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Abstract—To get around the difficulty that the singular nature of the potential function V(x) = V0/|x|α
introduces into physics, the regularization methods are used. However, they affect the singular nature of
the problem, and so we discuss here how quantum tunneling behaves if the original singular nature of the
Schrodinger equation remains unperturbed. For this purpose, I am starting from the precondition that
the singular terms are mutually compensated in the current probability density and the current can be
considered continuous. As a result, it is obtained that the mild-singular potential (with 0 < α < 1)
has finite but unusual tunnel transparency, in particular, a non-zero value at zero energy of the inci-
dent particle. The transparency of a Coulomb potential well oscillates infinitely at zero energy, and
only the strongly singular potential (with α > 1) repeats the property of the regularized prototypes:
to be impenetrable.
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1. INTRODUCTION
A fundamental feature of the singular potential [1–3] is the absence of a singularity point in the region

of a potential energy function. At the same time, quantum tunneling implies a transition through the sin-
gularity point and, therefore, some rules for this transition. For this, the potential cutoff method is used,
or the conditions for matching the wave function and its derivative on both sides of the singular point are
introduced. The first method replaces the singular form with a regular one with a cutoff singular part, for
which the transmittance and reflection coefficients are computed, and then a passage to the limit is made
in the expressions for these coefficients, narrowing the cutoff width to zero [4–7]. And the second
method, based on the matching conditions, requires the representation of physical quantities by the Her-
mitian operators [8–11]. Thus, claiming the existence of the quantum-mechanical average of the singular
potential energy, in [12] the singularity is divided into three classes: moderate, intermediate, and super-
singular class. In terms of the potential function , they correspond to the parameter ranges
of , , and , respectively. It is noted that for a moderate singular class, both solu-
tions are regular and, in principle, can be admitted to the tunneling problem. For an intermediate singular
class, only one solution is regular and, therefore, acceptable in the procedure for solving a physical prob-
lem. In the supersingular case, both solutions diverge.

The greatest attention was paid to the tunneling of the 1D Coulomb potential. Restricting only to reg-
ular solutions automatically results in the absence of a probabilistic current and, consequently, to the
impenetrability of the potential barrier. This result was also obtained by the method of limiting smoothing
of the potential barrier [12] and later confirmed in a short presentation [13]. Further, considering the anti-
symmetric potential distribution [14], the irregular solution of the problem was transformed into a regular
one by a certain procedure that results in the finite permittivity of the antisymmetric Coulomb potential.
In [15], this approach is called ingenious but justified not entirely. The answer [16] substantiates that this
criticism refers to the symmetric and not to the antisymmetric form of the potential distribution, which
was considered there.

In [17], the problem of tunneling the Coulomb potential is considered from the point of view of the
analytical continuation of solutions through the singularity point in combination with the method of vary-
ing constants. This allows one to completely solve the problem of 1D tunneling and get any permeability
other than total: one just needs to select the appropriate type of self-adjoint expansion. In [18], the per-
meability problem was revised based on self-adjoint extensions and it was determined that the important
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Dirichlet boundary condition implies an impenetrable origin of coordinates. Finally, the approach [19],
by analogy with [14], removes the singularity of the wave function, but at the same time results in zero per-
meability for the singular center of the potential.

Besides the Coulomb tunneling, quantum tunneling has also been studied for the inverse quadratic
potential . In [20], the transmission coefficient was determined for all possible self-adjoint
extensions of the Hamiltonian with the condition  and it was established that tunneling is
possible and it occurs if the matrix of self-adjoint extensions is not diagonal. The possibility of tunneling
under the same conditions is also asserted based on the family of nonequivalent  quantization [21].

Note, however, that the indicated regularization procedures, introduced to reconcile the Schrödinger
equation with the standard postulates of quantum mechanics, suppress to some extent the original content
of the singular problem. For this reason, here I study the problem of what is the quantum tunneling of a
singular potential in the framework of the Schrödinger equation but without any action to strictly comply
with the postulates of quantum mechanics. The approach used is based on the property of the current den-
sity of the probability that the singular terms in it balance each other, and therefore the continuity of the
current can be extended to the entire coordinate axis, including the singular origin of coordinates. This
approach was previously applied to the case of a 1D Coulomb potential barrier ( , ) in [22]. The
present consideration includes moderate- ( ), intermediate- ( ), super- ( ) singular
ranges, and the 1D Coulomb well ( , ), thus, together with [22], it covers all ranges of param-
eters  and .

