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Abstract—In this work, an attempt is made to identify the optimized parameter combination for improved
creep and corrosion properties of AA5083-H111 alloy weldments processed by Spin-Arc gas metal arc welding
(SA-GMAW) process. For this, the Artificial Neural Network (ANN) coupled with Genetic Algorithm (GA)
was used as a statistical tool. Experiments were conducted by considering the input parameters namely weld-
ing current, filler spinning speed and filler spin diameter. The weld quality was assessed by measuring micro-
hardness, corrosion resistance and steady-state creep rate. Initially, ANN was used to establish the relation-
ship between input and output process variables. Different learning algorithms such as quick propagation
(QP), back batch propagation (BBP) and incremental batch propagation (IBP) were used for predicting the
output parameters. Prediction accuracy of the different learning algorithms was compared, and the best algo-
rithm was used for the GA optimization technique. The optimum parameters were found to be 134 A of weld-
ing current, 1050 rpm of filler spinning speed and 1 mm of filler spin diameter. Among the input parameters,
the filler spinning speed was identified as the most influential factor (40.11%) that effected the formation and
distribution of second phase particles through which improved corrosion and creep properties were achieved.
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1. INTRODUCTION
Lightweight materials are being continuously

developed to meet the demands of aerospace, marine,
automobile and biomedical industries. AA5083 alloy
is one of the material which has many desirable prop-
erties such as high strength to weight ratio, lower den-
sity and very good corrosion resistance [1, 2]. AA5083
is a non-heat treatable alloy whose strength mainly
depends on the amount of strain hardening. Magne-
sium is one of the main alloying elements in AA5083
[3]. AA5083 alloys are mainly used in the manufactur-
ing of structural components in aerospace and marine
industries [4]. Welding plays an important role in
manufacturing of complicated structures of aerospace
and marine components. Welding of AA5083 alloys is
a little difficult owing to their physical properties such
as higher thermal conductivity and high thermal
expansion coefficient. It is known that exposure of
AA5083 to a temperature of 200°C would result in the
formation of Ab3Mg2 (β-phase) at the interdendritic
regions. Formation of these β-phase particles signifi-
cantly affected the corrosion behavior of high Mg
alloys [5]. To date, works related to welding of AA5083

have been done using laser beam welding (LBW) and
conventional metal inert gas (MIG) welding processes
and tungsten inert gas (TIG) welding processes. Join-
ing aluminum alloys using the LBW process encoun-
ters many practical challenges such as reflectivity of
the laser and zero gap tolerance. The economical
aspect of laser welding is also very high when com-
pared with other conventional arc welding processes.
Many researchers successfully explored the joining of
AA5083 alloys using TIG and MIG welding processes.
Umar et al. [6] compared the influence of filler wire
diameter in pulsed TIG welding of AA5083 alloys and
found that better strength and corrosion properties
were obtained when the diameter of the filler wire was
2.4 mm. The authors found that the filler wire of big-
ger diameter produced a weld with equiaxed grains
owing to the higher welding speed and lesser heat
input. Yao Liu et al. [7] compared TIG and MIG
welding in joining of AA5083 plates and found that
TIG welding is suitable for AA5083 plates. MIG weld-
ing resulted in the formation of porosity, which in turn
reduced weld strength. The major problem associated
with narrow gap welding through conventional TIG
188
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Table 1. The nominal composition of the base and filler metal (wt %)

Elements Cu Si Fe Mg Mn Cr Ni Ti Zn Al

AA5083-H111 0.02 0.12 0.4 4.57 0.94 0.06 0.01 0.027 0.02 Bal.
ER5356 – – – 5 0.12 0.12 – 0.12 – Bal.
and MIG welding process is the molten pool sagging
due to gravity, which in turn leads to defect formations.
This problem could be overcome by the SA-GMAW
process, where the filler wire is made to rotate between
the plates to be welded. This phenomenon not only
decreases the heat input supplied to the weld but also
helps in counteracting the gravity of the upper side of
the molten metal [8]. С.L. Yang [9] successfully
joined low carbon plates of thickness 30 mm using
SA-GMAW process. The authors concluded that the
spin radius has a huge influence on the weld proper-
ties. The authors obtained weld with better properties
when the spin radius was in the range of 2–3.6 mm.

