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Abstract—1In this paper, motivated by certain recent extensions of the Euler’s beta, Gauss’ hyper-
geometric and confluent hypergeometric functions (see [4]), we extend the Srivastava’s triple hy-
pergeometric function H 4 by making use of two additional parameters in the integrand. Systematic
investigation of its properties including, among others, various integral representations of Euler and
Laplace type, Mellin transforms, Laguerre polynomial representation, transformation formulas and
a recurrence relation, is presented. Also, by virtue of Luke’s bounds for hypergeometric functions
and various bounds upon the Bessel functions appearing in the kernels of the newly established
integral representations, we deduce a set of bounding inequalities for the extended Srivastava’s triple
hypergeometric function H4 p 4.
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1. INTRODUCTION AND PRELIMINARIES

Throughout the paper, N, Z~ and C will denote the sets of positive integers, negative integers and
complex numbers, respectively. Also, we denote Ng = NU {0} and Z, = Z~ U {0}. The definition of the

generalized hypergeometric function with r numerator and s denominator parameters, as a series,
reads as follows:

TFs(al’”. @r3 by, b Z) :rFs(ar; bs; Z) = Z (al)m:::(ar)m z

m>0

where b; € C\ Z ,j = 1,s. The series converges forall z € Cifr < s. It is divergent for all z # 0 when
r > s+ 1, unless at least one numerator parameter is a negative integer, in which case it becomes a
polynomial. Finally, if » = s + 1, the series converges on the unit circle [z| = 1 when R( > b; — > a;) >
0. The celebrated Gauss’ hypergeometric function is 9F;, and the confluent Kummer’s function is
b = 1F1.

Extensions, generalizations and unifications of Euler’s Beta function together with related higher
transcendent hypergeometric type special functions were investigated recently by a number of authors
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EXTENDED SRIVASTAVA'S TRIPLE HYPERGEOMETRIC 277

(see [2, 3], and references therein). In particular, Chaudhry et al. [2, p.20, Eq.(1.7)] presented the
following extension of the Beta function:

1 P
B(z,y;p) :/0 (1 -ty te amadt,  R(p) > 0; (1.1)

where for p =0, min{®(z), R(y)} > 0. They also obtained related connections of B(z,y;p) with
Macdonald (or modified Bessel function of the second kind), error and Whittaker functions. Further,
Chaudhry et al. [3] used B(z, y;p) to extend the Gauss’ hypergeometric and the confluent (Kummer’s)
hypergeometric functions in the following manner:

= Bb+n,c—b;p) 2"
Fabic2) =3 (@, DT 0 < 1R 2 RO >0, (12)

n>0 ’ ’
Dy(bicsz) = 3 PO TR 0 > ) > 0, (1)

= B(b, ¢ — b) n!’

respectively. More recently, Ozarslan and Ozergin [14] defined the extended first Appell function in the
form:

Fi(a, b,V c2,u0) = Y (0)m)n

m,n>0

m n

Bla+m+n,c—a;p) 2™ y
R(p) >0 1.4
B(a,c — a) m! n!’ () 20, (1.4)

provided that max{|x|, |y|} < 1. They obtained the following integral representation (see [14, p.1826,
Eq.(2.1)]):

1 ja—1 1— c—a—1 ,
Fi(a,b,b';¢;x,y:p) :/ ray (1—at) (1 —yt) e =0 dt, (1.5)

o Bl(a,c—a)

for all R(p) > 0 and max{| arg(1 — x)|, | arg(1l — y)|} < m; R(c) > R(a) > 0.

[t is clear that the special cases of (1.1) — (1.4) when p = 0 reduce to the classical Euler’s Beta,
Gauss’ hypergeometric, confluent hypergeometric and the first Appell functions, respectively. Recently,
Choi et al. [4] have introduced further extensions for functions B(x, y;p), Fy(a, b; ¢; z) and ®,(b; ¢; 2) in
the following manner:

1
B(z,y;p,q) = / t* 1 — )yt etk dt, (1.6)
0
when min{R(x), R(y)} > 0;min{R(p), R(¢)} > 0, and by means of (1.6):
B(b+mn,c—0b;p,q) 2"
Fuafasticia) = Y (@, 0G0 TP i@ > R0 20, )
n>0 ! ’

B(b+n,c—0b;p,q) 2"

plbiciz) = 3 B(b,c—b)  nl

n>0

, R(c) > R(D) > 0. (1.8)

Related properties, various integral representations, Mellin transform are also given in [4].

