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Abstract—The X-ray Laue asymmetrical diffraction in a perfect crystal with a plane entrance surface
is considered taking into account the third-order nonlinear response of a crystal. Using the exact solu-
tions, the rocking curve dependence on the angular departure from the exact Bragg direction and the
intensity of the incident wave is investigated. The dependence of rocking curves on the asymmetry
degree of diffraction geometry is studied. The obtained results can be used in the preparation of X-ray
beams with the given parameters and for object investigations as well.
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1. INTRODUCTION
The transmission and reflection coefficients of a dynamically diffracted X-ray plane wave on the out-

put surface of the crystal depend on the parameter of the deviation from the Bragg angle, the thickness of
the crystal plate, and the degree of asymmetry of the diffraction geometry. As for the case of beams of high
intensity, such as beams of synchrotron sources of X-ray radiation of the third generation or the X-ray
lasers on free electrons, it is necessary to take into account the nonlinear term of the third order in the
polarizability of the crystal. Then the intensity of the incident beam also becomes one of the parameters
of the problem. Bragg diffraction is used both for studying objects and obtaining beams with specified
parameters. The latter means the preparation of beams with the required degree of monochromaticity,
collimation, or the preparation of a focused beam. But in the case of beams with high intensity, it is nec-
essary to investigate the Bragg nonlinear diffraction. One of the important features of Bragg nonlinear dif-
fraction is the rocking curves, that is the dependence of the transmission and reflection coefficients on the
deviation from the Bragg angle [1, 2], and, in the nonlinear case, also on the intensity of the incident wave
at a fixed thickness and angle of asymmetry. The basic equations of dynamic X-ray diffraction in a crystal
with a cubic nonlinear response to an external electromagnetic field were obtained in [3]. For the case of
symmetric reflection, the exact Bragg solution was found in [4]. In the Laue case, the exact solution taking
into account the deviation from the Bragg angle as well as the asymmetry of diffraction was found in [5].
These solutions made it possible to study the nonlinear diffraction and its basic laws in a crystal. It turned
out to be that the pendulum effect also takes place in the nonlinear case. An analytical expression was
found for the extinction length. The equations of dynamic nonlinear diffraction can also be solved numer-
ically. In [6], a third-order nonlinear dynamic diffraction was numerically investigated for an incident
beam with a limited wavefront. The study of nonlinear diffraction of the third order of X-ray pulses was
carried out in [7].

At present, the theoretical and experimental studies of second and third-order nonlinear X-ray effects
are also being carried out. The second-order non-linear effect is the parametric down-conversion. The
essence is that because of the nonlinear response of the crystal the initial photon decays into two photons
with a lower frequency so that the frequency of the original photon is equal to the sum of the frequencies
of the generated photons. In the region of X-ray, this effect was first predicted in [8]. The effect was exper-
imentally observed and studied in [9–19] using both laboratory and synchrotron X-ray sources. Another
X-ray nonlinear effect of the second order, the generation of the second harmonic, was studied theoreti-
cally in [20] and experimentally observed in [21]. The nonlinear Compton effect was studied experimen-
tally in [22], and theoretically in [23]. The X-ray cubic-nonlinear single-wave diffraction was theoretically
studied in [24], the nonlinear mixing of four waves in [25], and the X-ray two-photon absorption in [26].
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Fig. 1. Scheme of asymmetric Laue diffraction:  is the mean wave vector of the incident wave,  is the angle between
the wave vector and the reflecting planes, is the Bragg angle, α is the angle between the reflecting planes RP and the
internal normal to the input surface S, Oxz is the coordinate system in the diffraction plane, the Oy axis is directed per-
pendicular to the diffraction plane according to the law of the right-hand coordinate system,  and  are the
wave vectors of the transmitted and diffracted waves that satisfy the exact Bragg condition, and  is the diffraction vector
perpendicular to the reflecting planes.
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Below, we study the rocking curves in the case of cubically nonlinear asymmetric Laue diffraction in a
perfect crystal, based on the exact solutions obtained in [5]. The rocking curves are investigated both as a
function of the deviation from the Bragg angle and on the intensity of the incident wave.