The weld quality mainly depends on the process
parameters and hence, importance should be given to
the selection of correct parameter combinations. The
selection of process parameters by trial and error
method is timewasting and also not economical. The
correct process parameters can be selected with the aid
of modeling and optimization techniques, which
would indeed result in higher weld quality and
increased productivity. In recent times, the usage of
ANN coupled with GA has gained much importance
among the research community for identifying the
optimized parameter combination. ANN works on the
principle similar to biological neurons. ANN can
guess the responses even with fewer data [10]. The
accuracy of the prediction is very good when com-
pared with the other modeling techniques.
Muthukrishnan et al. [11] compared the prediction
capability of regression ANN model with other ANN
models in friction stir welding of AA6063 and A319.
The authors concluded that the regression models are
comparatively better than other ANN models in pre-
diction accuracies. GA is a multiobjective optimiza-
tion technique which works on principle based on nat-
ural genetics and natural selection. GA is very simple
and easy to use. Choudhary et al. [12] compared the
optimization techniques such as the genetic algorithm,
Jaya algorithm, and the desirability approach in sub-
merged arc welding of AISI 1023 steel and found that
Jaya algorithm produced better optimization results
compared to genetic algorithm and desirability
approach. Deepan Bharathi Kannan et al. [13] utilized
ANN along with a genetic algorithm for predicting the
optimized parameter combinations in laser welding of
NiTinol shape memory alloys. The results obtained
through GA were in good agreement with the confir-
mation results. The usage of ANN and GA is not only
limited to welding processes but it has been explored in
all sorts of the manufacturing process. Ali Solati et al.
[14] used ANN-GA techniques for predicting the heat
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affected zone width and bearing strength in the laser
drilling of a fiber-reinforced polymer. The authors
found that the ANN accuracy was better when the
number of neurons in the hidden layer was 5 and 9.

From the literature, it is understood that no visible
works have been done related to the welding of
AA5083 alloy using SA-GMAW process and its corro-
sion and creep characteristics. Hence, an attempt is
made in this work to join AA5083-H111 alloy sheets
using SA-GMAW process and to study the corrosion,
as well as creep properties of processed weldments. It is
also understood from the literature that ANN and GA
could be used for any manufacturing process for pre-
dicting the optimized parameter combinations. Hence
in this work, ANN and GA techniques were used for
predicting the optimized parameters that would result
in better weld quality concerning microhardness, corro-
sion resistance and steady-state creep rate.

2. EXPERIMENTAL PROCEDURES
AA5083 plate of thickness 3 and 1.2 mm diameter

ER5356 grade filler wire was used as a base and filler
material, respectively. The base and filler material
chemical composition are mentioned in Table 1. The
Fronius Trans Synergic 4000 С model welding
machine was used as a power source and it was cou-
pled with a novel SpinArc GMAW torch (see Fig. 1)
developed by Weld Revolution LLC, USA to produce
the weld beads.

The experiments were conducted based on L9
Taguchi array taking welding current, filler diameter
and filler spinning speed as input parameters. The
ranges of the input welding parameters are presented
in Table 2. The other welding parameters such as
shielding gas f low rate, wire feed rate, travel speed,
stick out distance, polarity, arc gap and filler diameter
were maintained at a constant value and the corre-
sponding values are presented in Table 3.

The L9 Taguchi array along with the input and out-
put parameters are shown in Table 4.

The quality of the weld was assessed based on
microhardness, corrosion resistance and steady-state
creep rate. Vickers microhardness tester was used for
calculating the microhardness value. Microhardness
was measured based on the standard ASTM E8 by
applying a load of 500 gf for a dwell period of 10 sec-
onds. Microhardness was measured by taking the aver-
age of microhardness values at five 5 different points
along the weld center. The corrosion resistance of the
weld sample was measured using an electrochemical
l. 61  No. 2  2020
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Table 2. Input parameters and their levels

Factors/Levels Level I
(1)

Level II
(0)

Level III
(–1)

