we obtain

Dβ
xUh(x) =

∫

Rn

f̂(ξ)ξβei(x,ξ)(2k)
∫ h−1

h
(νP (ξ))2k−1e−(νP (ξ))2k

dνdξ

=
∫

Rn

(2k)
f̂ (ξ)ξβ

P (ξ)
ei(x,ξ)

∫ h−1P (ξ)

hP (ξ)
t2k−1e−t2k

dtdξ = (2π)
n
2

˜Fh(ξ)f̂(ξ), (2.10)

where f̃ is the inverse Fourier transform, and

Fh(ξ) = (2k)
ξβ

P (ξ)

∫ h−1P (ξ)

hP (ξ)
t2k−1e−t2k

dt.

It follows from (2.10) that, the inequality (2.8) will be satisfied with some constant C > 0, if we prove
that the function Fh(ξ) is a (Lp, Lp)-multiplicator (see [19]), which is uniformly bounded in h. We have

|Fh(ξ)| ≤ C

∣∣∣∣
ξβ

P (ξ)

∣∣∣∣ ·
∫ ∞

0
t2k−1e−t2k

dt ≤ M,
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because ξβ P (ξ) is a multiplicator for β ∈ ∂′N (see [20]). Hence, for some constant M1 > 0 and any
ξ ∈ R

n, we have
∣∣ξβ/P (ξ)

∣∣ ≤ M1. Since the product of two multiplicators is again a multiplicator, it is

enough to show that
∫ h−1P (ξ)
hP (ξ) t2k−1e−t2k

dt is a multiplicator. To this end, we estimate
∣∣∣∣∣ξiDξi

∫ h−1P (ξ)

hP (ξ)
t2k−1e−t2k

dt

∣∣∣∣∣

≤
∣∣∣∣ξih

−1P ′
ξi

(ξ)
(
h−1P (ξ)

)2k−1
e−(h−1P (ξ))2k

∣∣∣∣ +
∣∣∣ξihP ′

ξi
(ξ)(hP (ξ))2k−1e−(hP (ξ))2k

∣∣∣

=

∣∣∣∣∣
ξiP

′
ξi

(ξ)

P (ξ)

∣∣∣∣∣
(
h−1P (ξ)

)2k
e−(h−1P (ξ))2k

+

∣∣∣∣∣
ξiP

′
ξi

(ξ)

P (ξ)

∣∣∣∣∣ (hP (ξ))2ke−(hP (ξ))2k

≤ C,

where C is a constant, independent of h, and i = 1, . . . , n. Similarly, it can be shown that
∣∣∣∣∣ξ

k1
1 . . . ξkn

n

∂k1+···+kn

∂ξk1
1 ...∂ξkn

n

Fh(ξ)

∣∣∣∣∣ ≤ M,

where ki (i = 1, . . . , n) are equal to 0 or 1. Thus, the conditions of Lizorkin’s theorem are satisfied (see
[19]), implying that Fh(ξ) is a (Lp, Lp)-multiplicator, and hence the inequality (2.8) is satisfied with
some constant C > 0.

Now we prove the inequality (2.9). Taking into account that
∫

Rn

Dm
t Ĝ1(t, ν)tαdt =

1

(2π)
n
2

∫

Rn

tα
∫

Rn

e−i(t,ξ)(−ξ)mG1(ξ, ν)dξdt

=
(−1)|α|

(2π)
n
2

∫

Rn

(∫

Rn

Dα
ξ ((−ξ)mG1(ξ, ν))e−i(t,ξ)dξ

)
dt = (−1)|α|(2π)

n
2 Dα

ξ ((−ξ)mG1(ξ, ν))|ξ=0,

the number k can be chosen to satisfy
∫

Rn

Dm
t Ĝ1(t, ν)tαdt = (−1)|α|(2π)

n
2 Dα

ξ

(
(−ξ)me−(νP (ξ))2k

(2k)(νP (ξ))2k−1
)
|ξ=0 = 0 (2.11)

for any α : |α| ≤ l, where l is a given number.

Let ε > 0 be an arbitrary number. We choose a function f̃ ∈ C∞
0 (Rn) to satisfy

∥∥∥f − f̃
∥∥∥

Lp(Rn)
< ε

and
∥∥∥Dαf̃

∥∥∥
Lp(Rn)

≤ Cα,ε‖f‖Lp(Rn) for any α : |α| ≤ l. Assuming that h1 < h2 < 1, we can write

∥∥∥DβUh1 − DβUh2

∥∥∥
Lp(Rn)

≤
∥∥∥∥∥

∫ h−1
1

h1

dν

∫

Rn

DβĜ1(t − ·, ν)[f − f̃ ]dt

∥∥∥∥∥
Lp(Rn)

+

∥∥∥∥∥

∫ h−1
2

h2

dν

∫

Rn

DβĜ1(t − ·, ν)[f − f̃ ]dt

∥∥∥∥∥
Lp(Rn)

+

∥∥∥∥∥

∫ h−1
1

h−1
2

dν

∫

Rn

DβĜ1(t − ·, ν)f̃ dt

∥∥∥∥∥
Lp(Rn)

+
∥∥∥∥
∫ h2

h1

dν

∫

Rn

DβĜ1(t − ·, ν)f̃ dt

∥∥∥∥
Lp(Rn)

=: I1 + I2 + I3 + I4.

