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Abstract⎯The quantum tunneling of a singular potential is modeled, as a rule, by the method of 
regularization. It proceeds from the intermediate usage of a nonsingular-type preimage of the potential 
function. In this work, it has been ascertained that the preimages continuously differentiable at the 
point of singularity does not reproduce the singularity in the problem of quantum tunneling.  
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1.  INTRODUCTION 

In quantum mechanics, the singular potentials ( )V x x−α∼ , 0α >  are of independent interest, 
simplistically modeling the localized contact interactions [1–3] (note that this includes both the Coulomb 
and gravitational potentials). Of interest is the case of quantum tunneling [4, 5], when the singularity 
point 0x =  should be passed. As a number of authors indicate [6, 7], there is no single answer to the 
solution of this problem so far. True, the requirement of continuity of the probability stream for the class 
of potentials ( )V x x−α∼  ( 0 2< α < ) meets no objections, but a purely mathematical analysis of the 
situation on the basis of a self-adjoint extension of the operators used shows that this continuity is not 
enough for an unambiguous statement of the problem [8–10]. Additional considerations are required 
(preferably of a physical plan). The most usual is the method of regularization [11–14]. There, the 
singular form of the potential function is temporarily replaced by a nonsingular inverse image that 
provides an analytical solution to the problem. Finally, already in the expressions of the transmission 
coefficient and reflection coefficient, a passage to the limit is made to restore the infinitely large value of 
the potential at the singular point x = 0. 

To clarify the essence of the problem using a simple example, the case of the Dirac delta potential of a 
certain ‘power’ was considered in [15], when the approach to the solving of the particle-tunneling 
problem is well known, but the situation differs from the standard one. In the general case, this potential 
is partially permeable for passage and can be modeled from the problem of the rectangular potential by 
the limiting narrowing of the area of action under condition that the ‘area’ of the graph tends to the value 
of the ‘power’ g. That is, the intermediate choice of a rectangular shape with the subsequent passage to 
the limit of the indicated type is the regularization for the Dirac delta potential. 

Unfortunately, not everything is so coordinated in the general case of singular potentials. This 
primarily refers to the fact that the ‘area’ under the potential graph is an unlimited quantity, stretched over 
an infinite length. The second, that the derivative of the potential function diverges modulo with the 
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approaching the point x = 0, but is not defined, similarly as the potential itself, at the point. Under these 
conditions, the question arises as to whether there are restrictions on the properties of the functions 
chosen for the implementation procedure. To answer this question, one must first determine the 
asymptotic properties of the transmission coefficient of the potential barrier, determined on the basis of 
the intermediate potential function. A rectangular type of the potential enables such an opportunity, 
providing the regularization of the tunneling of the Dirac delta potential. 

2.  ASYMPTOTIC  QUANTUM  TUNNELING  OF  THE   
RECTANGULAR  POTENTIAL  BARRIER 

As is known from the textbooks of quantum mechanics (see, for example, [16]), the transmission 
coefficient of the rectangular potential barrier is given by the expression 
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where E  and m  are the particle energy and mass, V  and a  are the width and height of the potential. 
Two limit transitions are trivial and hold to be true for any regular potential: 
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Therefore, they cannot serve as tests for choosing the intermediate type of potential of the regularization 
method. 

When the energy of the particle and the height of the barrier simultaneously tend to infinity, remaining 
all the time equal or equidistant, another limit is as follows 
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The last limit that reproduces the result of the delta potential: 
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The answer depends on the ‘power’ g Va=  of the barrier. 

3.  ASYMPTOTIC  QUANTUM  TUNNELING  OF  A  POTENTIAL  BARRIER   
WITH  A  SMOOTH  TOP 

Consider the asymptotic laws of tunneling of a smoothly varying potential with a peak at the point 
= 0x . Once again we turn to the example known from textbooks (see, for example, [16]), to the bell-

shaped potential ( ) 0
2/ chV x V x= α . The transmission coefficient is given by the expression 
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By a direct computation it is easy to verify that a limit similar to (3) is not zero, but equal to 1/2: 
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The last limit – the contraction of the potential curve into the line while conserving the ‘power’ 
02 /g V= α  exactly reproduces (4). 

The coincidence of the limiting form (4) for the chosen two forms shows that the property of the delta 
function to be represented by the limiting restriction of any function of the given area under the curve 
extends also to the corresponding solutions of the Schrödinger equation. In other words, the analytical 
solution to the Schrödinger equation for the Dirac delta potential is self-consistent with the regularized 
solutions. This can be interpreted also as a direct consequence of the fact that the Dirac delta function is 
not a function, among them a singular function, in the classical sense, but a continuous linear functional 
on the space of differentiable functions. 

The other conclusion is important for us that the rectangular and bell-shaped forms have at least one 
different asymptotic limit. Since the distinction is numerical, and independent on the potential parameters, 
the limits (3) and (6) reveal the existing immanent and qualitative difference between these functions. 
Naturally, it consists in the behavior of the derivative of a potential function in a neighborhood of a point 
in the course of the limiting approaching to the singular form [15]. 