A further extension of extended Appell function (1.5), in terms of the extended beta function
B(x,y;p,q) (1.6), we introduce as the series:

n

Bla+m+n,c—a;p,q) 2™ vy

Fl(a7b7b/;c;m7y;p7q) = Z (b)M(b/)n B(CL C—(I) m| n' )

m,n>0

(1.9)

which turns out to be a special case of the double series SgHZ)ZENO when ky = 1 (see [20, p. 256, Eq.
(6.3)]). It should be noted that the thorough study of these functions is still an interesting open question.
Note that the series (1.9) plays one of the central roles in the present paper. Also, it is clear that when
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278 PARMAR, POGANY

p = q(resp. p = q = 0), the functions in (1.6) — (1.9) reduce to (1.1) — (1.4)(resp., to the classical Euler
Beta, Gauss hypergeometric, confluent hypergeometric and Appell functions), respectively.

In terms of the extended beta function B(z, y; p, ) defined by (1.6), we now introduce the extended
Srivastava’s triple hypergeometric function for all o, 3, 3’ € Cand y, 4" € C\ Z in the form:

B(ﬁ'—l—m—l-n’y'—ﬁ"p )l,k:ymzn
H /. /. _ (a)k-i-n(ﬁ)k’-i-m ) yD,q
Apalas B, 857,752,y 2] km§n>0 (V)& B(G,~ — 3) Emln

when min{p, ¢} > 0; |z| <r, |y| <s, |z| <t, whiler =(1—35)(1—t)whenp=¢g=0.

The special case of (1.10), H4,0,0 = H4 reduces to the Srivastava’s triple hypergeometric function
H 4, introduced in [16] (see also [17]):

(1.10)

HA[aaﬁvﬁ/§77’)//;lL‘,y,z] = Z ( )k+n(5)k+m (5 + m 4+ n, fy _B/) 2k ym 2"

- k,m.n>0 Yk B8,y —3) k! m! n!
( )k-i—n(ﬁ)k—i—m( )m+n l‘k ym 2"
- 1.11
k’,rnz,;>0 (’Y)k( )m+n k' m' n' ’ ( )

where |z| <7, |y| <s,|z| <t;r=(1—s)(1—1t)(compare[18, p.43, Eq.(11)], and references therein).
Motivated essentially by the potential applications of functions B(x, y; p, q), Fp, 4(a, b; ¢; 2), ®p 4(b; ¢; 2)

and the extended Appell’s function Fy(a,b,b';c;x,y;p,q) in diverse areas of mathematical, physical,

engineering and statistical sciences (see [4], and references therein), our aim is to introduce and

investigate, in a rather systematic manner, the extended Srivastava’s triple hypergeometric functions

H 4 p 4, by presenting:

(i) various Euler and Laplace type integral representations, as well as, further integral representations

involving the Bessel and modified Bessel functions in the kernel,

(ii) Mellin transform, Laguerre polynomial representations and certain recurrence relations;

(iii) a set of bounding inequalities, using the underlying new integral expressions, where the main

tool is the Luke’s rational and exponential bounds for the generalized hypergeometric functions , F},

and as a counterpart, diverse bounds upon the Bessel functions appearing in the kernels of integral

representations.

2. ON THE EXTENDED SRIVASTAVA'S TRIPLE HYPERGEOMETRIC FUNCTION

In this section we study three different categories of results concerning the newly defined special
function Hy4 4 4 that are: integral representations, recurrence and transformations formulas.

2.1. Integral representations. In this subsection, we establish a set of Euler and Laplace type integral
representations for function H 4, 4. We also obtain certain integral representations for H 4 4 involving
the Bessel and modified Bessel functions. We begin with a simple auxiliary integral representation result,
which, to the best of our knowledge, is new, and is of interest by itself.

