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Abstract—Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space H
and A(H) ⊆ B(H) be a standard operator algebra which is closed under the adjoint operation. Let
F : A(H) → B(H) be a linear mapping satisfying F (AA∗A) = F (A)A∗A + Ad(A∗)A + AA∗d(A)
for all A ∈ A(H), where the associated linear mapping d : A(H) → B(H) satisfies the relation
d(AA∗A) = d(A)A∗A + Ad(A∗)A + AA∗d(A) for all A ∈ A(H). Then F is of the form F (A) =
SA − AT for all A ∈ A(H) and some S, T ∈ B(H), that is, F is a generalized derivation. We also
prove some results concerning centralizers on A(H) and semisimple H∗-algebras.
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1. INTRODUCTION

Let δ : R → R be an additive map on a ring R. Recall that δ is called a generalized Jordan derivation
if there exists a Jordan derivation d : R → R such that the equality

δ(a2) = δ(a)a + ad(a) (1.1)

holds for all a ∈ R, and δ is said to be a generalized derivation if there is a derivation d on R satisfying

δ(ab) = δ(a)b + ad(b) (1.2)

for all a, b ∈ R.
In [7], it was proved that every generalized Jordan derivation on a 2-torsion free prime ring is a

generalized derivation. This result was generalized in [14] to generalized Jordan derivations on 2-torsion
free semiprime rings.

In particular, if d = δ in (1.1) and (1.2), then δ is called a Jordan derivation and derivation,
respectively. The first result on Jordan derivation is due to Herstein [6] who proved that any Jordan
derivation on a 2-torsion free prime ring is a Jordan derivation. Cusack [4] and Brešar [2] showed that
this is also true for Jordan derivations on 2-torsion free semiprime rings. If c ∈ R is a fixed element and
δ(a) = [c, a] = ca − ac for all a ∈ R, then it is easy to see that δ is a derivation which is called an inner
derivation determined by c. It is also well known that every linear derivation on standard operator algebra
is inner (cf. [3]). Some related results on operator algebras can be found in [5], [8], [12], and references
therein.
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In [13], Vukman proved that if a linear mapping d on a standard operator algebra, which is closed
under the adjoint operation, or a semisimple H∗-algebra, satisfying

d(AA∗A) = d(A)A∗A + Ad(A∗)A + AA∗d(A),

then d is a derivation.

Motivated by the above result and the concept of generalized Jordan derivations, in this paper, we aim
to show that if F is a linear mapping on a standard operator algebra which is closed under the adjoint
operation satisfying

F (AA∗A) = F (A)A∗A + Ad(A∗)A + AA∗d(A),

where the associated linear mapping d satisfies the relation

d(AA∗A) = d(A)A∗A + Ad(A∗)A + AA∗d(A),

then F is a generalized derivation. A similar result is also obtained for the case of linear mappings on
semisimple H∗-algebras. It should be noted that in order to prove the result on semisimple H∗-algebras,
we need to have some results about left centralizers. Recall that a linear map φ : A → A on an algebra
A is called a left centralizer if φ(xy) = φ(x)y for all x, y ∈ A. The definition of a right centralizer should
be self explanatory.

We now list some basic notation, definitions, and results. Throughout the paper, L(H) and B(H) will
stand for the algebra of all linear operators and the algebra of all bounded linear operators on a complex
Hilbert space H , respectively. By F(H) ⊆ B(H) we denote the subalgebra of all bounded finite rank
operators. We call a subalgebra A(H) of B(H) standard if it contains F(H). Notice that every standard
operator algebra is prime. An operator P ∈ B(H) is said to be a projection if P ∗ = P and P 2 = P . Each
rank one operator can be expressed as x ⊗ y, where x ⊗ y(u) = 〈u, y〉x for all u ∈ H .

