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1. INTRODUCTION

In this paper we continue the study of Bohr-Riemann surfaces, started in the paper [1].1 Recall that
the Bohr-Riemann surfaces are obtained by coverings of the generalized plane Δ - a locally compact
space, obtained from a Cartesian product G × [0,∞) by means of identifying the fibre G × {0} with a
point, where G is the group of characters of everywhere dense in Euclidean topology τ of the subgroup
Γ of the group of real numbers R. The elements of Δ are the points (α, r) with α ∈ G, r > 0 and ∗ =
G×{0}. Notice that the punctured generalized plane Δ\{∗} := Δ0 is a group with respect to the natural
operation of coordinate-wise multiplication. The construction of the space Δ goes back to the paper by
Arens and Singer [2], and Δ is canonically identified with the space C = {αr : α ∈ G, r ∈ [0,∞)}, which
is the analog of complex plane C, consisting of homomorphisms αr : Γ → C : a �→ α(a)ra. The topology
on Δ is the standard quotient topology τΔ = {U ⊂ Δ : U ∈ k × τ[0,∞)}, where k is the topology on G,
and τ[0,∞) is the contraction on [0,∞) of the Euclidean topology τ . Similarly is defined the topology
τΔ0

∼= k × τ(0,+∞) on Δ0. On the space Δ the theory of generalized analytic functions is developed,
allowing to obtain new results by means of methods of classical theory of analytic functions (see [3], [4]).

Now we recall the definitions of generalized analytic function and thin set in Δ, by means of
which is defined the Bohr-Riemann surface. Let Γ+ = {a ∈ Γ : a ≥ 0}. Each character χa, a ∈ Γ+,
corresponding to an element a ∈ Γ+, can be extended to a continuous function ϕa on Δ, by setting
for s = αr:

ϕa(s) = χa(α)ra

with χa(α) = α(a).

Definition 1.1. Let D be an open subset of Δ. A continuous on D function f is called a generalized
analytic function if for any s ∈ D there exists a neighborhood U ⊂ D, s ∈ U , such that the
restriction of f on U can be uniformly approximated by linear combinations of functions ϕa,
a ∈ Γ+.

The space of all generalized analytic functions on D we denote by O(D). In the next definition we use
the fact that the space Δ0 = Δ\{∗} locally has a structure of the form: V × W , V ⊂ Ga, W ⊂ C, where
Ga = {α ∈ G;α(a) = 1} with a ∈ Γ (see [3], p. 10-11).
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Definition 1.2. Let D be an open subset of Δ. A closed subset K ⊂ D is said to be a thin set if the
following conditions hold:

1) for each point s ∈ D, s 
= ∗, there exist a neighborhood U ⊂ D, U = V × W and a function
f ∈ O(U), f 
= 0 vanishing on K ∩ U ,

2) for each α ∈ V the restriction of f on Wα = {α} × W is not identically equal to zero,

if ∗ ∈ D, then there exists a non-trivial function f ∈ O(Δr), Δr ⊂ D, vanishing on Δr ∩ K, where
Δr = {s ∈ Δ : |s| ≤ r} is a generalized disc of radius r in Δ.

Now we proceed to the definition of Bohr-Riemann surface. It is known (see [5], p. 25) that a mapping
of topological spaces π : Y → X is called (in general, branched) covering, if it is continuous, open and
discrete, that is, for each x ∈ X the fibre π−1(x) is a discrete set in Y . A mapping of topological spaces
π : Y → X is said to be unbranched covering, if each point x ∈ X has (the so-called smoothly covered)
neighborhood U , such that

π−1(U) =
⊔

i∈A
Ui

is a disjunctive union of open sets in Y and all the contractions π|Ui : Ui → U are homeomorphisms.
If a set A is finite (hence, all the fibres of covering consist of the same number of points), then the
(unbranched) covering is called finite-sheeted, and the number of fibres is called its number of sheets.

Definition 1.3. A topological space X is called a Bohr-Riemann surface over Δ, if there exist a
thin set K ⊂ Δ and a covering π : X → Δ, such that the contraction π on the set X∗ = X\π−1(K)
is an unbranched finite-sheeted covering of the set Δ∗ = Δ\K.

Note that questions of group structures on the Bohr-Riemann surfaces were studied in the works
[1], [6] – [8]. Now we define the notion of a plane in the space Δ. Since the subgroup Γ is dense in R, it
follows that the mapping α : R → G : t → αt with αt(a) = eiat, a ∈ Γ is injective and the image α(R) is
dense in G (see [9], p. 55). The mapping α : R → G generates an imbedding

ϕ : C → Δ0 : z = t + iy �→ ϕz = αte
−y.

The set Δ0 = G× (0,+∞), which is canonically identified with the space {αr : α ∈ G, r ∈ (0,∞)}, is a
locally compact group with respect to the coordinate-wise multiplication by unit element α0 = α(0) =
ϕ(0). Note that the image ϕ(C) is dense both in Δ0 and in Δ. A set of the form Cs = sϕ(C) is called a
plane in Δ0 passing trough the point s ∈ Δ0; C0 = Cϕ(0)(= ϕ(C)). Below, using the notion of the plane
in the space Δ, we introduce the notions of an analytic curve and equivalent points on the Bohr-Riemann
surfaces.

2. ANALYTIC CURVES

Let C0 be the above defined plane in Δ0, passing through the unit element α0 of the group Δ0. As
it was noticed, the set C0 is an everywhere dense subgroup of the group Δ0, being the image of the
additive group of complex numbers C under the operation of group homeomorphism ϕ : C → Δ0. Since
α0 ∈ C0, then for any s ∈ Δ0 the set sC0 = Cs is a plane in Δ0 passing through s. The set of all planes
of this form decompose into cosets of the group Δ0 by the subgroup C0.

Consider a curve in Δ0, that is, the mapping γ : I = [0, 1] → Δ0, which is continuous with respect
to topology τΔ0 in Δ0.

Definition 2.1. A curve γ(I) ⊂ Δ0 is called an analytic curve, if it is completely contained in the
plane Cs0 , for some s0 ∈ Δ0.
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Let γ(I) be an analytic curve in Δ0, lying in the plane Cs0 , s0 ∈ Δ0. Then for any s ∈ Δ0 the curve
γs(I), γs(t) = sγ(t), t ∈ I, lies in plane Css0 , and hence it is also an analytic curve.