Lemma 2.1. For all min{R(p),R(q)} > 0 and max{|arg(1l — z)|,|arg(l — y)|} < 7; R(c) > R(a) >
0, we have

1 ta—1 1— c—a—1 ,
Fi(a,b,0';c;2,93p,q) :/O ! B((a’c? 2 (1—at) (1 —yt) et 1l dt. (2.1)

Proof. Applying the integral expression (1.6) to the extended Beta—function kernel, we can write

Bla+m+n,c—a;p,q) 2™ y
Fi(a,bbicz,ypq) = Y (O)m( o
l(av ,06G2,Y;D, q) mn>0( )m( )n B(CL,C _ a) ml nl

/ m ,n 1
= > O (@) ™y / gatmin=1(] _ pye-a-le=t =, g
0

— | |
o B(a,c —a) m! n!

m n
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EXTENDED SRIVASTAVA'S TRIPLE HYPERGEOMETRIC 279
_ Z —b - (_x)m(_y)n /1 ta—i—m-i—n—l(l - t)c—a—le—f— 2 dt
m n ) Bla,c—a) J ’
m,n>0

Taking into account the binomial series expansion (1 +u)~% =3, (79 uk; Ju| < 1, by legitimate
exchange of the order of integration and summation, we obtain (2.1).
Now, we are in position to state our first main integral representation result for function H 4 4.

Theorem 2.1. For all min{R(p), R(q)} > 0 and for all R(y') > R(B') > 0 when p = ¢ = 0, we have

Ha o Bl ] — /1 vﬁ’—1(1 —U)'y’_ﬁ/_l
PO By §) (1 - 0g)?(1 - vz)e

x _pP_ q
X ol (a,ﬁ;’y; (1—vy)(1—vz)> e v 1-vdu. (2.2)

Proof. Observe first that the extended Srivastava’s triple hypergeometric function Hy 4, defined by
(1.10), can be expressed as a single series by the extended Appell functions (1.9) as follows:

o o @Bk ey e o T
Hapglo, B, 857,7 2,0,2] = > (e DBt katkyiyzpg g, (23)
k>0 ’

Next, substituting the integral in (2.1) into (2. 3) we obtain

HA,p,q[aﬂ/Ba/B/;fY7’Y,;m7y7 Z] = ﬂ, Z/ p-1 ]_— ’Y ﬁ_l(l_vy)
k>0
—a p q '\ (@r(B)k T y
1= - - . 924
x (1 —wvz)™® exp < . U> (k! L(1— o) (1 — 02) dv (2.4)
Changing the order of summation and integration in (2.4), we arrive at (2.2). Theorem 2.1 is proved.

In the next theorem, we state two equivalent double integral expressions for function H4 4.

Theorem 2.2. Let the assumptions of Theorem 2.1 be fulfilled. Then
W1 =1 (1 — )r=h-1
Hapgla, 8,857,729, 2] / /
Apales P 057 B(3,7 ~ ) B(3,7' - )
(1—0)" =11 —py)F p_

(1 —uz — vy — vz + viyz)e e v dudv, (2:5)
and for all min{R(p), R(q)} > 0 we have
1
Hapgla, 8,857.7 2,y, 2] =
A,p,q[ 8,857, Yy ] B(3,v — B)B(B,v — ')
u’ 2’[)'y 2(1—vy) —B _P_ q
// (1 —zu— (y+ 2)v+ yzuv)® e v tvdudv. (26)

I[p=q=0,then (2.6) holds when R(v) > R(B) > 0and R(y') > R(B') >0

Proof. Using the well-known integral formula

c 1
oF (a, b; ¢; z) = F(b)l;‘((c)— ) /0 @)t A — ) at

forall R(c) > R(b) > 0; |arg(l — 2)| < 7w —¢,0 < € < 7, from (2.2) we obtain (2.5). Next, the represen-
tation (2.6) can easily be deduced from (2.5) after some simple algebraic manipulations. Theorem 2.2 is

proved.
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280 PARMAR, POGANY

Theorem 2.3. Let min{R(p), R(¢)} > 0and z > 0, max{R(y), R(2)} < 1, and min{R(«x), R(G)} >0
whenp = q = 0. Then we have