Let A be an algebra over the filed C of complex numbers. An involution in A is a map a �→ a∗ of A
into itself such that

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (λa)∗ = λ̄a∗, (ab)∗ = b∗a∗

for any a, b ∈ A and λ ∈ C. An algebra over C endowed with an involution is called an involution algebra
or a ∗-algebra. Recall that a semisimple H∗-algebra is a complex semisimple Banach ∗-algebra whose
norm is a Hilbert space norm such that 〈x, yz∗〉 = 〈xz, y〉 = 〈z, x∗y〉 is fulfilled for all elements x, y, z.
Let A be a semisimple H∗-algebra and {Aα : α ∈ Γ} be the collection of minimal closed ideals of A
such that A = ⊕α∈ΓAα. Then any element x ∈ A can be expressed as x =

∑
α∈Γ xα and xαxβ = 0 for

xα ∈ Aα and xβ ∈ Aβ with α �= β. For every x and y in A with x =
∑

α xα and y =
∑

α yα, we have
xy =

∑
α xαyα. A self-adjoint idempotent element e ∈ A is called a projection. A nonzero projection is

said to be minimal if it can’t be represented as a sum of two mutually orthogonal nonzero projections in
A. For more information about H∗-algebras, we refer the reader to [1] and [11].

2. MAIN RESULTS

Our first theorem is a generalization of Theorem 1 of [13].

Theorem 2.1. Let H be a complex Hilbert space, and let A(H) ⊆ B(H) be a standard operator
algebra, which is closed under the adjoint operation. Suppose there exists a linear mapping
F : A(H) → B(H) satisfying the relation

F (AA∗A) = F (A)A∗A + Ad(A∗)A + AA∗d(A) (2.1)

for all A ∈ A(H), where the associated linear mapping d : A(H) → B(H) satisfies the relation

d(AA∗A) = d(A)A∗A + Ad(A∗)A + AA∗d(A) (2.2)

for all A ∈ A(H). Then F (A) = SA − AT for all A ∈ A(H) and some S, T ∈ B(H), which means
that F is a linear generalized derivation.

JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS Vol. 53 No. 1 2018



ON GENERALIZED DERIVATIONS AND CENTRALIZERS 29

It should be mentioned that in the proof below, we borrow some ideas from [10] and [13].
Proof. First we consider the restriction of F to F(H). Suppose A ∈ F(H). Then A∗ ∈ F(H). Pick a
projection P ∈ F(H) such that AP = PA = A and A∗P = PA∗ = A∗. Hence, in view of relation (2.1),
we obtain

F (P ) = F (P )P + Pd(P )P + Pd(P ). (2.3)

Right multiplication by P to (2.3) yields that 2Pd(P )P = 0. This implies that

Pd(P )P = 0. (2.4)

In view of above relation, we find that

Pd(P )A = 0, Ad(P )P = 0, and Ad(P )A = 0. (2.5)

Using (2.4) in (2.3), we get

F (P ) = F (P )P + Pd(P ). (2.6)

Replacing A by A + P in (2.1) and using the fact that A∗ = (A + P )∗ = A∗ + P , we obtain

F ((A + P )(A∗ + P )(A + P )) = F (A)A∗A + Ad(A∗)A
+AA∗d(A) + F (AA∗ + A∗A + A2) + 2F (A) + F (A∗) + F (P )P + Pd(P ). (2.7)

On the other hand, we find that

F ((A + P )(A∗ + P )(A + P )) = F (A)A∗A + F (A)A + F (A)A∗

+F (A)P + F (P )A∗A + F (P )A∗ + F (P )A + F (P )P + Ad(A∗)A + Pd(A∗)A
+Ad(P )A + Pd(P )A + Ad(A∗)P + Pd(A∗)P + Ad(P )P + Pd(P )P + AA∗d(A)
+A∗d(A) + Ad(A) + Pd(A) + AA∗d(P ) + A∗d(P ) + Ad(P ) + Pd(P ). (2.8)

Combining (2.7) and (2.8), we obtain

F (AA∗ + A∗A + A2) + 2F (A) + F (A∗)
= F (A)A + F (A)A∗ + F (A)P + F (P )A∗A + F (P )A∗ + F (P )A + Pd(A∗)A
+Ad(P )A + Pd(P )A + Ad(A∗)P + Pd(A∗)P + Ad(P )P + Pd(P )P
+A∗d(A) + Ad(A) + Pd(A) + AA∗d(P ) + A∗d(P ) + Ad(P ).