Now we estimate the terms Ii (i = 1, 2, 3, 4) separately. Observe first that by the already proved

inequality (2.8), for I1 and I2, we have I1, I2 ≤ C
∥∥∥f − f̃

∥∥∥
Lp(Rn)

.
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Next, we estimate I3. Since 1 < h−1
2 < h−1

1 , we can apply Young’s inequality and the estimate (2.5)
for Ĝ1(t, ν) with ν > 1 (see Lemma 2.3), to obtain

I3 ≤ C

∫ ∞

h−1
2

∥∥∥DβĜ1(·, ν)
∥∥∥

Lp(Rn)
dν ·

∥∥∥f̃
∥∥∥

L1(Rn)
≤ C

∫ ∞

h−1
2

ν
−|λ|−(λ,β)+ |λ|

p

∥∥∥∥∥
1

1 + |t|Nλ

∥∥∥∥∥
Lp(Rn)

dν · ‖f‖Lp(Rn)

≤ Ch
|λ|+(λ,β)− |λ|

p
−1

2 ‖f‖Lp(Rn) → 0 as h2 → 0,

because (λ, β) ≥ 1. For I4 we have

I4 =
∥∥∥∥
∫ h2

h1

dν

∫

Rn

Dβ
t Ĝ1(t, ν)f̃(x + t)dt

∥∥∥∥
Lp(Rn)

=

∥∥∥∥∥∥

∫ h2

h1

dν

∫

Rn

Dβ
t Ĝ1(t, ν)

⎡

⎣f̃(x + t) −
∑

|α|≤l

tα

α!
f̃ (α)(x)

⎤

⎦ dt

∥∥∥∥∥∥
Lp(Rn)

,

where, in view of (2.11), all the terms in the square brackets, except f̃(x + t), vanish after integra-
tion. Taking into account that by Taylor formula the expression in the square brackets is equal to∑
|α|=l+1

tα

α! f̃
(α)(t + θα(t)x), from (2.3) and (2.4), for ν < 1 we obtain

∣∣∣tαDβĜ1(t, ν)
∣∣∣ ≤

ν
max

i
(−|μi|−(β,μi)+(α,μi))

(Cn−1|ln ν|n−1 + ... + C1| ln ν| + C0)
(1 + ν−N(tNγ + tNβ + ... + tNσ))...(1 + ν−N + (tNγ + tNδ + ... + tNτ ))

.

Therefore, applying Young’s inequality, for I4 we have

I4 ≤ C
∑

|α|=l+1

∫ h2

0

∥∥∥tαDβ
t Ĝ1(t, ν)

∥∥∥
L1(Rn)

dν ·
∥∥∥f̃ (α)

∥∥∥
Lp(Rn)

≤
∑

|α|=l+1

h
−max

i
(|μi|+(β,μi)−(α,μi))+ min

i=1,...,r+1
|μi|+1

2 (aα,n+l−1| ln h2|n+l−1 + ...+ aα,1| ln h2|+ aα,0)‖f‖Lp(Rn)

for some constants aα,0, aα,1, ..., aα,n+l−1. Since l is arbitrary, it can be chosen so that the function of
h2 in the last formula tends to zero as h2 → 0. Then, we have I4 → 0 as h2 → 0, and the result follows.
Lemma 2.4 is proved.

We assume that for polyhedron N the following condition is satisfied:

max
i=1,...,In−1

β∈N(0)

(|μi| + (β, μi)) − min
i=1,...,r+1

|μi| < 1.

Lemma 2.5. Let f ∈ Lp(Rn), (1 + ρN(x))σf ∈ L1(Rn), |λ| > 1, |λ|
p > σ > 1− |λ|

p′

(
1
p + 1

p′ = 1
)

. Then

for any β ∈ N(0) the following inequalities hold: for 0 < h < 1,
∥∥∥∥(1 + ρN(x))

−σ(1−max
j

(β,μj))
Dβ

xUh(x)
∥∥∥∥

Lp(Rn)

≤ C

(
‖f‖Lp(Rn) +

∥∥∥∥(1 + ρN(x))
σ(1−max

j
(β,μj))

f(x)
∥∥∥∥

L1(Rn)

)
, (2.12)
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and for 0 < h1 < h2 < 1,
∥∥∥∥(1 + ρN(x))

−σ(1−max
j

(β,μj))
(Dβ

xUh1(x) − Dβ
xUh2(x))

∥∥∥∥
Lp(Rn)

≤ ε(h1, h2)

(
‖f‖Lp(Rn) +

∥∥∥∥(1 + ρN(x))
σ(1−max

j
(β,μj))

f(x)
∥∥∥∥

L1(Rn)

)
, (2.13)

where ε(h1, h2) → 0 as h1, h2 → 0.

Proof. By Minkowski inequality we have
∥∥∥∥(1 + ρN(x))

−σ(1−max
j

(β,μj))
Dβ

xUh(x)
∥∥∥∥

Lp(Rn)

≤
∥∥∥∥(1 + ρN(x))

−σ(1−max
j

(β,μj))
∫ 1

h
dν

∫

Rn

f(t)Dβ
xĜ1(t − x, ν)dt

∥∥∥∥
Lp(Rn)

+

∥∥∥∥∥(1 + ρN(x))
−σ(1−max

j
(β,μj))

∫ h−1

1
dν

∫

Rn

f(t)Dβ
xĜ1(t − x, ν)dt

∥∥∥∥∥
Lp(Rn)

= I1 + I2.