{]j2 _ _ _ _ 1
Hupola, 8,857, 7s Fa,y,2] = // sttpaTy —lgfTs

" { Jy—1(2V/zst)

} D487 ys +2t)dsdt.  (2.7)
17_1(2\/x3t)

Proof. Using the integral form of the Pochhammer symbols («)g1, and (8)g+m and the elementary
series identity (see[18, p. 52, Eq. 1.6(2)]):

Z Q (mq + m2) 1 ZQ a:1+a:2)7

ml' m2
mi,m2>0 m>0

in (1.10), and afterward applying the definition of extended confluent hypergeometric function (1.8), we
obtain

HA,p,q[O[,B,B/;’}/,")/,;x,y,z]
= 1 /OO /OO e_5—t ta—lsﬁ_loFl(_;fY; .Z'St) q)p’q(/gl;’yl; ys + Zt) ds dt. (28)
L(a)L(B) Jo Jo

Next, observe that the Bessel function J,, (z) and the modified Bessel function I,,(z) can be expressed in
terms of hypergeometric functions as follows (see [21]):

ron 0P () e ne= g en () eo)

being v € C\ Z~ in both cases. Finally, combining (2.8) and (2.9), we obtain (2.7). Theorem 2.3 is
proved.

Ju(z) =

2.2. Mellin transforms and representations via Laguerre polynomials. The double Mellin trans-
forms of suitable classes of integrable functions f(z,y) with indices r and s are usually defined by (see
[15, p. 293, Eq. (7.1.6)]):

M{f(z,y)}(r,s) = /0 /0 2"ty f(z,y) dedy,
provided that the improper integral exists.

Theorem 2.4. For all min{R(r), R(s)} > 0and R(F' +r) >0, R(y +s— ') > 0the Mellin trans-
form of Ha, 4 with respect to p,q > 0 is given by formula:

L(r)L(s)B(B +r,v +s—0") Hal

/ . / .
B(5/7,Y/_B/) a?/Ba/B + 7,y +T+S,$,y,2’]. (210)

M{HAP@}(T? 8) =

Proof. Using the definition of Mellin transform, we find from (1.10) that

o0 o0
M{HA,p,q}(T,S)Z/O /0 PN T Hap gl B, B, 2Ly, 2] dpdg

I B S ()ktn(B)ksm BB +m+n,y —B5p,q) zF y™ 2" dp d
A (k;o (M By @) Kmin ) re
() kn (B km a y™ 2"

()i TR /0 /0 PP TIB(B +m .y — B p,q) dpdg.

1
B(3,v — ) Z

k,m,n>0
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EXTENDED SRIVASTAVA'S TRIPLE HYPERGEOMETRIC 281
Next, applying the formula (see [4, p.342, Eq. (2.1)])

/ooo /Ooo P B, yi poq)dpdg = D(D(s)B@+1, y+5)  (R(r) >0, R(s) > 0)

to the double integral, we obtain

_ (@ ktn(B)ksm BB +m+n+ry — [ +s)zkym 2"
MA{Hapq} (r,s) =T(r)I(s) km%;O () B(3, v — B) Eoml ol

which, in view of (1.11), gives (2.10). Theorem 2.4 is proved.
The special case of (2.10) when r = s = 1 yields the following relation between the function H 4 4
and the Srivastava’s triple hypergeometric function H 4:

8 =8 g

a? ) /+]‘; ) /+2;m7 727
(1) 8,6 ¥,y Y, 2]

/ Hapglo, 8,857,752, y, 2] dpdg =
0
provided that R(v") > R(5’) > 0.

