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Abstract—The transition probabilities during instantaneous change in the quantum oscillator
equilibrium position are studied in the tomographic representation. A comparison with the known
Franck–Condon factors obtained by calculating the wave function overlap integrals is performed.
Explicit expressions for symplectic and optical tomograms are derived, as well as the generating
function for overlap integrals of symplectic tomograms defining the transition probabilities in the
oscillator, caused by the driving force.
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1. Introduction. The problem of transition probabilities in a forced oscillator is one of the most
important problems of quantum mechanics from the theoretical and practical viewpoints. This explains
extensive bibliography on this problem. The problem was first considered by R. Feynman. Thus, the
interaction of the harmonic oscillator with a particle or a system of particles is described in [1]. It
was supposed that the driving force in such a system depends on time, and the oscillator frequency
is constant. In terms of Lagrangian mechanics, the expression for probabilities of transitions between
oscillator eigenstates, represented as a series, was derived in [1] for the first time. Somewhat later,
J. Schwinger published paper [2] in which transition probabilities in the oscillator with variable force
and constant frequency were expressed in terms of Laguerre polynomials.

In [3], the works in which parametric excitation of an oscillator was considered and the approach
proposed in [1, 2] was generalized were reviewed in detail. In particular, the situation in which the driving
force remains constant and the oscillator eigenfrequency varies in time was considered. In this particular
case, the probabilities of transitions between eigenstates in such a system are expressed in terms of
Legendre polynomials. A more general case in which both the driving force and frequency are time
functions was studied by K. Husimi [4]. He derived the generating function for transition probabilities
in such a system. In [5], the probability of quantum transitions in the adiabatic approximation was
discussed from the viewpoint of adiabatic invariant variation which, as shown, oscillates in time,
decreasing in inverse proportion to time. The problem of transitions between intrinsic energy levels of an
oscillator was also considered in [6] and [7]. Among the latest studies on this subject, a new generating
function was found for the transition probability in an oscillator with constant frequency and variable
force in [8]. The general consideration of non-stationary solutions to the Schrödinger equation for an
oscillator is given in [9] and [10]. In all these studies, the transition probabilities were presented as the
wave function overlap integral. This method was applied to solve the problem of transitions between
energy levels of the harmonic oscillator and to calculate the transition probabilities in multiatomic
molecules (see, e.g., [11] and [12]), where the wave function overlap integrals called the Frank–Condon
factors were studied using generating functions.

At the same time, the probabilistic approach to quantum mechanics called the probabilistic tomo-
graphic representation of quantum states was recently newly developed. This approach has a number
of advantages which will be briefly reviewed in section 2. The tomographic approach applicability to the
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determination of quantum transition probabilities was mentioned in [13]. Later, the described method
was applied to the consideration of quantum transitions in various physical systems; in particular, the
probabilities of transitions between Landau levels were determined in [14]. At the same time, the problem
of the harmonic oscillator excited by an external force was not considered in detail in the tomographic
representation.

The objective of this study is to derive explicit expressions for symplectic and optical tomograms of
the harmonic oscillator excited by a driving force and the probabilities of quantum transitions between
energy levels of such an oscillator in the tomographic representation of quantum mechanics.

The paper is organized as follows. Section 2 is a brief review of the probabilistic representation of
quantum mechanics. In section 3, the transition probabilities in the oscillator during an instantaneous
change in the equilibrium position are determined within the tomographic method. The results of the
study are summarized in section 4.

2. Transition probabilities in the tomographic representation of quantum mechanics. From
the time of quantum mechanics origin, the problem of the transition from complex-valued functions
describing quantum states to a certain classically-similar representation has risen repeatedly. This
problem became practically relevant with the development of quantum calculations, where the problem
of controlling and measuring quantum states is important. In 1996 [15], the real probability distribution
function uniquely defining the quantum state and called the symplectic tomogram was used. It belongs
to the set of functions in the phase plane with the only difference that the symplectic tomogram
w (X,μ, ν) corresponds to the probability distribution in the rotated and compressed coordinate system
and depends on the variable X having the physical meaning of the coordinate on the transformed phase
plane and on the real parameters μ and ν being characteristics of rotation and compression, respectively.

The symplectic tomogram is related by the Radon invertible integral transform [16] with the Wigner
function W (q, p) [17],

w (X,μ, ν) =
1
2π

∫
W (q, p) δ (X − μq − νp) dqdp (1)

and, accordingly, with the wave function,

w (X,μ, ν) =
1

2π |ν|

∣∣∣∣
∫

ψ (x) e
iμ
2ν

x2− iX
ν

xdx

∣∣∣∣
2

. (2)

In the particular case where μ = cos θ and ν = sin θ, the symplectic tomogram depending on three
variables transforms to the function of two variables w (X, θ) referred to as the optical tomogram.

In addition to the important property of measurability, tomograms have other practically significant
features. In particular, entropy and information characteristics of quantum states can be set in terms of
the tomographic representation.

The tomographic approach can also be useful in determining quantum transition probabilities. As is
known, the probability Pnm of the transition from the initial state n to the final state m in terms of Wigner
functions is expressed as the overlap integral

Pnm =
1
2π

∫
Wn (q, p) Wm (q, p) dqdp. (3)

Then, using formula (1), it is easy to derive the expression for transition probabilities via the
symplectic tomogram [13],

Pnm =
1
2π

∫
wn (X,μ, ν) wm (Y,−μ,−ν) ei(X+Y )dXdY dμdν (4)

and via the optical tomogram [19]

Pnm =
1
π

∞∫

0

rdr

∫ 2π

0

∞∫

−∞

∫
wn (X, θ) wm (−Y, θ) cos (r (X + Y )) dXdY dθ. (5)

3. Probabilities of quantum transitions in the harmonic oscillator at an instantaneous change
in the equilibrium position. Let us consider a harmonic oscillator which is free at t = 0 and at the
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time point t = t0 close to zero is subjected to a driving force resulting in an instantaneous shift in the
equilibrium position by γ. For simplicity, we set � = m = ω = 1.