Now we estimate the terms I1 and I2 separately. Applying (2.3) and (2.4) for function Ĝ1(t, ν) with
0 < ν < 1 and Young’s inequality, for I1 we obtain

I1 ≤ C

∫ 1

h
dν

∥∥∥Dβ
t Ĝ1(t, ν)

∥∥∥
L1(Rn)

· ‖f‖Lp(Rn) ≤
∫ 1

h
dν ν

−max
j

(|μj |+(β,μj))
(Cn−1| ln ν|n−1 + ...

+C1| ln ν| + C0)
∫

Rn

dt1...dtn
(1 + ν−N (tNγ + ... + tNσ))...(1 + ν−N (tNγ + ... + tNτ ))

· ‖f‖Lp(Rn)

≤
∫ 1

h
ν
−max

j
(|μj |+(β,μj))+ min

j=1,...,r+1
|μj |

(Cn+l−1| ln ν|n+l−1 + ...+ C1| ln ν|+ C0)dν‖f‖Lp(Rn) ≤ C‖f‖Lp(Rn).

To estimate I2, we use the inequality ρN(x − y)(1 + ρN(x))−1 ≤ a(1 + ρN(y)) and Young’s inequality,
to obtain

I2 ≤ C

∫ h−1

1
dν

∥∥∥∥
∫

Rn

ρN(x − t)
−σ(1−max

j
(β,μj))

Dβ
xĜ1(t − x, ν)(1 + ρN(t))

σ(1−max
j

(β,μj))
f(t)dt

∥∥∥∥
Lp(Rn)

≤ C

∫ h−1

1
dν

∥∥∥∥ρN(x)
−σ(1−max

j
(β,μj ))

∫

Rn

ei(x,ξ)ξβG1(ξ, ν)dξ

∥∥∥∥
Lp(Rn)

∥∥∥∥(1 + ρN(t))
σ(1−max

j
(β,μj))

f(t)
∥∥∥∥

L1(Rn)

.

(2.14)
Using the inequality (2.5) for ν > 1, the first factor on the right-hand side of (2.14) can be estimated
from above by

C

∥∥∥∥∥

(√
x2l1

1 + ... + x2ln
n

)−σ(1−max
j

(β,μj)) ν−(|λ|+(β,λ))

1 + ν−N |x|Nλ

∥∥∥∥∥
Lp(Rn)

.

Hence, making a change of variable x = νλη and taking into account that N > N0, the first factor on
the right-hand side of (2.14) can be estimated from above by the integral

C

∫ h−1

1

dν

ν
|λ|+(β,λ)+σ(1−max

j
(β,μj)− |λ|

p

.
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Next, since σp < |λ|, 1 − |λ|
p′ < σ, |λ| > max

j
|μj |, σ < 1, then |λ|

p′ + σ + (β, λ) − σ max
j

(β, μj) > 1, and

hence the integral of interest converges, and for I2 we get the estimate

I2 ≤ C

∥∥∥∥(1 + ρN(x))
σ(1−max

j
(β,μj))

f(x)
∥∥∥∥

L1(Rn)

.

Thus, the inequality (2.12) is proved. The inequality (2.13) can be proved similarly, using the arguments
applied in the proof of Lemma 2.4. Lemma 2.5 is proved.
Proposition 2.1. [7] Let θ(ξ) =

∑
α

γαξα be a polynomial with constant coefficients, and let N(θ) =

{α ∈ Z
n
+, γα �= 0}. A necessary and sufficient condition for existence of a constant C > 0 to satisfy

the inequality |θ(ξ)| ≤ CρN(ξ) for every ξ ∈ R
n with ρN(ξ) > 1 is that N(θ) ⊂ N.

The number c0 = min
1≤l≤n

min
1≤j≤In−1

μj
l

max
1≤j≤In−1

μj
l

is called the regularity index of an operator P (D).

Lemma 2.6. A necessary and sufficient condition for fulfillment of the inequality

∑

α∈Zn
+

∣∣∣∣∣
P (α)(ξ)
P (ξ)

∣∣∣∣∣ < A|P (ξ)|
−c max

1≤j≤In−1
(α,μj)

(2.15)

for every ξ ∈ R
n with |P (ξ)| > 1, and some positive constants c and A is that c ≤ c0, where c0 is

the regularity index of operator P (D).

Proof. Observe first that if |P (ξ)| > 1, then for every c > 0 and α ∈ Z
n
+ with some constant C > 1, we

have

1
C

M∑

j=1

∣∣∣ξαj
∣∣∣
1−c max

1≤l≤In−1
(α,μl)

≤ |P (ξ)|
1−c max

1≤l≤In−1
(α,μl)

≤ C

M∑

j=1

∣∣∣ξαj
∣∣∣
1−c max

1≤l≤In−1
(α,μl)

.