Theorem 2.5. The following Laguerre polynomial representation holds for ®(p) > 0, R(q) >0
e_p_q

/. /. — B / 1 - 1
HA,p,q[CV’@ﬂa%’Ya%%Z] B(ﬂ,,"}/,—ﬂ/) Z (/8 +n+ Y ﬂ +m + )

m,n>0

X Hapgle, 3,6 +n+ 17,9 +m—+n+ 22,9, 2] Ln(p) Ln(q)

Proof. We start by recalling the following identity, in a slightly corrected form, due to Choi et al. [4,
p. 350, Eq. (5.9)]:

oo (-] -,7,) { > L) Lulg) 4™ <1t>m+1}

m, n=0

Using this identity, from (2.2) we obtain

—p—q r .
HA,p,q[a?ﬁ>ﬁ,;’y>’7,;xaya Z] = B(ﬁ? 7/ _ ﬁ/) / ’Uﬁ _1(1 — U)’y B _1(1 — Q}y)_ﬁ(l _ UZ)_a
X ok} [a,ﬂ;’y; (1—v ) (1— v } {mz Ly, p" (1v)m+1} dv.  (2.11)

Now, changing integration and summation order in the representation (2.11) and using (2.2), we obtain
the desired result. Theorem 2.5 is proved.

2.3. Transformations and recurrence relations. In this subsection, we first derive a transformation
formula and then obtain a recurrence relation for function H 4, 4.

Theorem 2.6. The following transformation formula for Hy 4 holds:
Hapgla, 8,857,752y, 2]

(1 — ) B(1 — ) R A g y 2 2.12
(1 y) (1 Z) HA,q,p |:O‘7677 677777(1—:1/)(1—2)’:1/—1’/3—1 ( . )

Proof. Applying to (2.8) the extended Kummer’s transformation (see[4, p.361, Eq.(11.4)]) @, ,(8;v; 2) =
e* ®4,(y — B;7v; —2), we find that

HA,pq[aﬂﬂ’Y’Y$y, = // 1yt(1z)ta151
X oF1(=;7y;zst) @qp(7 —ﬁ %—yS—zt ) dt ds.
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The substitution ¢(1 — z) = u, s(1 —y) = v leads to

1— -0 1— )@ 0o oo
Hypqlen 8,857,795 2,y,2] = ( lyﬂ)(a)fﬂ(ﬁ)z) /0 /O e UV 101
v

L Tuv oAl y ZU
<o (st ) e (7 Ty (T ) e

which is exactly the same as (2.12). Theorem 2.6 is proved.

Theorem 2.7. The following recurrence relation for H 4, 4 holds:

HA,p,q[a7ﬂ7ﬂ,;’Ya’Y/; z,Yy, Z] = HA,p,q[a7ﬂ7ﬂ,;’y - 17,7,; z,Yy, Z]
afx

}IA7 s [a—i_lvﬁ_‘_17ﬁ/a7+177/7$7y7z]
YL —y)

Proof. Using in the integral representation (2.8) and the contiguous relation

oF1(—=v—1Lz) —oF1(—;v;2) — oF1(=;v+1;2) =0,

1y =1

we obtain the desired result. Theorem 2.7 is proved.

3. BOUNDING INEQUALITIES

In this section, we find bounding inequalities for the extended Srivastava’s triple hypergeometric
function Hy4 p 4. We begin with a simple auxiliary lemma that gives a functional bound for function
B(x,y;p,q), defined by (1.6).

Lemma 3.1. For all min{p, ¢} > 0 and min{R(z),R(y)} > 0 we have
B(z,y;p,q) < e VPV B(z,y). (3.1)

Indeed, using the sharp estimate

Sup exp {_p - } — o WPV min{p, ¢} >0,
o<t<1 t 1-—t

from (1.6) we obtain (3.1).

3.1. Bounds obtained via series representations. Applying the functional bound (3.1) to all series
representations of newly extended special functions involving the function B(z,y;p,q), such as the
extended Gauss’ hypergeometric F), 4, the extended Kummer’s coniluent hypergeometric @, ,, the
extended Appell’s Fy and the extended Srivastava’s triple hypergeometric H 4, , functions, given by
(1.7) = (1.10), respectively, we obtain the following functional bounds.