Before continuing the discussion, let us find out how general is the distinctive limiting result (6) for 
potentials with the smooth character of maximum. For this, let us consider the parabolic form of the 
potential different from the bell-shaped: 

 ( ) 0

2

21 xV x V
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⎛ ⎞
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Linearly independent wave functions outside the region of potential are traveling waves, and in the 
potential region they are expressed in terms of the functions of a parabolic cylinder ( )D zν λ : 

 ( )( ) ( )( )*
1/4 1/4

0 2 01( ) 1 i 1 iz B D u z B D u zν νψ = + + − + , (8) 

where 0 01 2 i i 2u uν = − − ε + . The particle energy ε  and barrier height 0u  are normalized to the 
energy 2 2/ 2rE ma= . The rest of the calculations are carried out in a standard way and for the 
transmission coefficient they give an asymptotic value of 1/2, which exactly coincides with the value (6) 
of the bell-shaped barrier. Therefore, one can conclude that if the potential function of the barrier is 
continuously differentiable near the peak, then the asymptotic limit (6) takes place. The course of 
transmission and reflection coefficients to half value is shown in Fig. 1. Note that the assumption of the 
presence of such specifics was made in [15]. 

Fig. 1. The quantum tunneling of a potential barrier with a smooth apex while simultaneously increasing the 
height of the barrier 0u  and the energy ε  of the particle incident on the barrier. The reflection coefficient 
graph starts from zero, the transmission coefficient starts from unity. 
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4.  ASYMPTOTIC  QUANTUM  TUNNELING  OF  A  SHARP-PEAK  POTENTIAL  BARRIER 

In fact, the condition of continuous differentiability for the limit (6) is not only sufficient, but also a 
necessary condition. To verify this, let us consider a potential with a sharp peak whose wings drop to zero 
at points x a= ±  according to, for example, the parabolic law: 

 ( ) 0

2

1 signxV x V x
a

⎛ ⎞= −⎜ ⎟
⎝ ⎠

,   a x a− ≤ ≤ . (9) 

The wave function in the range of potential: 

 ( )( ) ( )( )1/4 1/4
0 2 01( ) 2 1 i 2 1z B D u z B D u zν νψ = − − + − − ,  

where ( )0 0/ 2u uν = − ε + . Then, the reflection and transmission coefficients can be computed 

analytically to the end, as in the previous case. Substituting the condition and infinitely increasing the 
barrier height, we obtain the asymptotic values different from 1/2 for the reflection and transmission 
coefficients. The graphs of approximation to the asymptotic values are represented in Fig. 2. 

Thus, the asymptotic behavior of the reflection and transmission coefficients in a special case 
0uε = →∞  uniquely depends on the nature of the potential function near the maximum. 

If it is continuously differentiable, that is, it has a certain derivative at the maximum point, and then 
the boundary values of the reflection and transmission coefficients are equal to each other. If the 
maximum is sharp, that is, the derivative of the potential curve does not have a certain value at the 
maximum point, and then the boundary value of the reflection coefficient is less than the transmission 
coefficient. This remarkable property can be used in the process of regularization of singular potentials. 
Indeed, the fact that the special limit with a smooth peak of the potential is half, but with a sharp peak is 
not, suggests that these potential functions, and hence their limits, differ in essential feature. For the 
limiting types of potentials, only a singularity can be such. Because the potential functions with a sharp 
vertex in the limit of infinite height really reproduce the properties of singular functions, this cannot be 
said for the smooth vertices of functions. Therefore, the potential functions with a continuously defined 
derivative near the maximum cannot be chosen as the prototypes for performing the intermediate 
computations in the regularization method of singular potentials. This class of functions in the limit 
obtains an infinitely large value at the point = 0x  but does not become singular. 

Fig. 2. The quantum tunneling of a potential barrier with a smooth apex while simultaneously increasing the 
height of the barrier 0u  and the energy ε  of the particle incident on the barrier 0u . The reflection coefficient 
graph starts from zero, the transmission coefficient starts from unity. 



REGULARIZATION  OF  QUANTUM  TUNNELING 

 

337

 JOURNAL  OF  CONTEMPORARY  PHYSICS  (ARMENIAN  Ac.  Sci.)      Vol. 54      No. 4      2019 

5.  CONCLUSION 

The singular potentials constitute a separate class in the problems of physics, and in particular – of 
quantum mechanics. Because of the lack of the immediate mathematical conditions for the binding of 
solutions on both sides of the point of divergence of potential, the additional physical assumptions is to be 
made to consider the problem of quantum tunneling. In practice, it comes to the regularization method, 
when the singular potential is replaced preliminarily by a prototype potential of finite height. The problem 
is analytically solved for this potential, and finally, in these solutions including the reflection and 
transmission coefficients, the height of the potential at a singular point of the initial potential tends to 
infinity. 

Thus, it is shown that the character of the solutions inherent to the singularity in the interaction 
potential can be restored by the regularization method, unless the prototype function has a definite 
derivative at the singularity point of the initial potential. 
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