Hence, in view of Proposition 2.1, the estimate (2.15) is equivalent to the following embedding:

N

(
P (α)

)
⊂ N

(
1 − c max

1≤l≤In−1

(α, μl)
)

for any α ∈ Z
n
+. (2.16)

So, to prove the lemma it is enough to show that the embedding (2.16) holds if and only if c ≤ c0. We
first show that the fulfilment of (2.16) implies c ≤ c0. Let α = ej = (0, ..., 0, 1︸︷︷︸

j

, 0, ..., 0). Then for any

i, j: 1 ≤ i ≤ In−1, 1 ≤ j ≤ n there is a vertex β on N
n−1
i such that (β, μi) = 1 and βj ≥ 1.

Since β − α = β − ej ∈ N
(
P (α)

)
, by (2.16) we have

N(P (α)) ⊂ N

(
1 − c max

1≤l≤In−1

(α, μl)
)

, (β − α, μi) ≤ 1 − c max
1≤l≤In−1

(α, μl)

for any i : i ≤ 1 ≤ In−1, that is,

1 − μi
j = (β, μi) − (α, μi) = (β − α, μi) ≤ 1 − c max

1≤l≤In−1

(α, μl) ≤ 1 − c max
1≤l≤In−1

μl
j .

This implies that for any 1 ≤ l ≤ In−1 and 1 ≤ j ≤ n, c ≤ μl
j

max
1≤l≤In−1

μl
j

. Therefore, we have

c ≤ min
1≤j≤n

min
1≤l≤In−1

μl
j

max
1≤l≤In−1

μl
j

= c0,

showing that the fulfilment of (2.16) implies c ≤ c0.
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Now we proceed to prove the converse assertion, that is, the condition c ≤ c0 implies (2.16). Let
α ∈ Z

n
+. Since N(P (α)) ⊂ N{β − α, β ∈ (P (α)), β ≥ α}, for any l : 1 ≤ l ≤ In−1 we have

(β − α, μl) = (β, μl) − (α, μl) ≤ 1 − (α, μl) = 1 − c0

(
α,

μl

c0

)
.

In view of definition of the number c0, for any l, i : 1 ≤ l, i ≤ In−1, we have μl

c0
≥ μi. Therefore, for any

l, i : 1 ≤ l, i ≤ In−1, we obtain

(β − α, μl) = 1 − c0

(
α,

μl

c0

)
≤ 1 − c0(α, μi) ≤ 1 − c0 max

1≤i≤In−1

(α, μi),

that is, for any l : 1 ≤ l ≤ In−1,

(β − α, μl) ≤ 1 − c0 max
1≤i≤In−1

(α, μi) ≤ 1 − c max
1≤i≤In−1

(α, μi)

implying that, for all α ∈ Z
n
+ and β ∈ (P ), β − α ∈ N(1 − c max

1≤i≤In−1

(α, μi)). Taking into account that

N(1 − c max
1≤i≤In−1

(α, μi)) is a convex polyhedron, and (P (α)) = {β − α, β ∈ (P ), β ≥ α}, we conclude

that for any α ∈ Z
n
+, N(P (α)) ⊂ N(1 − c max

1≤i≤In−1

(α, μi)), and the result follows. Lemma 2.6 is proved.

Let χ(s) =

{
1 for 0 ≤ s ≤ 1
0 for s ≥ 2

and χ ∈ C∞(R1
+).

Lemma 2.7. Under the conditions of Lemma 2.5, for any h and σ (0 < h < 1, 0 ≤ σ < 2c0), and for
any multiindex β ∈ N as ρ → ∞

∥∥∥∥(1 + ρN(x))
−σ(1−max

i
(β,μi))

(
Dβ

x

(
Uh(x) − Uh(x)χ

(
ρ2

N
(x)

ρ2

)))∥∥∥∥
Lp(Rn)

→ 0. (2.17)

Proof. Let β = 0. Then by the definition of function χ(s) we have
∥∥∥∥(1 + ρN(x))−σ

(
Uh(x) − Uh(x)χ

(
ρ2

N
(x)

ρ2

))∥∥∥∥
Lp(Rn)

≤
∥∥(1 + ρN(x))−σUh(x)

∥∥
Lp(ρN (x)>ρ)

→ 0

as ρ → ∞, because by Lemma 2.5, Uh ∈ Lp,σ(Rn).
Now let β �= 0. Then by Leibnitz formula we have

Dβ
x

(
Uh(x) − Uh(x)χ

(
ρ2

N(x)
ρ2

))
= Dβ

xUh(x)
(

1 − χ

(
ρ2

N(x)
ρ2

))

−Uh(x)Dβ
xχ

(
ρ2

N(x)
ρ2

)
−

∑

s+q=β
|s|,|q|>0

Cs,qD
s
xUh(x)Dq

xχ

(
ρ2

N(x)
ρ2

)
=: Φ1,ρ + Φ2,ρ + Φ3,ρ.

Now we estimate the terms Φi,ρ (i = 1, 2, 3) separately. Using Lemmas 2.4 and 2.5, and the arguments
applied in [1], for Φ1,ρ we have
∥∥∥∥(1 + ρN(x))

−σ(1−max
i

(β,μi))
Φ1,ρ(x)

∥∥∥∥
Lp(Rn)

≤
∥∥∥∥(1 + ρN(x))

−σ(1−max
i

(β,μi))
Dβ

xUh(x)
∥∥∥∥

Lp(ρN (x)>ρ)

→ 0

as ρ → ∞, because DβUh ∈ Lp,σ for any β ∈ N.
To estimate Φ2,ρ and Φ3,ρ, we use Frankel’s formula for derivative of a composite function (see [21]),

to obtain

Dβχ(ϕ(x1, ..., xn)) =
|β|∑

i=1

χ(i)
s (s)|ϕ · Qβ,i(ϕ), (2.18)
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where Qβ,i(ϕ) is a homogeneous polynomial of degree i of the form:

Qβ,i(ϕ) =
∑

r1+...+rn=β

P i
r1(ϕ)...P i

rn (ϕ), i = 1, ..., |β|.