Theorem 3.1. For all min{p, q} > 0; R(c) > R(b) > 0 and for all |z| < 1 we have
Fpglab;c;2) < e WPV 4y (a, b ; 2)
Py q(bsc;2) < o (Vptva)? O(b;c;2) . (3.3)
Moreover, for max{|arg(1 — z)|, |arg(1 — y)|} < m;R(c) > R(a) > 0, we have
Fi(a,b,6;c;2,y5p,q) < o WPV Fy(a,b,05¢2,y) ;
while for x| <, |y| <s, |z| <tandt= (1—r)(1—s)whenp=q=0,we have

_ 2
Hapla, 8,857,729, 2] < e WP Hylo, 8,857,795 2, y, 2.
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Proof. To prove the inequality (3.2), observe that all parameters and expressions in (3.2) are positive,
and hence we can use the series representation of the extended Gauss’ hypergeometric function (1.7)
and Lemma 2 to conclude that:

o= (VP+va)?® 2"
F i < nB &
pala,bic; z) < B(b,c — b) nz;()(a) (b+n,c—b) !
_ e (WPVaTT(Q) yo (@nlOFn) 2 v o (@O
I'(b) =~ I'(c+n) n! o (€)n n!

From the last relation we easily obtain (3.2). The other three inequalities can be proved similarly, and so
we omit the details. Theorem 3.1 is proved.

3.2. Bounds obtained via integral representations. In this subsection, we establish another type
bounding inequalities for function Hy4, 4, combining its newly derived integral expressions and the
bound (3.1) stated in Lemma 2. Since the integrands consist of either the exponential exp{—p/t —
q/(1 —t)} or rational functions (Theorems I and 2) and extended Kummer’s ®,, , together with the
modified Bessel functions (Theorem 3), we need auxiliary tools to bound the involved special functions.

In [11], Y. Luke, has studied, among others, the problem of two-sided inequalities for , F.—type

generalized hypergeometric function, where the bounds consist of polynomials and/or exponential
expressions. We recall some results from [11], which are usable for Kummer’s function ®. Ii b; > a; >

0, j = 1,r, then for all z > 0 we have (see[11, p. 57, Theorem 16, Eq. (5.6)]):

e < F. (a,n; by; z) <1- 9(1 - ex) , (3.4)
where
2
o= """ . (3.5)
min b;
1<j<r

For all ¢ > b > 0, the bilateral inequality (3.4), applied to the Kummer’s confluent function ®(x) =
1F1(b; ¢; ), reduces to the following:
b

0c® <Pb;c;2)<1-— C(l —e"), (3.6)

where the equality holds for b = ¢. Also, we point out some other estimates for o F7 from [11, p. 55,
Theorem 13, Eqs. (4.21), (4.23)], which are too complicated to be used here.

For another estimation purposes we recall certain bounding inequalities for function J,(¢) on the
positive real half—axis. We first mention von Lommel’s results (see [9], [10, pp. 548—549], and also [21,
p. 406]):

1
|JV(t)| < 17 |JV+1(t)| < \/27 v> 07 u e R7 (37)
and the bound obtained by Minakshisundaram and Szész (see[12, p. 37]):
1 E1\"
< . .
@<y (5) o ter (38)

Another bounds were derived by Landau [8], who gave in a sense the best possible bounds for J,, () with
respect to v and ¢. These bounds read as follows:

[T, ()] <bpv 3, by = V2sup Ai(t), (3.9)
t>0
L] < et ™3, ep =suptB(t), (3.10)
t>0

where Ai(-) stands for the Airy function.
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Krasikov [5] established uniform bounds for |.J,, (¢)|. Let v > —1/2, then

4(4t%2 — (v +1)(2v + 5)
Jf(t) < ( 7T((4t2 _ )\)3/2 _ )\) ) = ﬁu(t)7

for all ¢ > ;\/)\ +A2/3, XN:= (2v+1)(2v + 3). This estimate is sharp in a certain sense (see [5,
Theorem 2]). In turn, Krasikov recently has obtained a set of more precise and simpler bounds for |.J,, (¢)|
(see[6, 7]). More precisely, for all v > 1/2 and for all ¢ > 0 the following inequality holds (see [6, p. 210,

Theorem 3]):
1M 2
IJy(t)IS\/ , (3.11)

t2—‘1/2—
0

where the constant on the right-hand side is sharp. Next, Theorem 4 from [6, p. 210] implies the following
inequality:

2 1
|Jy<t>|s\/ toel— |2 >0 0pl <1, (3.12)
7t 4
where
(22, z>o0, | <1)2
c=19q3 0<z<+|v2—1/4],v>1/2
2, x> /|2 —1/4], v >1/2.