Let X be a Bohr-Riemann surface over Δ, and let K be the thin set of critical points of the covering
π : X → Δ in Δ. Now we define the notion of an analytic curve on the subset X∗ = π−1(Δ∗) of the space
X, where Δ∗ = Δ\K (we assume that ∗ ∈ K and consider the initial covering over Δ0 = Δ\{∗}).

By the theorem of lifting curves (see [5], §4), for each analytic curve γ(I) in Δ∗ and each point
w ∈ π−1(γ(0)) there exists a unique curve γ̂(I) ⊂ X∗ with the origin at the point w, covering the curve
γ(I), that is, γ̂(0) = w and γ(t) = π ◦ γ̂(t), t ∈ I. In this case the curve γ̂(I) is called the lifting of the
curve γ(I).

Definition 2.2. A curve on X∗ is called an analytic curve, if it is a lifting of some analytic curve
from Δ∗.

Thus, if γ̂(I) ⊂ X∗ is an analytic curve, then it is a lifting of some analytic curve γ(I) ⊂ C
∗
s , s ∈ Δ0,

where C
∗
s = Cs\K. Now we introduce the notion of equivalence on the fibres π−1(s), s ∈ Δ∗.

Definition 2.3. Two points w1, w2 ∈ π−1(s) are called equivalent, if there exists an analytic curve
γ̂(I) ⊂ X∗, such that w1 = γ̂(0) and w2 = γ̂(1). The equivalence of points w1 and w2 will be
denoted by the symbol w1 ∼ w2.

It is easy to check that if w1 ∼ w2 and w2 ∼ w3, then w1 ∼ w3. Hence, the set π−1(s) = {w1, ..., wn}
is decomposed into a finite number of equivalence classes. On X∗ we define a function ν : X∗ → Z+, by
setting for w0 ∈ X∗:

ν(w0) = card{w ∈ π−1(π(w0)) : w ∼ w0}.
Thus, ν is a function acting on the set X∗, which to each point w0 ∈ X∗ assigns the number of points
that are equivalent to w0.

3. LOCAL CONSTANCY OF FUNCTION ν

The main result of this section is to prove the local constancy of the counting function ν : X∗ → Z+.
We first examine the behavior of function ν on the set π−1(C∗

s), s ∈ Δ∗. Let s ∈ Δ∗. Denote by μ(s) the
number of equivalence classes (in the sense of Definition 2.3) over s, that is, the number of equivalence
classes in the set π−1(s):

μ(s) = card{C(w) : w ∈ π−1(s)},
where

C(w) = {u ∈ π−1(π(w)) : u ∼ w}.
Thus, C is a mapping acting on X∗, which to each point w ∈ X∗ assigns the set of points that are
equivalent to w. Hence, we have cardC(w) = ν(w). Now we proceed to the proof of local constancy of
function ν on π−1(C∗

s), s ∈ Δ∗.

Lemma 3.1. Let s ∈ Δ∗. Then the function μ : Δ∗ → Z+ is constant on C
∗
s, while the function

ν : X∗ → Z+ is constant on the connected components of the preimage π−1(C∗
s).

Proof. First observe that since the continuous mapping πs := π|π−1(C∗
s) : π−1(C∗

s) → C
∗
s is a covering

of a connected and locally linearly connected space C
∗
s, in general, non-connected Riemann surface

π−1(C∗
s), then its contraction πs|L on any connected component (linear) L of the surface π−1(C∗

s) is also
a covering of the space C

∗
s. In particular, since π is a finite-sheeted covering, it follows that the number

of such components is finite, and for any σ ∈ C
∗
s the quantity m(L) = card(π−1(σ) ∩ L) is constant,

independent of σ and is equal to the number of sheets of the covering of space C
∗
s by mapping πs|L. It is

clear that the sum of all m(L) over all connected components L gives n, which is the number of sheets
of the covering π).
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We fix an arbitrary σ ∈ C
∗
s and consider a partition π−1(σ) = C(w1)∪ ...∪C(wm) of the fiber π−1(σ)

into disjunctive union of equivalence classes over σ. By the definition of equivalent points, for any
i, 1 ≤ i ≤ m all the points of the class C(wi) are connected by analytic curves, and hence, for any
i, 1 ≤ i ≤ m the class C(wi) lies in some connected component Li of the space π−1(C∗

s), containing
the point wi ∈ Li. Also, we have π−1(σ)∩Li = C(wi), because all the points of the fiber π−1(σ) lying in
a single connected component with wi are clearly equivalent to wi. Since the contraction of the covering
πs on each connected component of the surface π−1(C∗

s) is a covering of the space C
∗
s, then there is no

other connected components for π−1(C∗
s) different from Li, i = 1,m, because, otherwise, C

∗
s will contain

points that can be covered more than σ times. But this contradicts the fact that π is a covering. Therefore
m coincides with the number of connected components of π−1(C∗

s), that is, does not depend on σ. Thus,
for any σ ∈ C

∗
s, we have μ(σ) = m.

Next, let w ∈ π−1(C∗
s) and L be the connected component of π−1(C∗

s), containing w ∈ L. As it was
shown above, we have C(w) = π−1(π(w)) ∩ L. Therefore ν(w) = cardC(w) = m(L). Lemma 3.1 is
proved.

To prove local constancy of ν on X∗ we will need the following result, which can be considered as a
version of the theorem on covering homotopy for covering π : X∗ → Δ∗.

Lemma 3.2. Let s ∈ Δ∗ be a given point and γ ⊂ Δ∗ be a given closed curve with γ(0) = γ(1) = s.
Let π−1(s) = {x1, x2, ..., xn} and let γ̂ : I → X∗ be a curve in X∗ with γ̂(0) = x1, γ̂(1) = x2, and
x1, x2 ∈ π−1(s), x1 
= x2, covering the curve γ: γ(t) = π ◦ γ̂(t), t ∈ I. Further, let

π−1(U) =
n⋃

i=1

Vi, (3.1)

be a fixed decomposition of the preimage π−1(U) of an open smooth covering of the neighborhood
U of a point s into the disjunctive union of open sets Vi that are homeomorphic to U under the
mappings π|Vi : Vi → U with inverses ϕi = (π|Vi)

−1 : U → Vi, and ϕi(s) = xi, i = 1, n, that is, the
enumeration in (3.1) is chosen so that x1 ∈ V1, x2 ∈ V2. Then there exists an open neighborhood
W0 of the unit element α0 of the group Δ0, such that sW0 ⊂ U and for any σ ∈ W0 the lifting
γ̂σ : I → X∗ of the curve γσ(t) = σγ(t), t ∈ I starting at the point ϕ1(σs) ∈ V1 has endpoint at
ϕ2(σs) ∈ V2.