Observe that for ϕ(x1, ..., xn) = ρ2
N

(x)/ρ2 each P l
rk (l − 1, ..., |β|) is given by

P l
rk

(
ρ2

N
(x)

ρ2

)
=

∑

θ∈R(rk)

l!
θ!

(
Dα1

(
ρ2

N
(x)

ρ2

))θ1

...

(
Dαl

(
ρ2

N
(x)

ρ2

))θl

,

where R(rk) = {θ;
l∑

i=1
θiα

i = rk; |θ| = l}, and α1, ..., αl are vectors such that 0 < αi ≤ rk (i = 1, ..., l).

By Lemma 2.6, for any i = 1, ..., l and ρN(x) > 1, we have
(

Dαi

(
ρ2

N(x)
ρ2

))θi

≤ C

(
ρ2

N(x)
ρ2

)θi(
ρ2

N(x)
)−c0θi max

j
(αi,μj)

.

Since
∑

i

θi max
j

(αi, μj) ≥ max
j

∑

i

(θiα
i, μj) = max

j
(rk, μj),

we have
∣∣∣∣D

β
xχ

(
ρ2

N
(x)

ρ2

)∣∣∣∣ ≤
(

ρ2
N

(x)
ρ2

)l(
ρ2

N(x)
)−c0 max

j
(β,μj)

,

where, in view of definition of function χ(s), the variables x1, ..., xn vary in the compact Kρ = {x ∈
R

n; ρ ≤ ρN(x) ≤
√

2ρ}. Therefore, by Lemma 2.6, for any β ∈ N there exists a constant C > 0 such
that

∣∣∣∣D
β
xχ

(
ρ2

N
(x)

ρ2

)∣∣∣∣ ≤ Cρ
−2c0 max

i
(β,μi)

, ρ ≥ 1. (2.19)

Now we use (2.19), to estimate Φ2,ρ and Φ3,ρ. Taking into account that the function χ
(

ρ2
N

(x)

ρ2

)
is different

from zero only in the compact Kρ, and all the derivatives of function χ(s) are bounded, for Φ2,ρ we have
∥∥∥∥(1 + ρN(x))

−σ(1−max
i

(β,μi))
Φ2,ρ(x)

∥∥∥∥
Lp(Rn)

≤
∥∥∥∥(1 + ρN(x))

−σ(1−max
i

(β,μi))
Uh(x)Dβ

xχ

(
ρ2

N(x)
ρ2

)∥∥∥∥
Lp(Kρ)

≤ Cρ
−2c0 max

i
(β,μi)

(1 +
√

2ρ)
σ max

i
(β,μi))∥∥(1 + ρN(x))−σUh(x)

∥∥
Lp(Kρ)

.

Taking into account that by Lemma 2.5, Uh ∈ Lp,σ(Rn), for σ < 2c0 we obtain
∥∥∥∥(1 + ρN(x))

−σ(1−max
i

(β,μi))
Φ2,ρ(x)

∥∥∥∥
Lp(Rn)

→ 0 as ρ → ∞.

Next, using the inequality max
i

(s + q, μi) ≤ max
i

(s, μi) + max
i

(q, μi), for Φ3,ρ(x) we can write

∥∥∥∥(1 + ρN(x))
−σ(1−max

i
(β,μi))

Φ3,ρ(x)
∥∥∥∥

Lp(Rn)
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≤ C
∑

s+q=β

∥∥∥∥(1 + ρN(x))
−σ(1−max

i
(β,μi))

Ds
xUh(x)Dq

xχ

(
ρ2

N
(x)

ρ2

)∥∥∥∥
Lp(Kρ)

≤ C
∑

s+q=β

ρ
−2c0 max

i
(q,μi)

∥∥∥∥(1 + ρN(x))
−σ(1−max

i
(s+q,μi))

Ds
xUh(x)

∥∥∥∥
Lp(Kρ)

≤ C
∑

s+q=β

ρ
−2c0 max

i
(q,μi)

ρ
σ max

i
(q,μi)

(√
2
)σ max

i
(q,μi)

∥∥∥∥(1 + ρN(x))
−σ(1−max

i
(s,μi))

Ds
xUh(x)

∥∥∥∥
Lp(Kρ)

,

Therefore, in view of Lemmas 2.4 and 2.5, for σ < 2c0 we get
∥∥∥∥(1 + ρN(x))

−σ(1−max
i

(β,μi))
Φ3,ρ(x)

∥∥∥∥
Lp(Rn)

→ 0 as ρ → ∞.

Lemma 2.7 is proved.

Definition 2.1. (see [1]). Let V and W be normed spaces. A family of linear operators Ph

(h ∈ (0, 1)) is said to be fundamental in the pair of spaces {V,W} as h → 0, if for any h ∈ (0, 1)
the operator Ph : V → W is bounded, and the following conditions are satisfied:

sup
h

‖Ph‖ ≤ C < ∞, ‖Ph1 − Ph2‖ → 0 as h1, h2 → 0. (2.20)

For a function f ∈ Lp(Rn)
⋂

L1,−σ(Rn) we denote Uh = Phf . We use Lemmas 2.4, 2.5 and 2.7 to
prove the following theorem.