2. STATEMENT OF THE PROBLEM
The stationary Schrödinger equation for the singular potential has the form

(1)

where  is normalized to an arbitrary length , and the energy of the particle and the ‘power’ of the poten-
tial—to the “recoil energy” . We will seek the solution in the form

(2)

with an unknown function h(z), which, according to (1), must satisfy the equation,

(3)

and the derivative of which must disappear at infinity. Equation (3) for general non-integer values of the
degree does not have exact solutions expressed in known analytical functions. In what follows, we con-
struct approximate solutions while preserving the singular nature of the equation (3).

3. QUANTUM TUNNELING OF MODERATELY SINGULAR POTENTIAL
The leading-order contributions on the right and left sides of Eq. (3) near the singular point must be

of the same order of magnitude, so we have

(4)

and correspondingly

(5)

Because  we have

(6)

and this term can be omitted in equation (3). Then it takes the form
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Fig. 1. Transmission and reflection coefficients of a moderately singular potential barrier depending on the energy of inci-
dent particles for u0 = 1, α = 0.25. The appearance of total reflection and nonzero transmission at zero energy is caused
by the singular character of the potential function.
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It should be noted that although condition (6) is gradually violated with distance from the origin of
coordinates because the tunneling problem will be formulated by values at the origin of coordinates, it is
only important that at large distances  is proportional to  and, accordingly, the solution of equa-
tion (7) satisfies the necessary condition for vanishing at infinity. Equation (7) is of the first order for the
derivative , and its solution for the coordinates  has the form

(8)

where the constant of integration is taken equal to zero to provide a zero solution in the absence of poten-
tial ( ). By direct integration of (8), we obtain

(9)

Similarly, on the left side of the potential for the desired function, we obtain

(10)

(11)

The use of expressions (8)–(11) shows that linearly independent solutions (2) and their derivatives are
finite at a singular point . Therefore, the continuity conditions can be applied to the general solution
of the problem under consideration. Then, assuming the asymptotic absence of a wave propagating to the
right on the right side of the potential we, obtain the following explicit expressions for the normalized
amplitudes of the transmitted and reflected waves:

(12)

(13)

Figure 1 shows the graphs of the dependence of the transmittance  and the reflection coeffi-
cient  on the energy of the incident particle for the potential barrier ( ). The case of a poten-
tial well ( ) is illustrated in Fig. 2. It can be seen that quantum tunneling exhibits unusual behavior
in the low and moderate energy ranges: the probability of crossing the singular point starts from a nonzero
value, and in the case of a potential barrier, the reflection coefficient for some incident energy increases
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Fig. 2. Transmittance and reflection coefficients of a moderately singular potential well as a function of the energy of inci-
dent particles for u0 = –1. An unusual feature here is the nonzero transparency in the zero energy limit. Parameter α has
the same meaning as in Fig. 1.
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Fig. 3. Quantum tunneling coefficients of a moderately singular potential as a function of power u0 at ε = 1.
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to unity, which is by no means typical for a separate regular potential barrier [23, 24]. The natural law here
is the ascent to full transparency at asymptotically high energies. The dependence on the power of the
potential is also unnatural (Fig. 3).

4. QUANTUM TUNNELING OF A 1D COULOMB POTENTIAL WELL

For this potential  and , and the Schrödinger equation (1) outside the singular point has an
exact analytical solution. To avoid repetition, let us only say that they are identical to the formulas pre-
sented in [22], implying that  there. It is important here that one of the linearly independent solu-
tions, together with its derivative, is regular. Another solution is also regular, but its derivative diverges log-
arithmically as it approaches the singular point. The first gives us the right to refer to the postulate of the
continuity of the wave function all over the space, including the singular origin. However, the continuity
of the derivative of the wave function at the singularity point does not in any way follow from the
Schrödinger equation for the considered Coulomb potential. Therefore, this condition, which is familiar
to regular potentials, must be replaced by a new one. The density of probability f low seems to be the most
appropriate here because the singular behavior of the terms is mutually suppressed in this expression.
Then, after the standard procedure for setting and computing the tunneling problem, it turns out to be
possible to unambiguously derive the expressions for the transmission and reflection coefficients [22]. 

The tunneling efficiency shown in Fig. 4, oscillates between zero and one, and the frequency of
oscillations increases to infinity as it approaches the zero boundary of the particle’s energy. At the high-
energy limit, the probability of quantum transmission (ref lection) vanishes monotonically (becomes
complete) [22]: tunneling of the 1D Coulomb well behaves similarly to tunneling of the Coulomb barrier.