An application of (2.5) and (2.6) yields

F (AA∗ + A∗A + A2) + 2F (A) + F (A∗) = F (A)A + F (A)A∗

+F (A)P + F (P )A∗A + F (P )A∗ + F (P )A + Pd(A∗)A
+Ad(A∗)P + Pd(A∗)P + A∗d(A) + Ad(A) + Pd(A) + AA∗d(P ) + A∗d(P ) + Ad(P ). (2.9)

Replacing A by −A in (2.9), we get

F (AA∗ + A∗A + A2) − 2F (A) − F (A∗) = F (A)A∗ + F (A)A
+F (P )A∗A − F (P )A∗ − F (P )A − F (A)P + Pd(A∗)A + Ad(A∗)P

−Pd(A∗)P + A∗d(A) + Ad(A) − Pd(A) + AA∗d(P ) − A∗d(P ) − Ad(P ). (2.10)

Adding (2.9) and (2.10), we arrive at

F (AA∗ + A∗A + A2) = F (A)A∗ + F (A)A + F (P )A∗A

+Pd(A∗)A + Ad(P )P + A∗d(A) + Ad(A) + AA∗d(P ). (2.11)

Subtracting (2.10) from (2.9), we obtain

2F (A) + F (A∗) = F (P )A∗ + F (P )A + F (A)P + Pd(A∗)P + Pd(A) + A∗d(P ) + Ad(P ). (2.12)

Next, substituting iA for A into (2.10) and (2.11), we find that

F (A2 − AA∗ − A∗A) = F (A)A − F (A)A∗ − F (P )A∗A (2.13)
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−Pd(A∗)A + Ad(P )A + Ad(A) − A∗d(A) − AA∗d(P )

and

2iF (A) − iF (A∗) = iF (P )A − iF (P )A∗ + iF (A)P
−iPd(A∗)P + iPd(A) − iA∗d(P ) + iAd(P ). (2.14)

This implies that

2F (A) − F (A∗) = F (P )A − F (P )A∗ + F (A)P − Pd(A∗)P + Pd(A) − A∗d(P ) + Ad(P ). (2.15)

Adding (2.12) and (2.15), we arrive at

2F (A) = F (A)P + Ad(P ) + F (P )A + Pd(A). (2.16)

Now adding (2.11) and (2.13), we get

F (A2) = F (A)A + Ad(A) (2.17)

for all A ∈ A(H).
By Theorem 1 of [13], we see that d is an inner derivation on A(H). So, there exists an operator

N ∈ B(H) such that

d(A) = NA − AN (2.18)

for all A ∈ F(H). In view of relations (2.16) and (2.17), we conclude that F maps F(H) into itself. Also,
from (2.17), it is clear that F is a generalized Jordan derivation on F(H).

Note that F(H) is prime and hence F is a generalized derivation on F(H) by Theorem 2.5 of [7].
Furthermore, Theorem 4.2 of [7] asserts that F is a generalized inner derivation on F(H), that is, there
exist S, T ∈ B(H) such that for all A ∈ F(H),

F (A) = SA − AT. (2.19)

To complete the proof, it remains to show that (2.19) holds for all A ∈ A(H). We first claim that the
operators N in (2.18) and T in (2.19) differ by a scalar multiple of the identity operator I.

Indeed, for any A,B ∈ F(H), we have F (AB) = SAB − ABT. On the other hand, we have

F (A)B + Ad(B) = SAB − ATB + ANB − ABN.