Remark: In other words, if there is a lifting of the curve γ starting and ending on the sheets V1 and V2,
respectively, then the lifting of the "perturbed" curve γσ starting on the sheet V1 also ends on V2.
Proof of Lemma 3.2 We use the standard technique of construction of γ̂ with γ̂(0) = x1, adapted to the
considered case. First, for a compact γ(I) we construct an open covering by smoothly covered sets of a
special form. Namely, we show the existence of an open neighborhood W ⊂ s−1U of the unit α0 of the
group Δ0, such that for any t ∈ I the set γ(t)W is smoothly covered.

Since the open smoothly covered sets form a base of the space Δ∗, then there exists a finite covering
of the compact γ(I) by such sets:

γ(I) ⊂
l⋃

i=1

Ui.

Let {Wj}j∈J be an open base of the locally compact space Δ0 at the point α0, such that for any j ∈ J

the closure W j is compact. For each j ∈ J we define the set

Kj = {t ∈ I : γ(t)W j ⊂ Ui for some i, 1 ≤ i ≤ l}.

Since all W j are closed and each of the sets Ui, i = 1, l is open, then Kj also is open, j ∈ J . Next, we

have γ(I) ⊂
l⋃

i=1
Ui, and hence for any t ∈ I there exists i such that γ(t) ⊂ Ui. Also, since {Wj}j∈J is a

base at the point α0, there exists j ∈ J , such that γ(t)W j ⊂ Ui, implying that t ∈ Kj . Thus, the family
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{Kj}j∈J forms an open covering of the compact I, implying that a finite number of indices j1, .., jd can

be chosen to satisfy I ⊂
d⋃

k=1

Kjk
. Now consider the set W =

d⋂
k=1

Wjk
∩ s−1U ⊂ s−1U . Since the sets

{Wjk
}d

k=1 and s−1U are open neighborhoods of the unit element α0, then the set W is non-empty and

is also an open neighborhoods of α0. Let t ∈ I be an arbitrary point. Since I ⊂
d⋃

k=1

Kjk
, there exists

jm, such that t ∈ Kjm , which in view of definition of the set Kjm implies existence of i, 1 ≤ i ≤ m

satisfying γ(t)W jm ⊂ Ui. Taking into account that all Ui are smoothly covered, we conclude that the
set γ(t)W ⊂ γ(t)W jm is smoothly covered. Thus, the existence of the set W with desired properties is
established.

Now we outline the basic elements of construction of lifting a curve in the considered case. It is clear
that the open sets γ(t)W, t ∈ I cover the compact γ(I). Hence there exists a finite number of points
{t′k}m

k=1 such that the sets γ(t′k)W, k = 1,m cover γ(I) and the intersection of the "adjacent" sets
γ(t′k)W ∩ γ(t′k+1)W, k = 1,m − 1 is non-empty. Also, it is clear that {t′k}m

k=1 can be chosen so that
t′1 = 0, t′m = 1. Then there is a partition of the segment I = [0, 1] by the points 0 = t0 < t1 < ... < tm =
1, such that for any k, k ∈ 1,m the image γ([tk−1, tk]) is completely contained in the open smoothly
covered set γ(t′k)W . It is clear that γ(tk) ∈ γ(t′k)W ∩ γ(t′k+1)W,k ∈ 1,m − 1. Denoting γk := γ(t′k),
k = 1,m, for the preimage of the open smoothly covered set γkW we obtain the representation

π−1(γkW ) =
n⋃

i=1

V k
i ,

and for each i, i = 1, n, the contraction π|V k
i

: V k
i → γkW is a homeomorphism with the inverse ϕk

i :=

(π|V k
i
)−1 : γkW → V k

i , i = 1, n, k = 1,m. Now we proceed to the by steps construction of of the curve
γ̂. We have γ = π ◦ γ̂, hence on the first segment [t0, t1] = [0, t1] ⊂ I there are n possibilities to construct
the first part of the curve γ̂, namely: γ̂([0, t1]) = ϕ1

i ◦ γ([0, t1]), i = 1, n. Since for the lifting γ̂ we have
γ̂(0) = x1, then we choose i to satisfy ϕ1

i (γ(0)) = x1. Denote the chosen i by i1. The construction of the
continuous curve γ̂ is continued by linking the continuous on [tk−1, tk] pieces γ̂ = ϕk

ik
◦ γ, k = 1,m at

points tk by means of selection of the next ϕk
ik

by the previous ϕk−1
ik−1

so that ϕk
ik

(bk−1) = ϕk−1
ik−1

(bk−1),
where bk−1 = γ(tk−1) ∈ γk−1W ∩ γkW . The chain of homeomorphisms

ϕk
ik

: γkW → V k
ik

ensures the continuity of the curve γ̂ on the sequence of sheets V k
ik

, k = 1,m on which it lies. Since the
curve γ̂, γ̂(0) = x1 is uniquely determined by γ (uniqueness lifting the curve), then it does not depend on
its representing construction, which we choose according to the conditions of the lemma.

Further, we have γ1 = γ(t′1) = γ(0) = s = γ(1) = γ(t′m) = γm. Hence γ1W = sW ⊂ U , and the
obtained first homeomorphism ϕ1

i1
: sW → V 1

i1
satisfies the condition ϕ1

i1
(γ(0)) = x1 ∈ V1, implying

that ϕ1
i1

is a contraction to the set sW : ϕ1
i1

= ϕ1|sW of the mapping ϕ1 : U → V1, because both ϕ1 and
ϕ1

i1
are homeomorphisms that are local inverses to π). Therefore, in view of the assumption concerning

enumeration (γ̂(1) = x2 ∈ V2), by similar arguments we obtain ϕm
im = ϕ2|sW . Thus, the construction of

lifting a curve in the considered case is done.
Now we are going to show that for small perturbation of the initial point x1 ∈ V1 the corresponding

(lifted) curve cannot slide from the mentioned sheets, and hence its endpoint should lie on V2. To this
end, we establish the existence of sets Uk and Ũk with specific properties.