<0 0u α = 1

<0 0u
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Fig. 4. Coefficients T and R for the 1D Coulomb potential depending on the energy of the incident particle at u0 = –1.
Unusual features are infinitely accelerating oscillations in the zero-energy limit and the approach of T (R) to zero (unity)
in the high-energy limit. The decreasing of |u0| slows down the oscillation frequency.
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5. QUANTUM TUNNELING OF INTERMEDIATE SINGULAR POTENTIAL
Near the origin of coordinates, asymptotic formulas (4) and (5) remain valid, from which it follows

(14)

This, according to equation (2), gives the boundary condition , which means that in the
limit  both basic solutions of the Schrödinger equation are finite. Then, without loss of generality,
we can assume the continuity of the general wave function, which is written in the form of the following
condition:

(15)

where  and  are amplitudes of probabilities in the general wave function, respectively,
before the basis solutions  and  equation (7) to the left (right) of the singular
point of the potential. The absence of the reflected wave in the asymptotics  implies the condition

, and then the continuity condition (15) takes the simpler form:

(16)

At a large distance, the probability current density is reduced to the expression

to the left of the singular point and the expression

to the right of the singular point. The first expression also took into account that  and

, which directly follow from their explicit expressions. Combinations of wave functions in
parentheses differ from zero and, in the general case, are equal with the opposite sign. Therefore, the
equality of probabilistic currents implies

(17)

The resulting equations (16) and (17) are compatible only when . Then equation (16)
states that  that is, the intermediate singular potential is completely impenetrable.

6. TUNNELING OF INVERSE SQUARE AND STRONGLY SINGULAR POTENTIALS
Equation of state (1) for the inverse square potential has an exact analytical solution:
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for  and similarly for . Here,  and  are the Bessel functions of the first and second
kind, respectively, .

A systematic analysis of solutions shows that for this form of the potential function, the solution to the
tunneling problem depends on the sign , that is, on whether the potential is a barrier or a well. In the
case when  the first solution in (18) vanishes at the singular point , and the second solution
tends to infinity, the direct application of the continuity condition for the wave function becomes prob-
lematic. Here we approach it as a postulate of quantum mechanics, concretizing its meaning in the fact
that with an asymptotic approach to the singular point on the left and right, the corresponding wave func-
tions would diverge equally. We call this the quasi-continuity condition. In this context, it is important
that the quasi-continuity completely preserves the singular content of the wave function and becomes the
usual continuity condition if the problem is regularized. After some mathematics, the conditions for
quasi-continuity and asymptotic absence of the reflected wave on the right-hand side of the potential lead,
respectively, to

(19)

And finally, combining (19) with the condition of continuity of the probabilistic current gives the gen-
eralized statement that

(20)

and  remains arbitrary. Then a free assumption about the real nature of the coefficient  directly
leads to , that is, the absence of a wave of matter to the right of the singularity point and,
accordingly, to the expected result: complete impenetrability of the inverse square singular barrier.

In the case of a negative value , both solutions (18) are equal to zero at the singular point . This
ultimately makes it impossible to come to a definite answer about the possibility of tunneling the inverse
square potential well within the framework of the approach presented in this article.

The strongly singular potential  does not have an exact analytical solution for the Schrödinger
equation (1), and we proceed from the approach developed in items 3 and 5. The answer essentially repeats
the conclusions for the inverse square potential: the strongly singular potential barrier is completely
impenetrable, and the potential well is beyond the capabilities of this approach.

7. CONCLUSION

In the problem of quantum tunneling of a singular potential, the regularization method is usually used,
when the singularity is first removed in a narrow region around the singular point, the problem is solved
for this prototype, and then the limiting transition of the narrowing of the regularization region to zero is
made in the transmission and reflection coefficients. Another approach implies physically perceived con-
ditions (the Friedrichs extension in the Hilbert space) for matching the wave function and its derivative on
both sides of the singularity point. In particular, the one-dimensional Coulomb potential turns out to be
impenetrable in both approaches. The preservation of the mathematical essence of the singularity, carried
out in this article, dramatically changes the picture of tunneling at soft-singular and 1D Coulomb poten-
tials. For example, in the case of a moderate singularity, the transparency of the potential remains finite
even at the zero-energy boundary. In the other, the Coulomb case, the transparency of the potential at the
same energy boundary f luctuates infinitely often between unity and zero, and when going to high energies
it gradually decreases to zero.

Finally, potentials with a higher degree of singularity , as in the regularization methods, exhibit
complete impenetrability (while the case of a potential well  remains outside the framework of the
developed approach).
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