Theorem 2.1. Let |λ| > 1, |λ|
p > σ > 1 − |λ|

p′

(
1
p + 1

p′ = 1
)

. Then the family of operators Ph is

fundamental in the pair of spaces {Lp(Rn)
⋂

L1,−σ(Rn),W N
p,σ(Rn)} as h → 0.

Proof. It follows from Lemma 2.7 that for any function f ∈ Lp(Rn)
⋂

L1,−σ(Rn) the function Uh = Phf

belongs to the space W N
p,σ(Rn). Hence, in view of Lemmas 2.4 and 2.5, we obtain

‖Uh‖W N
p,σ(Rn) ≤ C

(
‖f‖Lp(Rn) + ‖(1 + ρN(x))σf(x)‖L1(Rn)

)
, (2.21)

where the constant C does not depend on f and h, h ∈ (0, 1). Thus, the condition (2.20) is satisfied.
Also, we have

∥∥∥∥(1 + ρN(x))
−σ(1−max

i
(α,μi))

(Dα
x Uh1(x) − Dα

x Uh2(x))
∥∥∥∥

Lp(Rn)

≤ ε(h1, h2)

(
‖f‖Lp(Rn) +

∥∥∥∥(1 + ρN(x))
σ(1−max

i
(α,μi))

f(x)
∥∥∥∥

L1(Rn)

)
,

where ε(h1, h2) → 0 as h1, h2 → 0. The last relation implies (2.20), and the result follows. Theorem 2.1
is proved.

For |λ| ≤ 1 we have the following analogs of Lemmas 2.5 and 2.7.

Lemma 2.8. Let 1 ≥ |λ| > 1 − Nλmin, σ < min{c0,
|λ|
p }, σ > 1 − |λ| + |λ|

p − Nλmin. Then for any
function f ∈ Lp,σ,N(Rn) and for any β ∈ N the following inequalities hold: for 0 < h < 1,

∥∥∥∥(1 + ρN(x))
−σ(1−max

i
(β,μi))

Dβ
xUh(x)

∥∥∥∥
Lp(Rn)
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≤ C

(
‖f‖Lp(Rn) +

∥∥∥∥(1 + ρN(x))
σ(1−max

i
(β,μi))+N |λ|

f(x)
∥∥∥∥

L1(Rn)

)
, (2.22)

where the constant C > 0 does not depend on f and h, and for 0 < h1 < h2 < 1,
∥∥∥∥(1 + ρN(x))

−σ(1−max
i

(β,μi))
(Dβ

xUh1(x) − Dβ
xUh2(x))

∥∥∥∥
Lp(Rn)

≤ ε(h1, h2)

(
‖f‖Lp(Rn) +

∥∥∥∥(1 + ρN(x))
σ(1−max

i
(β,μi))+N |λ|

f(x)
∥∥∥∥

L1(Rn)

)
, (2.23)

where ε(h1, h2) → 0 as h1, h2 → 0.

Proof. We prove the inequality (2.22). We consider the case β = 0 (the remaining cases can be treated
similarly). As in the proof of Lemma 2.5, we have

∥∥(1 + ρN(x))−σUh(x)
∥∥

Lp(Rn)
≤

∥∥∥∥(1 + ρN(x))−σ
∫ 1

h
dν

∫

Rn

f(t)
∫

Rn

e−i(t−x,ξ)G1(ξ, ν)dξdt

∥∥∥∥
Lp(Rn)

+

∥∥∥∥∥(1 + ρN(x))−σ
∫ h−1

1
dν

∫

Rn

f(t)
∫

Rn

e−i(t−x,ξ)G1(ξ, ν)dξdt

∥∥∥∥∥
Lp(Rn)

=: I1 + I2.

The term I1 can be estimated as in Lemma 2.5. So, we have to estimate only I2. Since f ∈ Lp,σ,N (Rn),
that is,

∫
Rn xβf(x)dx = 0 for |β| = 0, 1, ..., N − 1, the Fourier transform of function f can be written in

the form (see [1]):

f̂(ξ) =
1

(2π)
n
2

∫ 1

0
...

∫ 1

0

(∫

Rn

e−i(λ1...λNy,ξ)(−iy, ξ)Nf(y)dy

)
· λN−1

1 ...λ2
N−2λN−1dλ1...dλN .

Therefore, we can write

I2 ≤ C

∫ h−1

1
dν

∫ 1

0
...