Observe first that, since γ([tk−1, tk]) ⊂ γkW is compact and γkW is open, then for any k, 1 ≤ k ≤ m
there exists an open neighborhood Uk of the unit α0, such that Ukγ([tk−1, tk]) ⊂ γkW .

Next, for any k, 2 ≤ k ≤ m there is a neighborhood Ũk of the unit α0, such that ϕk
ik

(β) = ϕk−1
ik−1

(β)

for all β ∈ bk−1Ũk. Indeed, we have bk−1 = γ(tk−1) ∈ γk−1W ∩ γkW and ϕk−1
ik−1

(bk−1) = ϕk
ik

(bk−1).
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Since γk−1W and γkW are open sets, the set γk−1W ∩ γkW � bk−1 is also open, and hence, there
is a neighborhood Ũk of the unit α0, such that bk−1Ũk ⊂ γk−1W ∩ γkW . This implies the equality
ϕk−1

ik−1
(β) = ϕk

ik
(β), β ∈ bk−1Ũk, because ϕk−1

ik−1
and ϕk

ik
are homeomorphisms that are local inverses

to π.
Finally, we prove that under the above conditions, for any σ from the open neighborhood W0 =

m⋂
k=2

(Uk ∩ Ũk) ∩ U1 of the unit α0 the lifting γ̂σ of the curve γσ with initial point ϕ1(σs) has endpoint

at ϕ2(σs). To this end, consider the mapping

v(t) = ϕk
ik

(σγ(t)), t ∈ [tk−1, tk], k = 1,m,

and show that v is a continuous curve that coincides with γ̂σ. Clearly, it is enough to establish continuity
of v at the points tk, k = 1,m − 1. We have

v(t) =

⎧
⎨

⎩
ϕk

ik
(σγ(t)), t ∈ [tk−1, tk],

ϕk+1
ik+1

(σγ(t)), t ∈ [tk, tk+1].

Since σ ∈ W0 ⊂ Ũk+1, we have bkσ ∈ bkŨk+1. Therefore, ϕk
ik

(bkσ) = ϕk+1
ik+1

(bkσ), that is, ϕk
ik

(γ(tk)σ)) =

ϕk+1
ik+1

(γ(tk)σ). Thus, the continuity of v at tk is proved, implying that v(t), t ∈ I is a continuous curve.

Since each ϕk
ik

, k = 1,m, on its domain of definition is the inverse of π, it follows from the definition
of v that π ◦ v(t) = σγ(t) = γσ(t), t ∈ I, showing that v is a lifting of the curve γσ. Further, we have
v(0) = ϕ1

i1
(σγ(0)) = ϕ1

i1
(σs). Since σ ∈ W0 ⊂ Um, it follows from the definition of the set Um that

σγ([tm−1, tm]) ⊂ γmW = sW , implying that σs = σγ(tm) ∈ sW . Hence using ϕ1
i1

= ϕ1|sW , we obtain
v(0) = ϕ1

i1
(σs) = ϕ1(σs). Thus, v is the lifted curve γ̂σ mentioned in the statement of the lemma. Now

we show that the endpoint of the curve γ̂σ lies on the sheet V2. We have γ̂σ(1) = v(1) = ϕm
im(σγ(1)) =

ϕm
im

(σs), and since σs ∈ sW and ϕm
im

= ϕ2|sW , we obtain γ̂σ(1) = ϕm
im

(σs) = ϕ2(σs) ∈ V2. Lemma 3.2
is proved.

Corollary 3.1. For each element w ∈ X∗ there exists a neighborhood V , such that for any z ∈ V
the inequality holds: ν(z) ≥ ν(w).

Proof. Let w ∈ X∗ and π(w) = s ∈ Δ∗. Let U be a smoothly covered neighborhood of the point s, such

that π−1(U) =
n⋃

i=1
Vi and all π : Vi → U are homeomorphisms with inverses ϕi : U → Vi. Assume that

w ∈ V1, and take some u 
= w from C(w). Then π(u) = s and from homeomorphism of π on each Vi we
obtain u /∈ V1. Let u ∈ V2. Since u ∈ C(w), by the definition of the set C(w) there exists an analytic curve
with initial point and endpoint at w and u respectively. That is, there exists an analytic curve γ ⊂ Δ∗

with γ(0) = γ(1) = s, whose lifting γ̂ ⊂ X∗ satisfies γ̂(0) = w, γ̂(1) = u. Now let W
(2)
0 be the set W0

from Lemma 3.2 for the considered case (we write index 2 since we assume that u ∈ V2). Denoting

V
(2)
1 = V1 ∩ π−1(sW (2)

0 ) = ϕ1(sW
(2)
0 ), we can apply Lemma 3.2 to conclude that for any x ∈ V

(2)
1 there

exists an analytic curve with initial point x and endpoint on the set ϕ2(sW
(2)
0 ) ⊂ V2. Therefore, on the

sheet V2 the points from V
(2)
1 have the same number of equivalent points as that of w (namely, one

equivalent point).
Next, considering in turn the sheets V3, ..., Vn and taking into account that w can have equivalent

points only on the sheets Vi, i = 2, n (namely, at most one equivalent point on each sheet), we obtain

the sets V
(3)
1 , ..., V

(n)
1 . Now it is easy to see that the set V =

n⋂
i=2

V
(i)
1 will satisfy the requirements of the

corollary. Corollary 3.1 is proved.
Now we are in position to state and prove the main result of this section.

Theorem 3.1. The function ν : X∗ → Z+ is locally constant on X∗.
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Proof. We first prove that the function μ : Δ∗ → Z+ is constant on Δ∗. We have μ(σ) = card{C(w), w ∈
π−1(σ)}. According to Corollary 3.1 for w1 ∈ π−1(σ) there exists a neighborhood V1 such that
ν(z) ≥ ν(w1), z ∈ V1, meaning that the number of equivalent points for z is greater than or equal to
that of point w1. Let π−1(σ) = (w1, ..., wn) and let V1, ..., Vn be the corresponding neighborhoods of

these points. Define U =
n⋂

i=1
π(Vi). Assume that ξ ∈ U and consider μ(ξ) = card{C(z), z ∈ π−1(ξ)}.