Comparing the above two relations, we see that

AB(N − T ) = A(N − T )B (2.20)

holds true for all A,B ∈ F(H).
Pick y, u ∈ H such that 〈u, y〉 = 1. Now for arbitrary x, v ∈ H , the relation (2.20) becomes

x ⊗ y · u ⊗ v · (N − T ) = x ⊗ y · (N − T ) · u ⊗ v.

This leads to

(N − T )∗v = 〈(N − T )u, y〉v
for any v ∈ H . Hence, (N − T )∗ = 〈(N − T )u, y〉I, or equivalently,

N − T = 〈y, (N − T )u〉I.

Taking λ = 〈y, (N − T )u〉, we get N − T = λI.
We now define a linear map G : A(H) → B(H) as G(A) = SA − AT for all A ∈ A(H). We set

F0 = F − G, and observe that F0(A) = 0 for any A ∈ F(H). Thus, it remains to show that F0(A) = 0
for all A ∈ A(H). For any A ∈ A(H), we can write

F0(AA∗A) = F (AA∗A) − G(AA∗A)
= F (A)A∗A + Ad(A∗)A + AA∗d(A) − SAA∗A + AA∗AT

= F (A)A∗A + ANA∗A − AA∗NA + AA∗NA − AA∗AN − SAA∗A + AA∗AT

= F (A)A∗A + A(T + λI)A∗A − AA∗(T + λI)A + AA∗(T + λI)A
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−AA∗A(T + λI) − SAA∗A + AA∗AT = F (A)A∗A − SAA∗A + ATA∗A.

and

F0(A)A∗A = F (A)A∗A − G(A)A∗A = F (A)A∗A − SAA∗A + ATA∗A.

Therefore, we have F0(AA∗A) = F0(A)A∗A for any A ∈ A(H). Let A ∈ A(H) and P be a rank one
projection. We write K = A − AP − PA + PAP . One can easily check that KP = PK = K∗P =
PK∗ = 0 and F0(K) = F0(A). We have

F0(A)K∗K = F0(K)K∗K = F0(KK∗K) = F0(KK∗K + P ) = F0((K + P )(K + P )∗(K + P ))
= F0(K + P )(K + P )∗(K + P ) = F0(A)(K∗ + P )(K + P ) = F0(A)K∗K + F0(A)P,

implying that F0(A)P = 0. Since P is arbitrary, it follows that F0(A) = 0 for all A ∈ A(H). This
completes the proof of the theorem.

As an immediate consequence of Theorem 2.1, we have the following corollary.

Corollary 2.1 ([13], Theorem 1). Let H be a complex Hilbert space, and let A(H) ⊆ B(H) be a
standard operator algebra, which is closed under the adjoint operation. Suppose there exists a
linear mapping d : A(H) → B(H) satisfying the relation

d(AA∗A) = d(A)A∗A + Ad(A∗)A + AA∗d(A)

for all A ∈ A(H). Then d(A) = TA−AT for all A ∈ A(H) and some T ∈ B(H), which means that
d is an inner derivation.

The proof of the following theorem is similar to that of Lemma of [10]. For the sake of completeness,
we include it here.

Theorem 2.2. Let H be a complex Hilbert space, and let A(H) ⊆ B(H) be a standard operator
algebra, which is closed under the adjoint operation. Further, let φ : A(H) → B(H) be a linear
mapping satisfying

φ(AA∗A) = φ(A)A∗A (2.21)

for all A ∈ A(H). Then φ is a left centralizer and there exists a linear operator C ∈ L(H) such
that for all A ∈ A(H), φ(A) = CA.

Proof. Let A ∈ F(H) and P be a finite rank projection such that AP = PA = A. Substituting A + P
for A in relation (2.21), we obtain

φ(A2 + A∗A + AA∗ + 2A + A∗) = φ(A)A + φ(P )A∗A + φ(A)A∗ + φ(A)P + φ(P )A + φ(P )A∗.

Replacing A by A + P and A − P respectively in the above relation, we can get

φ(2A + A∗) = φ(A)P + φ(P )A + φ(P )A∗. (2.22)

Replacing A by iA in (2.22), we get

φ(2iA − iA∗) = iφ(A)P + iφ(P )A − iφ(P )A∗.