∫ 1

0
λN−1

1 ... λ2
N−2λN−1

·
∥∥∥∥(1 + ρN(x))−σ

∫

Rn

∫

Rn

ei(x−λ1...λNy,ξ)G1(ξ, ν)(−iy, ξ)Nf(y)dξdy

∥∥∥∥
Lp(Rn)

dλ1...dλN

≤
∑

|ρ|=N

Cρ

∫ h−1

1
dν

∥∥∥∥(ρN(x))−σ
∫

Rn

ei(x,ξ)G1(ξ, ν)ξρdξ

∥∥∥∥
Lp(Rn)

· ‖yρ(1 + ρN(y))σf(y)‖L1(Rn)

≤
∑

|ρ|=N

Cρ

∫ h−1

1
ν−|λ|−(λ,ρ)dν ‖yρ(1 + ρN(y))σf(y)‖L1(Rn)

·

∥∥∥∥∥∥

(√
x2l1

1 + ... + x2ln
n

)−σ
[
1 + ν−K

(√
x2l1

1 + ... + x2ln
n

)K
]−1

∥∥∥∥∥∥
Lp(Rn)

≤
∑

|ρ|=N

Cρ

∫ h−1

1
ν−|λ|−(λ,ρ)+

|λ|
p
−σdν ‖yρ(1 + ρN(y))σf(y)‖L1(Rn)
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·

∥∥∥∥∥∥

(√
y2l1
1 + ... + y2ln

n

)−σ
[
1 +

(√
y2l1
1 + ... + y2ln

n

)K
]−1

∥∥∥∥∥∥
Lp(Rn)

.

In the last integral we have used the change of variables x = νλy. Since |λ|
p > σ, then for large

enough K the integral in Lp converges. The integral in ν also converges, because by assumption

|λ| + (λ, ρ) − |λ|
p + σ > |λ| + Nλmin − |λ|

p + σ > 1. As a result, we obtain

I2 ≤ C
∥∥∥(1 + ρN(x))σ+N |λ|f(x)

∥∥∥
L1(Rn)

.

Thus, the inequality (2.22) is proved. The inequality (2.23) can be proved similarly. Lemma 2.8 is proved.

Lemma 2.9. Let the conditions of Lemma 2.8 be satisfied, and let the function χ(s) be defined as
above. Then for any h ∈ (0, 1) and β ∈ N the relation (2.17) holds.

The proof is similar to that of Lemma 2.7 (by applying Lemmas 2.4 and 2.8).

Theorem 2.2. Let the conditions of Lemma 2.8 be satisfied. Then the family of operators Ph is
fundamental in the pair of spaces {Lp,σ,N(Rn),W N

p,σ(Rn} as h → 0.

The proof is similar to that of Theorem 2.1 (by applying Lemmas 2.8 and 2.9).
For non-weighted spaces (when σ = 0) we have the following result.

Theorem 2.3. Let |λ|
(
1 − 1

p

)
> 1. Then the family of operators Ph is fundamental in the pair

of spaces {Lp(Rn)
⋂

L1(Rn),W N
p (Rn)} as h → 0. Moreover, if |λ|

(
1 − 1

p

)
≤ 1 and |λ|

(
1 − 1

p

)
+

Nλmin > 1 ≥ |λ|
(
1 − 1

p

)
+ (N − 1)λmin, then the family of operators Ph is fundamental in the

pair of spaces {Lp,0,N(Rn),W N
p (Rn)}.

3. REGULAR EQUATIONS IN R
n

In this section, we use the results obtained in Section 1, to prove existence and uniqueness of a
solution of the following equation:

P (D)U = f, (3.1)

where the operator P (D) is defined by (2.1), and satisfies the regularity condition (2.2).

Theorem 3.1. Let |λ| > 1, |λ|
p > σ > 1− |λ|+ |λ|

p . Then for any function f ∈ Lp(Rn)
⋂

L1,−σ(Rn) the

equation (3.1) has a unique solution U from the class W N
p,σ(Rn), which is the limit (as h → 0,)

in the class W N
p,σ(Rn) of approximate solutions Uh, defined by formula (2.6), and there exists a

constant C > 0 such that for any function f ∈ Lp(Rn)
⋂

L1,−σ(Rn) the following inequality holds:

‖U‖W N
p,σ(Rn) ≤ C

(
‖f‖Lp(Rn) + ‖f‖L1,−σ(Rn)

)
. (3.2)

Proof. Let f ∈ Lp(Rn)
⋂

L1,−σ(Rn). We consider a family of operators Ph and construct a sequence of
functions Uk(x) by formula

Uk(x) = Phk
f(x), (3.3)

where hk → 0 as k → ∞.
If |λ| > 1, then we can apply Theorem 2.1 to conclude that the family of operators Ph is fundamental

in the pair of spaces {Lp(Rn)
⋂

L1,−σ(Rn),W N
p,σ(Rn)} as h → 0. If |λ| ≤ 1, then by Theorem 2.2, the

family of operators Ph is fundamental in the pair of spaces {Lp,σ,N(Rn),W N
p,σ(Rn)} as h → 0. Thus,
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for any |λ| > 0, the sequence {Uk(x)} is fundamental in the space W N
p,σ(Rn) with respect to the norm

(2.7). And by the completeness of the space W N
p,σ(Rn) there exists a function U ∈ W N

p,σ(Rn) such that
‖Uk − U‖W N

p,σ(Rn) → 0 as k → ∞. Also, for |λ| > 1 the inequality (2.12) holds, while for |λ| ≤ 1 holds

(2.22). From formula (2.1) of [8] and properties of averaging fh, for almost all x from R
n we have

f(x) = − lim
h→0

1

(2π)
n
2

∫ h−1

h
dν

∂

∂ν

∫

Rn

f(t)Ĝ0(t − x, ν)dt. (3.4)

On the other hand, applying formulas (2.6) and (3.3), we can write

P (Dx)Uk =
1

(2π)
n
2

∫ h−1
k

hk

dν

∫

Rn

f(t)
∫

Rn

P (Dx)e−i(t−x,ξ)G1(ξ, ν)dξdt

= − 1

(2π)
n
2

∫ h−1
k

hk

dν

∫

Rn

f(t)
∫

Rn

e−i(t−x,ξ) ∂

∂ν
G0(ξ, ν)dξdt = −

∫ h−1
k

hk

dν
∂

∂ν

∫

Rn

f(t)Ĝ0(t − x, ν)dt.