Take an arbitrary z ∈ π−1(ξ) and assume that z ∈ Vi for some i, 1 ≤ i ≤ n. Then by the definition of
the set Vi we have that the number of equivalent points for point z ∈ π−1(ξ) is greater than or equal to
that of point wi ∈ π−1(σ): ν(z) ≥ ν(wi), implying that the number of equivalence classes of points from
π−1(ξ) is not greater than that of points from π−1(σ), that is, μ(ξ) ≤ μ(σ).

Thus, for any σ ∈ Δ∗ there exists a neighborhood U of the point σ, such that

μ(ξ) ≤ μ(σ), ξ ∈ U. (3.2)

We set μ = minσ∈Δ∗ μ(σ) and D = {σ ∈ Δ∗ : μ(σ) = μ}. Since the function μ takes values from Z+,
we have D 
= ∅. Now we show that D = Δ∗, that is, μ(s) = μ on Δ∗.

We fix an arbitrary s ∈ Δ∗ and any σ ∈ D. Then in view of (3.2), there exists a neighborhood U � σ,
such that μ|U ≤ μ(σ) = μ ≤ μ(s). Since the set C

∗
s is everywhere dense in Δ∗, we have U ∩ C

∗
s 
= ∅.

So, by Lemma 3.1, we obtain

μ|C∗
s

= μ|U∩C∗
s
≤ μ(σ) = μ ≤ μ(s) = μ|C∗

s
,

implying μ(s) = μ(σ) = μ, and hence s ∈ D. Thus, D = Δ∗ and the function μ is constant on Δ∗.

The constancy of function μ on Δ∗ implies the equality ν(z) = ν(w) for any z from the neighborhood
V of point w (see Corollary 3.1). Indeed, assuming the opposite, that is, existence of z ∈ V with
ν(z) > ν(w), by the first part of the proof, yields the strong inequality μ(π(z)) < μ(π(w)), which is a
contradiction. Thus, the local constancy of function ν on X∗ is established. Theorem 3.1 is proved.

4. LOCAL CONSTANCY OF FUNCTION ν. ALGEBRAIC VERSION

In Section 3 it was proved that Corollary 3.1 implies local constancy of function ν on X∗ (Theorem
3.1). Also, Corollary 3.1 was proved by means of constructive lifting of curves from Δ∗ (Lemma 3.2). In
this section we prove Corollary 3.1 using algebraic methods. We first prove a technical result.

Lemma 4.1. Let K be a compact set and let p(t, x) = xn + g1(t)xn−1 + ... + gn−1(t)x + gn(t), t ∈
K be a polynomial with continuous coefficients: gi ∈ C(K), i = 1, n. Further, let the function
f ∈ C(K) satisfy the condition p(t, f(t)) = 0, t ∈ K and let C = max1≤i≤n{||gi||}. Then ||f || :=
supt∈K |f(t)| < 1 + C.

If C = 0, then all gi are equal to 0. This means that p(x, t) = xn, implying f = 0. Thus, we have
||f || = 0 < 1 + 0 = 1 + C. For C > 0 and ||f || ≤ 1 the conclusion is trivial: ||f || < 1 + C.

Now let C > 0 and ||f || > 1. Then there exists t0 ∈ K, such that |f(t0)| = ||f || > 1. Since f(t0)n =
−g1(t0)f(t0)n−1 − ... − gn(t0), we have

|f(t0)| ≤ C(1 +
1

|f(t0)|
+ ... +

1
|f(t0)|n−1

) < C
|f(t0)|

|f(t0)| − 1
,

implying that ||f || = |f(t0)| < 1 + C. Lemma 4.1 is proved.

The example of polynomial q(x) = x2 −C shows that for sufficiently small C (C < 1/4), the equality
in Lemma 4.1 cannot be improved to obtain ||f || ≤ 2C.

The next result apparently concerns to mathematical folklore, and hence we provide its complete
proof.
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Lemma 4.2. Let K = [0, 1] and p(t, x) = xn + g1(t)xn−1 + ... + gn(t) be a polynomial with contin-
uous coefficients: gi ∈ C(K), i = 1, n and with discriminant: dp(t) 
= 0 for all t ∈ K. Then there
exist exactly n functions hi ∈ C(K), i = 1, n, that are pairwise different for all points of K and
representing the set of solutions of equation p(t, x) = 0 over K, that is,

p(t, hi(t)) = 0, t ∈ K, i = 1, n.

Remark: Notice that since for each point t0 ∈ K the equation p(t0, x) = 0 has exactly n solutions, then
the mutually distinct values hi(t0), i = 1, n, represent all solutions of equation p(t0, x) = 0, that is, by
the values {hi(t)}n

i=1, t ∈ K, is exhausted the set of all solutions of equation p(t, x) = 0, t ∈ K.
Proof of Lemma 4.2. Define the set

Kp = {(t, x) ∈ K × C : p(t, x) = 0}.

We have to find continuous mutually non-coinciding functions hi ∈ C(K), i = 1, n, such that

Kp = {(t, x) ∈ K × C : p(t, x) = 0} =
n⋃

i=1

{(t, hi(t)) : t ∈ K}.

By Hurwitz-Rouché’s theorem, the projection π : Kp → K : (t, x) �→ t on the first coordinate is un-
branched n-sheets covering, and by continuity of function gi ∈ C(K), i = 1, n, the projection on the
second coordinate η : Kp → C : (t, x) �→ x is a continuous mapping.

Consider the curve u : I → K, u(t) = t, t ∈ I(= K) and the fiber π−1(0) = {(0, x1), ..., (0, xn)} over
the point 0 ∈ K. By the lifting theorem, there exist n liftings ûi : I → Kp, i = 1, n of the curve u, such
that u = π ◦ ûi and ûi(0) = (0, xi), i = 1, n.

We set hi = η ◦ ûi, i = 1, n, and show that they are the desired functions. To this end, observe
first that the functions hi are continuous as superpositions of continuous functions η and ûi, i = 1, n.
Further, by the definition of the mapping η, the function hi(t) is the second "coordinate" of the point
ûi(t). It follows from the relation π ◦ ûi(t) = u(t) = t that the first “coordinate” of the point ûi(t) is t.
Hence, we have

ûi(t) = (t, hi(t)), t ∈ K, (4.1)

implying (t, hi(t)) ∈ Kp, t ∈ K, i = 1, n.
Now we show that for any t ∈ K the points hi(t) are mutually distinct. Assume the opposite,

that is, existence of an element t0 ∈ K and indices i 
= j, such that hi(t0) = hj(t0). Consider the set
T = {t ∈ K : hi(t) = hj(t)}. According to the above assumption, T is non-empty. From continuity of
functions hi and hj it follows that T is a closed set. We show that T is also open in K.