Welding current, A 120 130 140
Filler spinning speed, rpm 1050 1250 1450
Filler spin diameter, mm 1 2 3

Table 3. Constant welding parameters

Welding parameters Value

Shielding gas f low rate, lpm 15

Wire feed rate, m/min 8.3

Travel speed, mm/sec 10

Stick-out distance, mm 22–24

Polarity Electrode positive

Arc gap, mm 2

Filler diameter, mm 1.2
system in which the test sample was used as a working
electrode, a standard calomel electrode was used as a
reference electrode and a graphite rod was used as a
counter electrode. All the electrodes were immersed in
3.5% NaCl solution for conducting the corrosion test.
The electrode potential was varied from –1 to +1 V at
a scan rate of 1 mV/s. Data acquisition was done by
IVIUM soft electrochemistry software and the Tafel
RUSSIAN JOURNAL 

Fig. 1. Image of SpinArc GM
analysis was used to determine the corrosion data in
terms of passive region width ( ):

(1)

Where Epit is the pitting potential; Ecorr is the corrosion
potential.

The steady-state creep rate was measured by using
the impression creep testing machine. The analysis
was performed by applying a constant load of 173 MPa
for 3600 s at a temperature of 473 K [2, 4]. Metallurgi-
cal aspects of the weld obtained in the optimized
parameters were analyzed using the microstructures
obtained through electron backscatter diffraction
(EBSD) analysis and high-resolution transmission
electron microscope (HR-TEM). For metallurgical
analysis, the samples were cut using wire EDM and
the cut samples were mounted using cold mounting
powder and liquid. Emery paper of different grades,
viz. 200, 400, 600, 800, 1000, and 1200 were used for
polishing the samples. Emery paper polishing was
followed by velvet cloth polishing with the help of
alumina powder. Samples were etched in Poulton’s

pitEΔ

pit pit corr (mV).E E EΔ = −
OF NON-FERROUS METALS  Vol. 61  No. 2  2020
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Table 4. L9 Taguchi array

Experiment no. Welding
current, A

Filler spinning 
speed, rpm

Filler spin 
diameter, mm

Microhardness, 
HV

Width of passive 
region, mV

Steady-state 
creep rate,
10–7, s–1

1 1 1 1 74.8 361 3.81
2 1 0 0 72.3 352 4.11
3 1 –1 –1 70.33 304 4.15
4 0 1 0 77.23 381 2.89
5 0 0 –1 72.13 321 4.24
6 0 –1 1 68.9 309 3.65
7 –1 1 –1 73.1 313 3.6
8 –1 0 1 64.55 284 4.45
9 –1 –1 0 74.3 328 3.76
solution before performing the microstructural anal-
ysis [16].

2.1. Artificial Neural Network

ANN is a mathematical modeling tool that works
similar to biological neurons. There are 3 different lay-
ers in neural network viz. input, hidden and output
layer. The input layer neurons denote the independent
variables which have control of the output variables
associated with the manufacturing process. The input
data received in the input layer are processed in the
hidden layer. Depending on the problem complexity
and accuracy, the hidden layers may be one or two or
three, etc. The neurons in each hidden layer also vary
and there are no established results stating that this
number of hidden layers will result in better accuracy.
The output layer collects the information from the
hidden layer and transmits the information as per the
requirement. The neurons in the output layer depend
on the number of output variables considered in the
manufacturing process. ANN modeling involves two
steps, viz. training and testing. In general, 80 and 20%
of the input data are used for training and testing the
neural network respectively.

2.2. Genetic Algorithm

GA is one of the optimization techniques that
works based on the principle of species evolution by
natural selection. The steps involved in GA are popu-
lation initialization, evaluation of objective function,
finding fitness function and application of genetic
operators like reproduction, mutation, and cross over
until the stopping criteria.

The parameters associated with GA were selected
based on the literature [15]. The GA parameters used
in this work are as follows: the population size consid-
ered for the GA analysis was 100, mutation and cross-
over rate selected were 0.01 and 0.9 respectively. In
RUSSIAN JOURNAL OF NON-FERROUS METALS  Vo
addition to that, Single-point crossover was consid-
ered along with the roulette method selection type.