As is known, the wave function of the oscillator at the n-th energy level at the initial time point is
given by

ψ(x, t = 0) =
1

4
√

π
√

2nn!
e−

x2

2 Hn(x), (6)

where Hn(x) is the Hermite polynomial. Upon the instantaneous shift in the equilibrium position, the
wave function takes the form

ψn (x, γ, t > t0) = 〈x|n, γ, t > t0〉 =
1

4
√

π
√

2nn!
e−

(x−γ)2

2 Hn (x − γ) . (7)

Let us consider the probability of the transition from the eigenstate with energy En =
(

n +
1
2

)
to the

state with energy Em. The overlap integral of corresponding wave functions, called the Frank–Condon
factor defines the oscillator excitation probability upon an instantaneous shift in the equilibrium position,
written as

Pnm = |〈n, γ, t = 0|m,γ, t > t0〉|2 =

∣∣∣∣ 1√
π2n+mn!m!

∫
e−

x2+(x−γ)2

2 Hn (x)Hm (x − γ) dx

∣∣∣∣
2

. (8)

As shown in [2], the probability of the transition between these oscillator states is expressed in terms
of the Laguerre polynomials as

Pnm =
n<!
n>!

exp
(
− |κ|2

)
|κ|2|m−n|

(
L|m−n|

n<

(
|κ|2

))2
, (9)

where n< = min (n,m), n> = max (n,m), and κ =
1√
2ω

∫ t′′

t′
f (t) e−iωtdt, where f (t) is the exciting

force.
Now let us find the transition probability in the oscillator with an instantaneously shifted equilibrium

position using the tomographic approach.
According to formula (2), symplectic tomograms of initial and final states are equal to the following

expressions containing Hermite polynomials

wn (X,μ, ν) =
1

2nn!
√

π (ν2 + μ2)
e
− X2

ν2+μ2

∣∣∣∣∣Hn

(
X√

ν2 + μ2

)∣∣∣∣∣
2

,

wm (X,μ, ν) =
1

2mm!
√

π (ν2 + μ2)
e
− (X+γμ)2

ν2+μ2

∣∣∣∣∣Hm

(
X + γμ√
ν2 + μ2

)∣∣∣∣∣
2

. (10)

Then the probability of the transitions between initial and final states, according to Eq. (4), is given
by

Pnm =
1
2π

∫
1

2nn!2mm!π (ν2 + μ2)
e
− X2

ν2+μ2 −
(Y −γμ)2

ν2+μ2

∣∣∣∣∣Hn

(
X√

ν2 + μ2

)
Hm

(
Y − γμ√
ν2 + μ2

)∣∣∣∣∣
2

×

×ei(X+Y )dXdY dμdν. (11)

As follows from the physical meaning, expressions (9) and (11) are equal, which gives the condition
for κ

|κ| =
γ√
2

BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE Vol. 41 No. 11 2014



342 ZHEBRAK, MAN’KO

and the new expression for the probabilities of the transitions between parametric oscillator energy levels,
which depends on the equilibrium position shift,

Pnm =
n!
m!

(
γ2

2

)m−n

exp
(
−γ2

2

)(
Lm−n

n

(
γ2

2

))2

, (12)

where n < m. Now let us calculate the transition probabilities using optical tomograms. For initial and
final states, they take the form

wn (X, θ) =
1

2nn!
√

π
e−X2 |Hn (X)|2 ,

wm (X, θ) =
l

2mm!
√

π
e−(X+γ cos θ)2 |Hm (X + γ cos θ)|2 .

As follows from Eq. (5), the transition probability is given by the following integral expression

Pnm =
1

2nn!2mm!π2

∫ ∞

0
rdr

∫ 2π

0

∫ ∞

−∞

∫
e−X2−(Y −γ cos θ)2 cos (r (X + Y ))×

× |Hn (X)Hm (Y − γ cos θ)|2 dXdY dθ, (13)

which should also reduce to expressions (9) and (11).
Taking into account Eq. (12), we find the expression for the integral on the right-hand side of equality

(13),
∞∫

0

rdr

∫ 2π

0

∞∫

−∞

∫
e−X2−(Y −γ cos θ)2 cos (r (X + Y )) |Hn (X) Hm (Y − γ cos θ)|2 dXdY dθ =

= 2m+n (n!)2 π2

(
γ2

2

)m−n

exp
(
−γ2

2

)(
Lm−n

n

(
γ2

2

))2

. (14)

Similar integrals containing Gaussian exponents, one- and multidimensional Hermite polynomials, and
special functions were considered in [20].

4. Conclusions. In this study, it was in fact proposed to calculate Frank–Condon factors via tomo-
grams of two-atomic molecule states. The integral expressions for the probabilities of the transitions
between the initial state before shifting the equilibrium position and the established final state were
determined via symplectic and optical tomograms. These new expressions are given by formulas (11),
(12), and (14). The expressions derived were compared with the known values of the wave function
overlap integrals. The consideration of the transition probabilities in the tomographic representation can
be used in the study of quantum correlations, in particular, the entanglement occurring during electronic
transitions in multiatomic molecules.
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