It follows that

φ(−2A + A∗) = −φ(A)P − φ(P )A + φ(P )A. (2.23)

Equalities (2.22) and (2.23) yield that φ(A∗) = φ(P )A∗. Replacing A∗ by A results in

φ(A) = φ(P )A. (2.24)

We now show that φ is a left centralizer on F(H), that is, φ(AB) = φ(A)B for all A,B ∈ F(H). If H is
finite dimensional, the choosing P = I, we get φ(AB) = φ(I)AB = φ(A)B. If H is of infinite dimension,
then we fix an element x ∈ H , and claim that for any y ∈ H , there exists an element xy ∈ H such that
φ(x ⊗ y) = xy ⊗ y. Let y1, y2 ∈ H . If y1 and y2 are linearly independent, then

φ(x ⊗ (y1 + y2)) = xy1+y2 ⊗ (y1 + y2) = xy1+y2 ⊗ y1 + xy1+y2 ⊗ y2.

JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS Vol. 53 No. 1 2018



32 ALI ET AL

On the other hand, we have

φ(x ⊗ y1) + φ(x ⊗ y2) = xy1 ⊗ y1 + xy2 ⊗ y2.

It follows that xy1 = xy1+y2 = xy2 . In the case where y1 and y2 are linearly dependent, we may find a
y3 ∈ H such that y1, y3 as well as y2, y3 are linearly independent. Therefore, xy1 = xy3 = xy2 .

Pick an element u ∈ H such that 〈u, y〉 �= 0. Let v ∈ H be arbitrary. We have

φ(x ⊗ y · u ⊗ v) = φ(〈u, y〉x ⊗ v) = x〈u,y〉v ⊗ 〈u, y〉v
= 〈u, y〉x〈u,y〉v ⊗ v = 〈u, y〉xy ⊗ v = xy ⊗ y · u ⊗ v = φ(x ⊗ y)u ⊗ v.

If 〈u, y〉 = 0, we have φ(x ⊗ y · u ⊗ v) = 0 and, by (2.24),

φ(x ⊗ y · u ⊗ v) = φ(P )x ⊗ y · u ⊗ v = 0

for some finite rank projection P . Now, we can conclude that for any A,B ∈ F(H) φ(AB) = φ(A)B.
This implies that φ is a left centralizer on F(H). Next, we pick y, u ∈ H with 〈y, u〉 = 1, and define
Cx = φ(x ⊗ u)y for any x ∈ H . Obviously, C is linear. Now for any A ∈ F(H) and x ∈ H ,

CAx = φ(Ax ⊗ u)y = φ(A)x ⊗ u(y) = φ(A)(〈y, u〉x) = φ(A)x.

Thus, φ(A) = CA for all A ∈ F(H).

To complete the proof, it remains to show that φ(A) = CA for all A ∈ A(H). Define Φ by Φ(A) = CA
for all A ∈ A(H) and let φ0 = φ−Φ. It is obvious that φ0(A) = 0 for all A ∈ F(H). One can check that
φ0(AA∗A) = φ0(A)A∗A for all A ∈ A(H).

Let A ∈ A(H). Suppose that P is a finite rank projection and let K = A − AP − PA + PAP . We have

φ0(K)K∗K = φ0(KK∗K) = φ0(KK∗K + p)
= φ0((K + P )(K + P )∗(K + P )) = φ0(K + P )(K + P )∗(K + P ).

This leads to φ0(K)P = 0. Observing that φ0(K) = φ0(A), we get φ0(A)P = 0 for any finite rank
projection P . Hence, φ0(A) = 0 for all A ∈ A(H). Theorem 2.2 is proved.

The proof of the next result is just a modification of that of Theorem of [10]. We present the proof for
the reader’s convenience.

