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Abstract—In the present paper, sequences of real measurable functions defined on a measure space
([0, 1], μ), where μ is the Lebesgue measure, are studied. It is proved that for every sequence fn that
converges to f in distribution, there exists a sequence of automorphisms Sn of ([0, 1], μ) such that
fn(Sn(t)) converges to f(t) in measure. Connection with some known results is also discussed.
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1. INTRODUCTION

Let fn, n = 1, 2, . . . and f be real measurable functions defined on a measure space (Ω, μ), μ(Ω) = 1,
and let Fn, n = 1, 2, . . . and F be the corresponding distribution functions, that is,

Fn(x) = μ(ω ∈ Ω : fn(ω) ≤ x), −∞ < x < ∞,

F (x) = μ(ω ∈ Ω : f(ω) ≤ x), −∞ < x < ∞.

A sequence fn is said to converge to f in distribution if Fn(x) → F (x) as n → ∞ at each continuity

point of F . We use the notation
D

lim for this convergence. It is well known that convergence in measure
implies convergence in distribution (see [1], p. 31). Clearly the converse is not true.

We also use the notions of isomorphism of measure spaces and metric type of measurable functions,
introduced by V. A. Rokhlin (see [2], [3]). A mapping from one measure space to another is said to be an
isomorphism if it is one-to-one and both the mapping itself and its inverse mapping map any measurable
set to a measurable set of the same measure. In the case where both spaces coincide, the mapping is
called an automorphism.

Two spaces admitting isomorphic mappings to each other, are called isomorphic spaces. Two
functions f and g defined on the spaces M and N , respectively, are called isomorphic if there exist
null sets M1 ⊂ M and N1 ⊂ N and an isomorphic mapping T from M \ M1 onto N \ N1, such that
f(t) = g(T (t)) for any t ∈ M \ M1. In this case, we also say that the functions f and g are of the same
metric type. From the following chain of equalities

μ{t ∈ [0, 1] : f(t) ≤ x} = μ{t ∈ [0, 1] : g(T (t)) ≤ x} = μ{(g ◦ T )−1(−∞, x]}

= μ{T−1(g−1(−∞, x])} = μ{t ∈ [0, 1] : g(t) ≤ x},
it follows that functions of the same metric type are identically distributed. The converse is not true. Here
is a simple example:

f(t) = t, 0 ≤ t ≤ 1, g(t) =

{
2t if 0 ≤ t ≤ 1/2,
2(1 − t) if 1/2 ≤ t ≤ 1 .
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A necessary and sufficient condition for two functions to be of the same metric type has been obtained
by V. A. Rokhlin in his classification theorem (see [2]). In this paper we prove the following result.

Theorem 1.1. Let f and fn, n = 1, 2, . . ., be measurable functions defined on [0, 1], and let f =
D

lim
n→∞

fn. Then there exists a sequence Sn, n = 1, 2, . . ., of automorphisms of the space ([0, 1], μ)

such that

lim
n→∞

fn(Sn(t)) = f(t) in measure on [0, 1]. (1.1)

In paper [4], using the above cited sufficiently complex Rokhlin’s classification theorem, it was proved
the following result.

Theorem 1.2. If a sequence of measurable functions fn, n = 1, 2, . . ., defined on [0, 1], converges
in measure to a function f , then there exists a sequence Sn, n = 1, 2, . . ., of automorphisms of the
space ([0, 1], μ) such that

lim
n→∞

fn(Sn(t)) = f(t) almost everywhere on [0, 1] (1.2)

and

lim
n→∞

μ{t ∈ [0, 1] : Sn(t) �= t} = 0. (1.3)

Note that the conditions of Theorem 1.1 do not guarantee assertion (1.3) in Theorem 1.2.

Combining Theorems 1.1 and 1.2, we obtain the following result.

Theorem 1.3. If a sequence of measurable functions fn, n = 1, 2, . . ., defined on [0, 1] converges in
distribution to a function f , then there exists a sequence Sn, n = 1, 2, . . ., of automorphisms of the
space ([0, 1], μ) such that

lim
n→∞

fn(Sn(t)) = f(t) almost everywhere on [0, 1]. (1.4)

Since functions of the same metric type are identically distributed, Theorem 1.3 implies Skorohod’s
well-known representation theorem (see [5]).

Corollary 1.1 (Skorohod). Let Xn, n = 1, 2, . . . and X be random variables defined on the

probability space ([0, 1], μ), and let X =
D

lim
n→∞

Xn. Then there exists a sequence of random

variables Yn, n = 1, 2, . . ., such that
a) for any n = 1, 2, . . . the random variables Xn and Yn have the same distributions;
b) limn→∞ Yn(t) = X(t) almost surely on [0, 1].