2. BASIC FORMULAS
The scheme of asymmetric Laue diffraction is shown in Fig. 1. The reflecting planes RP are deflected

from the position perpendicular to the input surface by an asymmetry angle, which in the case of trans-
mission diffraction varies within . This angle is considered to be positive if the deviation from
the position perpendicular to the input surface occurs counterclockwise, and is negative when deflected
in the opposite direction. A plane X-ray wave σ-polarized with amplitude  is incident on the crystal at
a grazing angle to the reflecting planes close to the Bragg angle. Two strong waves, transmitted and dif-
fracted, with amplitudes  and , appear in the crystal. It is believed that the thickness of the crystal is
rather small and absorption can be neglected, that is , where  is the absorption coefficient of the
crystal. It is also believed that the intensity of the incident wave can be so high that it is necessary to take
into account the cubic nonlinear term in the expression of the crystal polarizability. In addition, it is
assumed that reflection with the diffraction vector 2h is forbidden, that is the corresponding Fourier coef-
ficients of both linear and nonlinear polarizability are equal to zero.

As mentioned in the Introduction, the exact solutions were found in [5]. We will investigate the trans-

mission  and reflection coefficients  based on these exact solu-
tions. The transmission and reflection coefficients depend on the sign of  (the definition of  is just
below). It is necessary to distinguish between the following cases: , , Q = 0 and , Q = 0
and . The following notation is adopted here [5]:

(1)

, , , , and . Moreover,
, , , and .

Coefficients  included here are defined as ,
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, , 

. These expressions include , which is the coefficient of asym-
metry,  are the direction cosines of the wave vector of the incident wave to the direction
of the internal normal to the input surface of the crystal,  is the Bragg angle,  are the Fourier coeffi-
cients of crystal polarizability for the zero reciprocal lattice vector and the reflection vector ,

,  is the parameter of deviation from the

Bragg condition, is the angle of deviation from the Bragg condition,  is the critical

intensity normalized,  is the incident wave intensity ,  is the constant incident wave ampli-

tude,  V2/m2 is the intensity at which the corresponding intensity of the X-ray wave
 V/m is equal to the strength of the atomic nucleus at a distance of the Bohr

radius (the expression for this quantity see in [5] and the references given there). The transmission and
reflection coefficients depend on the angle of deviation from the exact Bragg angle, on the intensity of the
incident beam, and the angle made up by the reflecting planes and the normal to the entrance surface of
the crystal. Below, we investigate the transmission and reflection coefficients depending on the deflection
parameter and on the intensity of the incident wave for a fixed crystal thickness and various values of the
asymmetry angle of the reflecting planes.

3. ROCKING CURVES OF CUBIC NONLINEAR ASYMMETRIC LAUE DIFFRACTION
We investigate the rocking curves for Si(111) reflection with a radiation wavelength  Å, the

incident wave is plane and σ-polarized (the electric field vector is perpendicular to the diffraction plane).
In this case, the reflection of Si(222) is forbidden and the above formulas can be applied for thicknesses
for which absorption can be neglected.

3.1. Rocking Curves Versus Angular Deviation from the Bragg Condition

First, let us consider the case  ( ). To compare the linear and nonlinear cases in Fig. 2a
for the intensity , which corresponds to the linear case, the transmission and reflection rocking
curves are shown depending on the angular deviation from the exact Bragg angle  (on the graph, the
angles are given in arc seconds, this interval of angles corresponds to the interval of the parameter ,

), and . The thickness was selected as  μm with the deviation parameter
 Here,  is the extinction length of the nonlinear case for  [5]. This quantity, in contrast to

the linear case, also substantially depends on the intensity of the incident wave. Because the intensity is so
low that the linear case is realized, the extinction length of the nonlinear case coincides with the extinction
length of the linear case [1, 2]

(2)

which depends on the deviation parameter and does not depend on the intensity. Note that for the selected
thickness . Because the thickness is chosen equal to two extinction lengths, then maximum
transmission coefficient and minimum reflection coefficient corresponding to the angular deviation

 (at this point ), correspond to the value . This is well known in linear
theory as refraction correction for the Bragg condition to be fulfilled [1, 2]. Let us see how the rocking curves
change with increasing intensity. Figures 2b and 2c show the rocking curves for intensities  and

, for the depths  μm and  μm,
respectively. Note that  and . For these parameter values . The extinction depths
are computed using the corresponding formula in [5]. As can be seen from these figures, the widths of the
main transmission maxima and the main reflection minima narrow, and the coordinates of their centers
decrease. This shift of coordinates is explained by the fact that as shown in [5], the role of the deviation
parameter, taking into account the intensity, is played by
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Fig. 2. Rocking curves for case , solid curves are the transmission coefficient, dashed line is the reflection coef-
ficient. (a) Linear case, (b) , and (c) .
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(for the definition of  see explanations after formula (1)) so that the main maximum and minimum are
shifted to the point Fig. 3. , corresponding to the value . It
is clear that the new position of the main maximas and minimas no longer corresponds to . These
figures also show the appearance of asymmetry of the main maximas and minimas, as well as periods of
oscillations on both sides of the main maximas and minimas.