Let t′ ∈ T . Then by (4.1) we have ûi(t′) = ûj(t′). Since π is a covering, there exists an open set
U � π(ûi(t′)) = t′ in K, for which there is an open set V � ûi(t′) = ûj(t′) in Kp, such that π : V → U
is a homeomorphism, and hence is a bijection on V . On the other hand, since ûi, ûj are continuous, there
exists δ > 0, such that t ∈ K and |t − t′| < δ imply that ûi(t) and ûj(t) belong to V . Since on the set
V , π is a bijection, the relation π(ûi(t)) = t = π(ûj(t)) implies that for t ∈ K, |t − t′| < δ the following
equality of liftings holds:

ûi(t) = ûj(t), (4.2)

that is, hi(t) = hj(t), implying K ∩ (t′ − δ, t′ + δ) ⊂ T , and hence the set T is open. Since K is
connected, we have T = K. This means that the equality (4.2) is fulfilled on the entire K, which
is impossible, because ûi(0) = (0, xi) 
= (0, xj) = ûj(0). Thus, the points hi(t), i = 1, n are mutually
distinct on t ∈ K. Lemma 4.2 is proved.

Note that the assertion proved in the Lemma 4.2 can be reformulated as non-existence of a
continuous on K function g 
= hi, i = 1, n coinciding with one of the functions hi at each point from
K.

Our basic tool in this section is the following lemma.
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Lemma 4.3. Under the conditions of Lemma 4.2 for any δ > 0 there exists ε = ε(δ) > 0, such
that for any collection of functions εi ∈ C(K), εi : K → C with ||εi|| < ε, i = 1, n can be found
n functions h̃i ∈ Bδ(hi), i = 1, n for which for each t ∈ K the points h̃i(t), i = 1, n, represent n
distinct zeros of the "perturbed" polynomial

pε(t, x) := xn +
n∑

i=1

(gi(t) + εi(t))xn−k. (4.3)

Here Bδ(h) = {f ∈ C(K) : ||f − h|| < δ}.

Proof. We first prove existence of ε0 > 0, such that for each ε ≤ ε0 any polynomial of the form (4.3) with
||εi|| < ε, i = 1, n, satisfies the conditions of Lemma 4.2, that is, it has everywhere different from zero
discriminant on K. To this end, we use the known interpretation of C

n as a space of the coefficients of
the polynomials over the field C. Let D = {w ∈ C

n : d(w) = 0} be the set of zeros of the discriminant
mapping d : C

n → C, assigning to the vector w ∈ C
n of the coefficients of a polynomial the value d(w)

of its discriminant. Consider the mapping

G : K → C
n : t �→ (g1(t), ..., gn(t)) ∼= xn + g1(t)xn−1 + ... + gn(t) = p(t, x).

Then the image G(K) = g1(K) × ... × gn(K) is a compact, and by the assumption, we have G(K) ∩
D = ∅, because the discriminant of the polynomial p(t, x) is everywhere different from zero on K.
Denote by d0 = d(G(K),D) the distance between the sets G(K) and D. Since these sets are closed,
and in addition, the first is also compact, we have d0 > 0. We show that as ε0 can be taken the
constant d0/2

√
n. Indeed, for any collection G̃ = (g̃1, ..., g̃n) with ||g̃i − gi|| < ε ≤ ε0, i = 1, n, we have

d(G̃(t), G(t)) < ε0
√

n = d0/2 for any t ∈ K. Hence, using the inequality |d(G(t),D) − d(G̃(t),D)| <

d(G(t), G̃(t)), t ∈ K (see, e.g., [10], p. 377), for any t ∈ K we obtain the following chain of inequalities:

d(G̃(t),D) ≥ d(G(t),D) − d(G̃(t), G(t)) > d0 − d0/2 > 0,

which implies that G̃(K) ∩ D = ∅.
Thus, under the above conditions, for any polynomial of the form (4.3) by Lemma 4.2 there exist n

functions h̃i, i = 1, n, representing the zeros of this polynomial for each fixed t ∈ K with εi = g̃i − gi.
Now we show existence of ε > 0, such that for ||εi|| < ε, i = 1, n the continuous solutions of the
equation pε(t, x) = 0 are contained in Bδ(hi), i = 1, n.

Observe first that for any choice of G̃ with ||g̃i − gi|| < ε0 we have ||g̃i|| < ||gi|| + ε0, i = 1, n. Then,
we have C̃ := maxi ||g̃i|| < C + ε0, where C = maxi ||gi||. By Lemma 4.1 we obtain ||h̃i|| < 1 + C̃ <
1 + C + ε0 for all i = 1, .., n.

Next, let δ0 = min
1≤i<j≤n

inf
t∈K

|hi(t) − hj(t)|. By Lemma 4.2 we have δ0 > 0. Since for δ1 < δ2 clearly

Bδ1(h) ⊂ Bδ2(h), then, without loss of generality, we can assume that the arbitrary chosen δ satisfies
the condition δ < δ0/2. Then by Hurwitz-Rouché’s theorem, there exists a constant ε1 > 0, such
that for |bi − gi(0)| < ε1, i = 1, n the polynomial P (x) = xn + b1x

n−1 + .. + bn in each of the circles
|x − hi(0)| < δ, i = 1, n, has exactly one zero (of multiplicity 1).

Further, we fix an arbitrary ε > 0 satisfying the following conditions:
a) ε < ε0; then by the definition of ε0, from ||g̃i − gi|| < ε follows existence of mutually non-coinciding

functions h̃i ∈ C(K), i = 1, n, representing the zeros of the polynomial (4.3),

b) ε < ε1; then by the definition of ε1, if |g̃i(0) − gi(0)| < ε, then h̃i can be enumerated so that
|h̃i(0) − hi(0)| < δ, i = 1, n,

c) ε[(1 + C + ε0)n − 1]/(C + ε0) < δn; then for any i ∈ {1, .., n}, in view of equality pε(t, h̃i(t)) = 0,
we have

|p(t, h̃i(t))| = |p(t, h̃i(t)) − pε(t, h̃i(t))|

= |(h̃i(t)n + gi(t)h̃i(t)n−1 + .. + gn(t)) − (h̃i(t)n + g̃i(t)h̃i(t)n−1 + .. + g̃n(t))| (4.4)
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= |ε1(t)h̃i(t)n−1 + ... + εn(t)| < δn

on K for ||εi|| < ε, where εi = g̃i − gi.