The next result, which is an immediate consequence of Theorem 1.3, shows that identically dis-
tributed measurable functions in a sense are close by the metric type.

Corollary 1.2. If f and g are identically distributed measurable functions on [0, 1], then there
exists a sequence Sn, n = 1, 2, . . ., of automorphisms of the space ([0, 1], μ) such that

lim
n→∞

f(Sn(t)) = g(t) almost everywhere on [0, 1].
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2. AUXILIARY RESULTS

We use two auxiliary results, which we state as lemmas.

Lemma 2.1. Let A and B be measurable sets in [0, 1] such that μ(A) = μ(B) > 0. Then the spaces
(A,μ) and (B,μ) are isomorphic.

Proof. It is enough to prove that (A,μ) is isomorphic to ([0, μ(A)], μ). We can assume that all the points
of A are density points. Consider the function

f(t) =
∫ t

0
χAdμ = μ([0, t] ∩ A),

where χA stands for the characteristic function of the set A.
Observe that the function f is increasing and absolutely continuous on [0, 1]. Therefore the image

f(E) of every measurable set E ⊂ [0, 1] is measurable. It is clear that f is one-to-one on A. We show
that f preserves the measures of the subsets of A. We check this for A.

Indeed, let ε > 0 be an arbitrary number. Since f ′(x) = 1 on A, there exists a countable system of
intervals Δk, k = 1, 2, . . ., such that

A ⊂
∞⋃

k=1

Δk, μ(A) ≤
∞∑

k=1

μ(Δk) < μ(A) + ε, (2.1)

(1 − ε)μ(Δk) < μ(f(Δk ∩ A)) < (1 + ε)μ(Δk) , k = 1, 2, . . . (2.2)

Summing over k all terms in (2.2), we obtain

(1 − ε)
∞∑

k=1

μ(Δk) ≤ μ(f(A)) ≤ (1 + ε)
∞∑

k=1

μ(Δk),

which, in view of (2.1), implies that

(1 − ε)μ(A) ≤ μ(f(A)) ≤ μ(A) + ε(μ(A) + 1 + ε). (2.3)

Finally, taking into account that ε is arbitrary, from (2.3) we obtain μ(f(A)) = μ(A), and the result
follows.

We also use the following obvious assertion.

Lemma 2.2. Let m > 1 be a natural number and ε > 0. Then for any two systems of positive
numbers a1, . . . , am and b1, . . . , bm, satisfying the conditions

m∑
i=1

ai =
m∑

i=1

bi = 1 and |ai − bi| ≤ ε, i = 1, . . . ,m,

we have
m∑

i=1
min{ai, bi} ≥ 1 − mε.

3. PROOF OF THEOREM 1.1

Let Fn and F be the distribution functions corresponding to fn and f , respectively. Denote by C(F )
the set of continuity points of F . By the assumption of the theorem we have limn→∞ Fn(x) = F (x) for
all x ∈ C(F ).

We first consider the case where the sequence fn is uniformly bounded on [0, 1]. We take a segment
[a, b] so that a, b ∈ C(F ) and a < fn(t) ≤ b for all n = 1, 2, . . . and t ∈ [0, 1].

We construct a sequence of partitions of the segment [a, b]:

Qk = {a = xk,0 < xk,1 < · · · < xk,mk
= b}, k = 1, 2, . . .
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such that for all k = 1, 2, . . . and i = 0, 1, . . . ,mk the following conditions are fulfilled: Qk ⊂ Qk+1 ⊂
C(F ) and

max{(xk,i+1 − xk,i) : 0 ≤ i ≤ mk − 1} <
1
k
.

Now we construct a sequence Sn of automorphisms of the space ([0, 1], μ). To this end, we first take
numbers εk > 0 to satisfy

mkεk → 0 as k → ∞. (3.1)

Next, we take a sequence of natural numbers 1 < n1 < n2 < · · · < nk < · · · , so that for all k = 1, 2, . . .;
n ≥ nk and i = 0, 1, . . . ,mk the inequality is satisfied:

|Fn(xk,i) − F (xk,i)| < εk. (3.2)

The automorphisms Sn we construct by groups. First for 1 ≤ n < n1, then for n1 ≤ n < n2 and so on.
For 1 ≤ n < n1 we set Sn = I, where I is the identity automorphism of the space ([0, 1], μ).