Here the constant ¢ cannot be less then 1/v/2w. For another kind of bounds for function J, (t) consult
[6, Theorems 2, 5, 6] and [7, Theorems 2, 4].

[t is worth to mention that Olenko [13, Theorem 1] established the following upper bound:

o 3a?
igg\/tu,,(tﬂ §bL\/1/1/3—|—V1}3 + 10; = do, v>0, (3.13)

where o is the smallest positive zero of the Airy—function Ai and by, is the Landau’s constant from
above. In this respect we also point out Krasikov’s result [6, p. 211, Eq. (7)].
Further considerable upper bounds are listed, for instance, in[1, 19].

Finally, a different approach to estimate the function |J,(¢)| was used by Srivastava and Pogany in
[19]. Let us denote by xs(x) the characteristic (or indicator) function of a set S, that is, xs(x) = 1 for
x € S and xg(x) = 0 elsewhere. In this approach, the integration interval is the positive real half-axis,

therefore we need an efficient bound for |.J,(¢)] on (0, 4], A > VA + A2/3/2. So, we use the bounding
function

O] < Vilt) = X010+ y/Ru(8) (1= X0 1). (3.14)

where, by simplicity reasons, we choose Ay = 5 (A4 (A + 1)2/3), because R, (t) is positive and mono-
tone decreasing fort € % (()x + \2/3), oo) (cf.[19, §3]). Notice that as Ay can be taken any function of the
form é ()\ + (A + 7])2/3) with > 0. (The interested reader is referred to [1], too). Obviously, combining

(3.11),(3.12) in V,,(¢) replacing Olenko’s result and/or &, (¢) in (3.14), we can define further bounding
functions for |J,,(¢)|.

Since the integral representation (2.7) can also be expressed in terms of modified Bessel function I,,,
we can apply the Luke’s estimate to bound H 4 , 4. This inequality reads as follows (see [11]):

t\ K
(3)
L(p+1)
Now we are ready to state and prove our second set of bounding inequality results.

I,(t) < cosh t, t>0,p+1>0. (3.15)
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Theorem 3.2. Let min{R(p),R(q)} > 0 and for all max{R(y),R(2)} < 1, min{R(«a),R(F)} >0
when p = q = 0. Then under 2min{a, 8} + 1 > v > 0 we have

L(y)T(a— 59T -5 [« 2
V2T (a)T(B) elVPtva)?

x {1 - 5: (1 — 1y —z)—a”?)}. (3.16)

In the same parameter range for all x > 0 we have

Py = 73T = 5y el
{/r — 1T (8) v

/8/ _ y—1 —a ~y—1
x{l—’yl (1—(1—y) A7 (1 — 2yt ) . (317)
For all min{c, 3,7} > 0 and for z > 0; y,z < 1, we have
[Hapalon 8,057 —09,7] < e v 1= D (1o -5 b (318

For min{a, B} > 0; v > 1l and forx > 0; y,z < 1, we have
[(y) e~ (VPtva)?®

|HA,;D7q[04, ﬁa ﬁ,7 v ’Y/a —T,Y, ZH <

|HA,;D7q[04, ﬁa ﬁ/7 v ’Y/a —T,Y, ZH <

‘HAvp,q(a,B,B’;%’/;—m,y, Z]‘ <

I'(a)T(8)
B e Ve (g a1 (18 ;
L _ _ _
V2 Fla=5+3)T (-2 +5) (1 v ¥ (1—y)5*3+§(1—z)“*3+%>
X
dox_3+ir(a—7+1)r(ﬁ—7+1) (1—5'+ ”: )
V2 2 4 2 4 vy (1_y)5—;+}1(1_z)&—¥+}1 ’

here the bound above holds if 6ac — 3y + 2 > 0, while expression below appears for 4o — 2y + 1 > 0.
Moreover, for all min{«, 3,7} > 0and forally,z € (0,1 —\/x), z > 0, we have