3. RESULTS AND DISCUSSIONS
3.1. ANN Modelling

In this work, modeling was done using different
learning algorithms viz., QP, IBP and BBP. The hid-
den layer was varied from one to two and at the same
time, the neurons in each hidden layer were varied
from 4 to 20.

The prediction accuracy of the learning algorithms
was calculated on the basis of the root mean square
error (RMSE) value. RMSE value was calculated
using Eq. (2)

(2)

where A denotes the experimental value, В denotes the
predicted value and n denotes the number of testing
data.

Tanh function was used for both the hidden layer
and the output layer. The tanh function is presented in
Eq. (3).

(3)

RMSE value of different learning algorithms was cal-
culated using Eq. (2) are shown in Table 5.

From the above table, it can be understood that the
BBP with two hidden layers and 10 neurons in each
hidden layer produced the least RMSE value signify-
ing that, it is the best learning algorithm.

The data obtained through the BBP training pro-
cess is presented in Tables 6 and 7. Likewise, the data
obtained through the testing process is presented in
Table 8.

The ANN structure obtained for the best learning
algorithm is shown in Fig. 2.
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Table 5. RMSE value of learning algorithms

No.
of neurons

QP IBP BBP

hidden layer-1 hidden layer-2 hidden layer-1 hidden layer-2 hidden layer-1 hidden layer-2

4 0.2650 0.4344 1.2009 0.3043 0.6062 0.3749
5 3.3070 0.0001 0.1532 0.2588 0.2727 0.9264
6 0.2223 0.0011 0.8421 0.0858 0.2303 0.1513
7 0.2072 0.5582 0.3719 0.0099 0.1728 0.0226
8 0.4172 0.0018 0.6740 0.0069 0.0626 0.1738
9 0.0810 0.0005 0.1702 0.0705 0.3810 0.0643

10 0.2436 0.0179 0.2582 0.0473 0.2422 0.0001
15 0.0177 0.0027 0.3822 0.0243 3.3436 0.0304
20 2.9178 0.0007 0.0955 0.0084 0.4267 0.2048

Table 6. Training data for microhardness and width of passive region

Observed 
microhardness, HV

Calculated 
microhardness, HV

Difference,
10–5, HV

Observed width
of passive region, mV

Calculated width
of passive region, mV

Difference,
10–4, mV

74.8 74.8 14.9 361 361 2.5

72.3 72.3 3.93 352 352 1.07

70.33 70.33 1.63 304 304 1.8

77.23 77.23 0.68 381 381 0.32

72.13 72.13 1.56 298 298 0.22

68.9 68.9 1.66 309 309 1.3

73.1 73.1 18.3 313 313 1.45

Table 7. Training data for steady-state creep rate

Observed steady-state creep rate, 10–7, s–1 Calculated steady-state creep rate, 10–7, s–1 Difference, s–1

3.80 3.80 1.11 × 10–12

4.11 4.11 8.99 × 10–14

4.15 4.15 5.60 × 10–13

2.89 2.89 1.96 × 10–13

4.24 4.24 1.77 × 10–13

3.65 3.65 4.57 × 10–13

3.60 3.60 1.81 × 10–13

Table 8. Testing data

Experiment
no.

Welding
current, A

Filler spinning 
speed, rpm

Filler spin 
diameter, mm

Microhardness, 
HV

Width
of passive, 
region, mV

Steady-state 
creep rate,
10–7, s–1

8 140 1250 1 69.82 329 3.17

9 140 1450 2 69.19 302 3.82
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Fig. 2. ANN structure for the best learning algorithm.

Fig. 3. Percentage of Importance on the overall objective function.

40.11%
B

A

C

28.09%

31.8%

A—Welding current

B—Filler spinning speed

C—Filler spin diameter
The most influencing parameter based on the
ANN was identified as filler spinning speed followed
by welding current and filler spin diameter. The influ-
ence of input parameters on the multi-objective func-
tion is presented in Fig. 3. А, В, and С in Fig. 3 denote
welding current, filler spinning speed and filler spin
diameter respectively.

BBP learning algorithm with 2 hidden layers and 10
neurons was interfaced with GA to find the optimized
parameters.