Let the automorphisms S1, . . . , Snk−1 be constructed, and let nk ≤ n < nk+1. Consider the sets

En
k,i = {t ∈ [0, 1] : xk,i < fn(t) ≤ xk,i+1}, i = 0, 1, . . . ,mk − 1 ,

Ek,i = {t ∈ [0, 1] : xk,i < f(t) ≤ xk,i+1}, i = 0, 1, . . . ,mk − 1 ,

and observe that since μ(En
k,i) = Fn(xk,i+1)−Fn(xk,i) and μ(Ek,i) = F (xk,i+1)−F (xk,i), then in view

of (3.2) we have |μ(En
k,i)− μ(Ek,i)| < 2εk, n ≥ nk, i = 0, 1, . . . ,mk − 1. For each pair En

k,i and Ek,i, we
take the sets An

k,i ⊂ En
k,i and Ak,i ⊂ Ek,i to satisfy

μ(An
k,i) = μ(Ak,i) = min{μ(En

k,i), μ(Ek,i)}.

Then, by Lemma 2.1, there exists an isomorphism of the set Ak,i onto An
k,i, which we denote by Sn

k,i,
nk ≤ n < nk+1, i = 0, 1, . . . ,mk − 1.

Now for each n satisfying nk ≤ n < nk+1, we construct an automorphism Sn
k of the space ([0, 1], μ)

as follows. We set

Sn
k (t) = Sn

k,i(t) for t ∈ An
k,i; i = 0, 1, . . . ,mk − 1.

On the complementary set [0, 1] \
mk−1⋃
i=0

An
k,i, in view of Lemma 2.1, as Sn

k we take an arbitrary

isomorphism of [0, 1] \
mk−1⋃
i=0

An
k,i onto [0, 1] \

mk−1⋃
i=0

Sn
k (An

k,i).

Next, for each n satisfying nk ≤ n < nk+1, we set Sn = Sn
k . Continuing this process infinitely, we

construct the desired sequence of automorphisms Sn of the space ([0, 1], μ).

Now we prove that fn(Sn(t)) converges to f(t) in measure on [0, 1]. Indeed, if nk ≤ n < nk+1, then
according to the construction of Sn and Lemma 1.2, we have

μ

{
t ∈ [0, 1] : |fn(t) − f(t)| ≥ 1

k

}
< 2mkεk. (3.3)

It follows from (3.1) and (3.3) that fn ◦ Sn → f in measure. Thus, Theorem 1.1 is proved in the special
case where the sequence fn is uniformly bounded on [0, 1].

Now we prove the theorem in the general case. Let fn, n = 1, 2, . . . be an arbitrary (not necessarily
uniformly bounded on [0, 1]) sequence of measurable functions. Let a, b ∈ C(F ), a < b be arbitrary
points, and let ϕ be a continuous, strictly increasing function that maps (−∞,∞) onto (a, b). For
instance, we can take

ϕ(x) =
b − a

2
· x

1 + |x| +
a + b

2
.
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Thus, ϕ and the inverse mapping ϕ−1 are continuous and preserve the order. Let, as above, Fn and F be
the distribution functions corresponding to fn and f , respectively. We prove that the superposition ϕ ◦ fn

converges in distribution to ϕ ◦ f . Indeed, let Gn and G be the distribution functions corresponding to
ϕ ◦ fn and ϕ ◦ f , respectively. Then we have

Gn(x) = μ {t ∈ [0, 1] : ϕ(fn(t)) ≤ x} = μ
{
f−1

n

(
ϕ−1(−∞, x])

)}
= μ

{
f−1

n (a, ϕ−1(x)]
}

= μ
{
t ∈ [0, 1] : a < f(t) ≤ ϕ−1(x)

}
= Fn(ϕ−1(x)) − Fn(a). (3.4)

Similarly, we get

G(x) = F (ϕ−1(x)) − F (a). (3.5)

If x ∈ C(G), then by the continuity of ϕ−1, we have ϕ−1(x) ∈ C(F ) . Hence, in view of (3.4), (3.5)
and condition a ∈ C(F ), we obtain limn→∞ Gn(x) = G(x) for all x ∈ C(G). Therefore, according to the
proved case, there exists a sequence of automorphisms Sn, such that ϕ ◦ fn ◦ Sn → ϕ ◦ f in measure.
Taking into account that continuous functions preserve convergence in measure (see [1], p. 39), we
obtain

fn ◦ Sn = ϕ−1(ϕ ◦ fn ◦ Sn) → ϕ−1(ϕ ◦ f) = f in measure.

This completes the proof of Theorem 1.1.
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