Passing to the limit as k → ∞ and applying the integral representation (3.4), we can state that U is a
solution of equation (3.1). Also, taking into account Lemma 2.4, we conclude that for any β ∈ ∂′N the
following inequality holds:

∥∥∥Dβ
xU

∥∥∥
Lp(Rn)

≤ C‖f‖Lp(Rn). (3.5)

Now we proceed to prove the uniqueness of a solution. Assume first that U(x) is a finite solution
of equation (3.1). Then using Fourier transform, we obtain P (iξ)Û (ξ) = 0 for all ξ ∈ R

n. And since
P (iξ) �= 0 for ξ ∈ R

n \ {0}, then by a property of Fourier transform, we get Û(ξ) = 0 almost everywhere
in R

n. Taking into account that Û(ξ) is a continuous function, we have Û(ξ) ≡ 0 in R
n, and hence

U(ξ) ≡ 0 in R
n. Thus, the uniqueness of a solution of equation (3.1) for finite functions from W N

p,σ(Rn)
is proved. In view of (3.5), we can state that for any smooth finite function v ∈ W N

p,σ(Rn) and for any

β ∈ ∂′N, we have
∥∥∥Dβ

xv
∥∥∥

Lp(Rn)
≤ C‖P (D)v‖Lp(Rn).

Now we consider the general case. Let U ∈ W N
p,σ(Rn) be a solution of the homogeneous equation

P (D)U = 0. We show that for any bounded domain G, ‖U‖Lp(G) = 0. Taking into account that U ∈
W N

p,σ(Rn), and that the finite functions are dense in W N
p,σ(Rn), we conclude that there exists Uε ∈

W N
p (Rn) such that

‖U − Uε‖W N
p,σ(Rn) < ε. (3.6)

Hence, in view of (3.5), for any β ∈ ∂′N the following inequality holds:
∥∥∥Dβ

xUε

∥∥∥
Lp(Rn)

≤ C‖P (Dx)Uε‖Lp(Rn).

Taking into account that U is a solution of the homogeneous equation P (D)U = 0, we obtain
∥∥∥Dβ

xU
∥∥∥

Lp(Rn)
≤

∥∥∥Dβ
x(U − Uε)

∥∥∥
Lp(Rn)

+ C‖P (D)Uε‖Lp(Rn).

Next, since for the operator P (D) the only non-zero coefficients are those aα for which α ∈ ∂′N, we can
apply (3.6), to obtain

∥∥∥Dβ
xU

∥∥∥
Lp(Rn)

≤ C
∑

β∈∂′N

|aβ|
∥∥∥Dβ

x(U − Uε)
∥∥∥

Lp(Rn)
+ ε ≤ ε · C

∑

β∈∂′N

|aβ| + ε.

By arbitrariness of ε, we have
∥∥∥Dβ

xU
∥∥∥

Lp(Rn)
= 0 for any β ∈ ∂′N. Therefore, for any bounded domain G,

we have ‖U‖Lp(G) = 0, and U(x) = 0 almost everywhere on G. Finally, taking into account that G is an
arbitrary domain, we conclude that U(x) = 0 almost everywhere in R

n. Theorem 3.1 is proved.
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Theorem 3.2. Let 1 ≥ |λ| > 1 − Nλmin, σ < min
{

c0,
|λ|
p

}
, 1 − |λ| + |λ|

p − (N − 1)λmin ≥ σ > 1 −

|λ| + |λ|
p − Nλmin. Then for any function f ∈ Lp,σ,N (Rn) there exists a unique solution U ∈

W N
p,σ(Rn) of equation (3.1), and there exists a constant C > 0 such that for any function

f ∈ Lp,σ,N(Rn) the following inequality holds:

‖U‖W N
p,σ(Rn) ≤ C

(
‖f‖Lp(Rn) +

∥∥∥(1 + ρN(x))σ+N |λ|f(x)
∥∥∥

L1(Rn)

)
. (3.7)

The proof is similar to that of Theorem 3.1 with application of Theorem 2.2.
Finally, applying Theorem 2.3, for an ordinary multianisotropic space we have the following theorem.

Theorem 3.3. The following assertions hold.

(a) If |λ| − |λ|
p > 1, then for any function f ∈ Lp(Rn)

⋂
L1(Rn) the equation (3.1) has a unique

solution U ∈ W N
p (Rn), for which the inequality (3.2) is satisfied for σ = 0.

(b) If |λ| − |λ|
p ≤ 1, |λ| − |λ|

p + Nλmin > 1 > |λ| − |λ|
p + (N − 1)λmin, then for f ∈ Lp,0,N(Rn) the

equation (3.1) has a unique solution in W N
p (Rn), for which (3.7) is satisfied for σ = 0.

The proof is similar to that of Theorem 3.1 with application of Theorem 2.3.
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