Now we show that for such ε the following implication holds:

||εi|| < ε ⇒ h̃i ∈ Bδ(hi), i = 1, ..., n.

To this end, we choose an arbitrary i0 ∈ {1, ..., n} and consider the quantity

t0 := sup{τ ∈ [0, 1] : |hi0(t) − h̃i0(t)| < δ for t ∈ [0, τ ]}.

We have t0 > 0, because the function r(t) = |hi0(t) − h̃i0(t)| is continuous and is strictly less than δ for
t = 0 (see part b)). It is clear that t0 ≤ 1. Assume that t0 < 1. By the definition of t0 we have r(t) < δ for
t ∈ [0, t0). Next, we have r(t0) = δ. Indeed, the assumption r(t) < δ contradicts the precision of upper
bound t0 < 1, and r(t) > δ - the continuity of function r(t). Finally, using the definition of δ0, we obtain
for any j 
= i0

|hj(t0) − h̃i0(t0)| = |hj(t0) − hi0(t0) + hi0(t0) − h̃i0(t0)| ≥

≥ |hj(t0) − hi0(t0)| − r(t0) ≥ δ0 − δ > 2δ − δ = δ. (4.5)

Since the pairs (t0, hj(t0)), j = 1, n, are the roots of polynomial p(t, x), we can write p(t0, x) =
n∏

j=1
(x −

hj(t0)), which in view of (4.4) and (4.5) implies

δn > |p(t0, h̃i0(t0))| = r(t0)
n∏

j=1,j �=i0

|h̃i0(t0) − hj(t0)| > δδn−1 = δn. (4.6)

The obtained contradiction shows that t0 should be 1.
However, the substitution t0 = 1 into (4.5) and (4.6) demonstrates also the contradictoriness of

the assumption r(1) = δ. Thus, |hi0(t) − h̃i0(t)| < δ for t ∈ K, and since the function hi0 and h̃i0 are
continuous, then ||h̃i0 − hi0 || < δ, implying h̃i0 ∈ Bδ(hi0). Taking into account that i0 is arbitrary, this
completes the proof of Lemma 4.3.

Now we turn to the study of the algebraic version of the theory developed in this paper. Let

p(s, x) = xn + f1(s)xn−1 + ... + fn(s)

be a polynomial with generalized analytic coefficients fi ∈ O(Δ0), i = 1, n and discriminant dp. It is
clear that dp also is a generalized analytic function: dp ∈ O(Δ0). Denote by Np = N(dp) the set of zeros
of the discriminant dp. Then either Np is nowhere dense (discrete) in Δ0, or Np = Δ0. We assume the
first case, that is, Np is nowhere dense in Δ0, and the null-set Np will play the role of a thin set. Consider
the space

Δ0
p = {(s, x) ∈ Δ0 × C : p(s, x) = 0},

and the covering

π : Δ0
p → Δ0 : (s, x) �→ s.

Observe that the contraction π|Δ∗
p

: Δ∗
p = π−1(Δ∗) → Δ∗ will be an unbranched covering over Δ∗ =

Δ0 \ Np, which we also denote by π. Thus, Δ0
p becomes a Bohr-Riemann surface. We denote C

∗
s =

Cs ∩ Δ∗ = Cs \ Np, C
∗
p,s = π−1(C∗

s) and Cp,s = π−1(Cs). Recall that a curve u : I → Δ0 is called
analytic, if u(I) ⊂ Cs for some s ∈ Δ0 (as s can be taken u(0)).

Definition 4.1. A curve û : I → Δ∗
p т Δ∗

p is called analytic, if its projection u = π ◦ û under the
covering π is an analytic curve.
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Lemma 4.4. The following conditions are equivalent:

1) û : I → Δ∗
p is an analytic curve,

2) there exists s ∈ Δ0, such that û(I) ⊂ C
∗
p,s.

Proof. Assume that û : I → Δ∗
p is an analytic curve. Then there exist s ∈ Δ0 and a curve u(I) ⊂

Cs, such that u = π ◦ û. Since û(I) ⊂ Δ∗
p = π−1(Δ∗), then u(I) = π ◦ û(I) ⊂ Δ∗, implying u(I) ⊂

Cs ∩ Δ∗ = C
∗
s, and hence û(I) ⊂ π−1(C∗

s) = C
∗
p,s. Now assume that there exists s ∈ Δ0, such that

û(I) ⊂ C
∗
p,s. Then u(I) = π ◦ û(I) ⊂ C

∗
s , that is, u is an analytic curve, and hence the curve û is also

analytic. Lemma 4.4 is proved.

As it was shown above, the locally compact abelian group structure given on Δ0 allows for each
s ∈ Δ0 and an analytic curve u : I → Δ0 to define a curve us : I → Δ0, by setting us(t) = su(t), t ∈ I,
which also will be an analytic curve.

Lemma 4.5. Let u : I → Δ∗ be a (analytic) curve. Then there is a neighborhood U of the unit
element of the group Δ0, such that for any s ∈ U the (analytic) curve us(I) is contained in Δ∗.

Proof. We have u(I) ⊂ Δ∗, implying that u(I) does not contain points from Np. Since the set Np

is discrete, there is a non-overlapping with Np neighborhood of the curve u(I), that is, there is a
neighborhood U of the unit element α0, such that u(I)U ∩ Np = ∅. Then, it is clear that, for any s ∈ U
the curve us(I) = su(I) does not intersect Np, implying that us(I) ⊂ Δ∗. Lemma 4.5 is proved.