Theorem 2.3. Let φ : A → A be a linear mapping on a semisimple H∗-algebra A satisfying

φ(xx∗x) = φ(x)x∗x (2.25)

for all x ∈ A. Then φ is a left centralizer.

Proof. Let e ∈ A be a projection. Replacing x by x + e and x − e in (2.25), respectively, and comparing
the resulting equalities, we arrive at

φ(ee∗x + xe∗e + ex∗e) = φ(e)e∗x + φ(x)e∗e + φ(e)x∗e. (2.26)

Let {Aα : α ∈ Γ} be a collection of minimal closed ideals of A such that their orthogonal direct sum is
A. For α ∈ Γ and x ∈ Aα, let e be a minimal projection with e ∈ Aβ (α �= β). It follows from (2.26) that
φ(x)e = 0. Thus, φ(x) ∈ Aα, which implies that Aα is invariant under φ. By Theorem 2.2, we conclude
that φ is a left centralizer on Aα for each α ∈ Γ. Furthermore, it follows from Theorem 2.2 and Remark
1 of [9] that φ is continuous on Aα for every α ∈ Γ.

Let {xn} ⊆ A and y ∈ A be such that

lim
n→∞

xn → 0 and lim
n→∞

φ(xn) → y.

If e ∈ A is a minimal projection, from (2.26) we see that

0 = lim
n→∞

[φ(e)exn + φ(xn)e + φ(e)x∗
ne] = ye,

implying that y = 0. By Closed Graph Theorem, φ is continuous.
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For any x, y ∈ A, we write x =
∑

α∈Γ xα and y =
∑

α∈Γ yα, where xα, yα ∈ Aα (α ∈ Γ). We have

φ(xy) = φ
(∑

α∈Γ xα
∑

α∈Γ yα

)
= φ

(∑
α∈Γ xαyα

)
=

∑
α∈Γ φ(xαyα) =

∑
α∈Γ φ(xα)yα

=
(∑

α∈Γ φ(xα)
)(∑

α∈Γ yα

)
= φ

( ∑
α∈Γ xα

)( ∑
α∈Γ yα

)
= φ(x)y.

Thus, φ(xy) = φ(x)y for all x, y ∈ A. This completes the proof of Theorem 2.3.
We conclude our paper by proving an analog of Theorem 2.1 on semisimple H∗-algebras.

Theorem 2.4. Let A be a semisimple H∗-algebra. Suppose there exists a linear mapping F : A →
A satisfying the relation

F (xx∗x) = F (x)x∗x + xd(x∗)x + xx∗d(x)

for all x ∈ A, where the associated linear mapping d : A → A satisfies the relation

d(xx∗x) = d(x)x∗x + xd(x∗)x + xx∗d(x)

for all x ∈ A. Then F is a generalized derivation.

Proof. By Theorem 2 of [13], d is a linear derivation. Now, for any x ∈ A, we have

(F − d)(xx∗x) = F (xx∗x) − d(xx∗x) =
(
F (x)x∗x + xd(x∗)x + xx∗d(x)

)

−
(
d(x)x∗x + xd(x∗)x + xx∗d(x)

)
= F (x)x∗x − d(x)x∗x = (F − d)(x)x∗x.

In view of Theorem 2.3, we conclude that F − d is a left centralizer. Therefore, for any x, y ∈ A, using
the fact that d is a derivation, we obtain

F (xy) = (F − d)(xy) + d(xy) = (F − d)(x)y + d(x)y + xd(y) = F (x)y + xd(y).

Hence, F is a generalized derivation. Theorem 2.4 is proved.

Corollary 2.2 ([13], Theorem 2). Let A be a semisimple H∗-algebra. Suppose there exists a linear
mapping d : A → A satisfying the relation

d(xx∗x) = d(x)x∗x + xd(x∗)x + xx∗d(x)

for all x ∈ A. Then d is a derivation.

REFERENCES
1. W. Ambrose, “Structure theorems for a special class of Banach algebras”, Trans. Amer. Math. Soc., 57,

364-386, 1945.
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