17 g
PV < o~ (VPHva)? ¥ v
|HA7p,q[Ol,/8,/8,’Y,’Y,x,y,ZH >¢ (1—\/{13)O‘+6 + (1—\/.T—y)ﬁ(].—\/l’—2')a

(3.19)

Proof. From the double integral representation (2.7) and the estimate (3.3), we obtain

T(y) e~ (VPtva) e
|Hapalew B, 857,7" —,y,2]] < 5=t ja="31-1,6

(a)0(8) || =
" { | Jy—1(2Vzst)|
I,_1(2Vxst)
Next, using the second inequality in (3.6), we get

o0 [e.e] /
Ry < / / R N | |J _1(2\/mst)| {1 _ 5, (1 _ eys—i—zt)} dsdt =: R, .
o Jo I,_1(2Vzst) v

(3.21)
Now, we bound the modulus of the Bessel functions in the integrand of Ry for each of the cases of the
theorem. First, using the von Lommel’s uniform bound (3.7), valid for all v > 0, from (3.20) and (3.21)
we obtain (3.16). In similar manner, (3.17) follows from the Landau’s first inequality (3.9) and (3.20),
(3.21).

—( )?
O(3;v;ys + 2t) dsdt =: F(e \/p+\iq_l R;. (3.20)
L()I'(B) x|
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The bound (3.8) due to Minakshisundaram and Szasz is of magnitude |J,_:(t)| < C,t*, and
so do the second Landau’s (3.10) and Olenko’s (3.13) inequalities, where C;, > 0, k € {v, —é, —5},
respectively. Thus, by these three inequalities, we get

[e.e] o0 /
Ry < Cyz|2 / / et gt T g {1 - ﬁ/ (1- eysm)} ds dt
o Jo Y

/ o o
= Oy af? <1‘B/>/ / ems et I T gy
Y 0 0

” — 1 — 1
:Cy|x\2F<a+K ;+ )r(m" ;+ >

g p 1
X<1— + . . .
{ VY =y (et

1

3 —% we realize the bounds affiliated to the

Now, choosing k = v — 1 we arrive at (3.18), then for k = —
second Landau’s and Olenko’s estimates, respectively.

As to the use of the bound (3.15) to estimate Ry, we remark that cosh u < e*, u > 0, and hence by
the arithmetic mean—geometric mean inequality, we get

/
Ry < |§\ 2 / / o—s—tH2Vast a1 -1 {1_ f/ (1_eys+2t)} dsdt
|a:\ 2 / / ~(1=vz)s—(1—v/2)t ya—1 (-1 {1_5: (1—eyS+Zt)} dsdt =: R3.

0
Thus, we have

B I
gy D@T@ 2 [ 1= v
r(y) (1= vyt " (1= e —y)P(1 = Vo —z)e [
which proves the upper bound in (3.19). Theorem 3.2 is proved.

4. CONCLUDING REMARKS AND OBSERVATIONS

In the present paper, we have introduced the extended Srivastava triple hypergeometric functions
H 4 ;4 with the help of the extended Beta function B(x, y; p, ¢). The special cases of (2.2) — (2.8) and
(2.12) for p = q = 0, reduce to the already known results for the triple hypergeometric function H 4 (see
[16—18]).

To refine the bounds presented above, we can also apply Luke’s companion estimate to (3.4) (see[11,
p. 57, Theorem 16, Eq. (5.8)])

1+0$e12bx<,«F,«(a,«; by z) <1406z <1—1§+1§ex> , (4.1)

where 6 is given by (3.5), and

1 + max a;
1<5<r

1+ min b,
1<5<r

Y =

These notations simplify (4.1) to

b 1+b b 1+b
1 O(b; ¢; 2) < 1 1 1- %)) .
* cwexp{2(1+0)$} <@bcz) <14 cx< 2141 ° )>
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Now, following the procedure, used in the proof of Theorem 3.2 with this upper bound and/or replacing
some of bounds for the Bessel J,, used there either by Krasikov’s results (3.11), (3.12) or another kind
bounds exposed in [6, 7], we can obtain a new set of bounding inequalities for function H4 4 4. However,
this approach will be exploited in some future work.
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