The rocking curves depending on the deflection of the parameter  are represented in Fig. 3 for the
case  ( ). The dependences are given on the angle of deflection, and the segment of the
deflection parameter corresponds to the shown segment of the angles . Figure 3a shows the rock-

ing curve corresponding to the linear theory: the intensity of the incident wave . The depth is
taken to be equal to μm, which corresponds to two extinction lengths of the linear case (2) for the
deviation parameter. This depth in the linear theory does not differ from the corresponding value for the
case . Because , then, due to refraction, the main maximum of the transmitted beam and
the main minimum of the diffracted beam is displaced in the opposite direction, in comparison with the
case  shown in Fig. 2a. This point corresponds to the parameter  and, in addition, the widths
of the main maximum and minimum are greater than in the case . These are well-known facts
in linear theory [1, 2]. Now let us continue to monitor the change in the rocking curves by increasing the
intensity of the incident wave. Figures 3b and 3c show the rocking curves for the intensity values 
and . As can be seen from these figures, the widths of the main highs and lows decrease again, and
the coordinates of the main peaks and main lows increase, in contrast to the case . This is again
explained by the fact that, in the nonlinear case, the coordinates of the main peaks and minima are deter-
mined as . In these examples . The depths are taken equal
to  and  μm, which correspond to the two extinction lengths of the nonlinear case for the value
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Fig. 3. Rocking curves for the case , solid curves are transmission coefficient, dashed line is ref lection coefficient.
(a) Linear case, (b) , and (c) .
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. At these depths, the absorption is negligible and the above formulas for the transmission and
reflection coefficients can be applied.

3.2. Rocking Curves Dependent on the Intensity

In contrast to the linear case, in the nonlinear case, the transmission and reflection coefficients also
depend on the intensity of the incident wave. In this section, based on the formulas for the transmission
and reflection coefficients, we will investigate the rocking curves depending on the intensity of the inci-
dent wave.

Let us consider the case . We will consider the transmission and reflection coefficients at
depths . In all cases, the absorption is negligible, and the expressions for the transmission and
reflection coefficients given in [5] can be applied. At , the quantity  for all values of intensi-
ties [5]. Applying the appropriate formulas [5] and taking  μm, we find the
dependence of the transmission and reflection coefficients on the intensity. These dependencies are
shown in Fig. 4. We recall again that in the linear case the rocking curves are independent of the intensity.

Let us give a separate example of when  can be either more or less than zero. We take ,
, the depth  μm. Sign dependence graph  is represented in Fig. 5. It

can be seen that starting from the value , the sign  changes from positive to negative. Therefore,
in the region before this value, the rocking curves are determined by the corresponding formula ,
and starting from this intensity value, the rocking curves are determined by the formula to  [5]. Fig-
ure 6 shows the rocking curves versus intensity over the entire range of variation. As one can see, the
behavior of the rocking curves changes starting from the intensity value . In this region, the
energy is mainly concentrated in the transmitted beam.
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Fig. 4. Rocking curves versus intensity for the case , ; the solid curve is the transmitted wave curve, the
dotted line is the rocking curve of the diffracted wave.
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Fig. 6. Rocking curves versus intensity for the case , ; the solid curve is the transmitted wave curve, the
dotted line is the rocking curve of the diffracted wave.
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4. CONCLUSION

Rocking curves are one of the important and practically applicable characteristics of dynamic X-ray
diffraction. If in the region of low intensities, where the linear theory of polarizability is applicable, these
curves are well studied both theoretically and experimentally, then the same cannot be said for high-inten-
sity beams, for which nonlinear terms in the polarizability of the crystal are important. Currently, high-
intensity sources of X-ray radiation, the synchrotrons, and X-ray free-electron lasers, have stimulated
interest in the theoretical and experimental study of nonlinear X-ray effects. In this work, the rocking
curves of cubic nonlinear Bragg asymmetric diffraction in the transmission geometry are investigated. The
previously obtained exact solutions made it possible to plot the rocking curves in the entire range of vari-
ation of independent parameters, such as the parameter of deviation from the Bragg condition and the
intensity of the incident wave. The rocking curves are obtained for various angles of asymmetry.

The results obtained can be applied in further theoretical and experimental studies of nonlinear X-ray
diffraction, as well as for obtaining beams with specified parameters or for studying objects.
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