Similar to the Definition 2.3, two points w,w′ ∈ Δ∗
p will be called equivalent, and denoted by w ∼ w′,

if π(w) = π(w′) and there exists an analytic curve û : I → Δ∗
p, such that û(0) = w, û(1) = w′. Again,

if w ∼ w′ and w′ ∼ w′′, then w ∼ w′′. Let, as before, C(w) be the set of all points (including w) that are
equivalent to w. Taking into account that the covering is n-sheeted, we have cardC(w) ≤ n. Also, it
follows from the transitivity of the equivalence relation that for any w ∈ Δ∗

p there exists an analytic curve
û(I), such that û(0) = w and C(w) ⊂ û(I).

Now we examine the local behavior on Δ∗
p of the function ν : Δ∗

p → Z+, ν(w) = cardC(w). As it was
mentioned above, Corollary 3.1 implies the local constancy of function ν on the Bohr-Riemann surface
(Theorem 3.1). In the next theorem, using an algebraic method, we prove the assertion of Corollary 3.1
for the considered case, which again yields the local constancy of function ν on Δ∗

p.

Theorem 4.1. For each element w ∈ Δ∗
p there exists a neighborhood V , such that for any z ∈ V

the inequality holds: ν(z) ≥ ν(w).

Proof. We fix an arbitrary w0 ∈ Δ∗
p with π(w0) = s0 ∈ Δ∗. Let ν(w0) = k and C(w0) = (w0, w1, ..., wk−1).

Further, let û : I → Δ∗
p be an analytic curve with û(0) = w0 and C(w0) ⊂ û(I). Then there exist

0 = t0 < t1 < ... < tk−1 ≤ 1 such that û(ti) = wi, i = 0, k − 1 and π ◦ û(ti) = π(wi) = s0, i = 0, k − 1.
Denoting by u(t) = π ◦ û(t), t ∈ I the projection of the analytic curve û ⊂ Δ∗

p, we obtain u(I) ⊂ Δ∗ and

u(ti) = π ◦ û(ti) = s0, i = 0, k − 1.

Clearly, to complete the proof, it is enough to show that for any sequence wλ → w0 there exists λ0,
such that ν(wλ) ≥ ν(w0) = k for λ > λ0. From the convergence wλ → w0 it follows that sλ := π(wλ) →
s0. Denote s0

λ = s−1
0 sλ and observe that s0

λ → α0, where α0 is the unit of the group Δ0. Define the curves
uλ : I → Δ0 by uλ(t) = s0

λu(t), t ∈ I. Then, by Lemma 4.5 there is λ1 such that for λ > λ1 the curves
uλ(I) are contained in Δ∗. Next, consider the polynomials

p(u(t), x) = xn + f1(u(t))xn−1 + ... + fn(u(t)),

p(uλ(t), x) = xn + f1(uλ(t))xn−1 + ... + fn(uλ(t)).
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Since the curve u(t), t ∈ I belongs to the set Δ∗, by Lemma 4.2 the equation p(u(t), x) = 0, t ∈ I has
exactly n continuous mutually distinct solutions. It is clear that for any ε > 0 there is λε, such that for
λ ≥ λε the inequality holds:

max
1≤i≤n

||fi(u(t)) − fi(uλ(t))||C(I) < ε.

Applying Lemma 4.3, we conclude that for λ > max{λ1, λε} the equation p(uλ(t), x) = 0, t ∈ I also
has exactly n continuous mutually distinct solutions, close (uniformly on [0,1]) to the solutions of the
equation p(u(t), x) = 0, t ∈ I.

Let û(t) = (ŝ(t), x̂(t)), t ∈ I. It follows from the definition of covering π that u(t) = π ◦ û(t) = ŝ(t),
t ∈ I, that is, û(t) = (u(t), x̂(t)), t ∈ I. In particular, we have wi = û(ti) = (u(ti), x̂(ti)) = (s0, x̂(ti)),
i = 0, k − 1. Since û(t) ⊂ Δ∗

p, t ∈ I, from the definition of the set Δ∗
p we obtain

x̂n(t) + f1(u(t))x̂n−1(t) + ... + fn(u(t)) = 0, t ∈ I,

implying that the function x̂(t) is one of the solutions of equation p(u(t), x) = 0. Hence, according to
Lemma 4.3, for λ > λε(δ) among the solutions of equation p(uλ(t), x) = 0 there is x̂λ(t) to satisfy

||x̂λ − x̂||C(I) < δ, (4.7)

where

δ < min
1≤i<j≤k−1

|x̂(ti) − x̂(tj)|/2, (4.8)

with wi = (s0, x̂(ti)), i = 0, k − 1. Next, since the curve u is analytic, uλ also will be an analytic
curve, and taking into account the relation uλ = π(uλ, x̂λ), we conclude that the curve ûλ : I → Δ∗

p is
analytic with ûλ(t) = (uλ(t), x̂λ(t)), t ∈ I. By the construction we have uλ(ti) = s0

λu(ti) = s−1
0 sλs0 =

sλ, i = 0, k − 1. Therefore the points ûλ(ti) = (sλ, x̂λ(ti)), i = 0, k − 1 belong to the curve ûλ(I). Since
π(ûλ(t0)) = sλ = π(wλ) and wλ → w0 = (s0, x̂(t0)), sλ → s0, then taking δ in (4.7) sufficiently small
and λ sufficiently large (λ > λ0 > max{λ1, λε(δ)}), we obtain wλ = ûλ(t0). Besides, using (4.7) and
(4.8), for i 
= j we obtain

|x̂λ(ti) − x̂λ(tj)| = |(x̂(ti) − x̂(tj)) − (x̂(ti) − x̂λ(ti)) − (x̂λ(tj) − x̂(tj))|

≥ |(x̂(ti) − x̂(tj))| − |(x̂(ti) − x̂λ(ti))| − |x̂λ(tj) − x̂(tj)| > 2δ − δ − δ = 0,

implying that x̂λ(ti) 
= x̂λ(tj), and hence ûλ(ti) 
= ûλ(tj), i 
= j.
Thus, we have constructed an analytic curve ûλ in Δ∗

p, for which ûλ(0) = ûλ(t0) = wλ, π(ûλ(ti)) =
sλ, i = 0, k − 1, and ûλ(ti) 
= ûλ(tj), i 
= j. This means that wλ has at least k equivalent points ûλ(ti),
i = 0, k − 1, implying that ν(wλ) ≥ k = ν(w0). Theorem 4.1 is proved.

Corollary 4.1. The function ν : Δ∗
p → Z+ is locally constant on Δ∗

p.
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