The step involved in ANN-GA is presented in Fig. 4.
RUSSIAN JOURNAL OF NON-FERROUS METALS  Vo
3.2. GA Optimization

The lower and upper bound value for welding cur-
rent, filler spinning speed, filler diameter were 120 and
140 A, 1050 and 1450 rpm, 1 and 3 mm respectively.
The Optimized parameter combination identified
through GA is shown in Table 9.

From Table 9, it can be understood that the confir-
mation test results were in agreement with the values
obtained through GA. The maximum deviation from
the predicted value was around 3.9% only.
l. 61  No. 2  2020
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Fig. 4. ANN–GA working methodology [13].
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3.3. Confirmation Test

A confirmation test was conducted based on the
optimized parameters. The microstructure, micro-
hardness, corrosion and creep properties of the weld
were analyzed.

3.3.1. Microstructure of the optimized weld. Fig-
ures 5a–5d show the microstructure of the weldment
RUSSIAN JOURNAL 

Table 9. Optimized parameters and confirmation test

Experiment
Welding

current, A

Filler spinning 

speed, rpm

Fi

diam

GA optimal solution 134.77 1050.26

Feasible solution 134 1050

Error percentage
processed at an optimized condition, i.e., welding cur-

rent of 134 A, the filler rotation speed of 1050 rpm and

filler spinning diameter of 1 mm. It is apparent from

Figs. 4b–4d that the transformation of grains shape

from cellular to equiaxed dendrites ensued at the mid-

dle of the weld (FZ) from the base metal. The typical

directionally solidified microstructure was attained in
OF NON-FERROUS METALS  Vol. 61  No. 2  2020

ller spin 

eter, mm

Microhardness, 

HV

Width

of passive 

region, mV

Steady-state 

creep rate,

10–7, s–1

1.27 77.07 389 2.85

1 74 385 2.75

3.9% 1.32% 3.50%
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Fig. 5. Macro and microstructure of optimized weld: (a) Cross-sectional view of the weldment. (b) EBSD microstructure of the
right sidewall. (c) Left sidewall. (d) FZ.

(а) (b)

(c) (d)

70 μm

70 μm 70 μm

111

001 101
the middle of the weld bead due to the difference in
solidification velocity and the formation of equiaxed
dendrites at the weld FZ was evident owing to the
increased cooling rate associated with GMAW pro-
cess. The average grain size at the FZ (Fig. 5d) was
observed to be 46.73 μm, which is higher than that of
base metal (21.52 μm). Furthermore, the nano-scale
microstructural features of the optimized weld were
observed under HR-TEM and the results are pre-
sented in Fig. 6. From Fig. 6, it is observed that the FZ
of processed weld consists of Mg, Fe and Mn-rich sec-
ond phase particles at the grain boundaries and grain
interiors.

Figure 6a shows the grain boundary precipitation
of β-phase (Ab3Mg2) particle and the P-phase parti-

cles are often seen in high Mg (>4.5%) alloys and it
can be continuous or discontinuous along the bound-
aries [1–3]. Figure 6b illustrates the high density of
dislocation bands, which could act as an obstacle
during mechanical loading. Figure 6c confirms the
existence of rod-like, plate-like and spherical Fe or
Mn-rich intermetallic particles at the FZ. The plate-
like and spherical particles appeared dark in the dark-
filed image (Fig. 6d), suggesting it contains higher
atomic elements like Fe and Mn. The rod-like particle
appeared to be bright in the dark-field image and the
corresponding EDS spectrum (Fig. 6e) confirms that
RUSSIAN JOURNAL OF NON-FERROUS METALS  Vo
it is an Аl6Мn particle. The development of such Mn-

rich intermetallic constituents at the grain boundaries
as well as grain interiors, could improve the corrosion
properties and strength of the weld [4–6].

3.3.2. Corrosion resistance of the optimized weld.
The corrosion characteristics of the FZ of the opti-
mized weld were observed through the potentiody-
namic polarization test and the corrosion curve is
shown in Fig. 7. The width of passive region (ΔEpit)

was determined (385 mV) from the curve and it is evi-
dent that the optimized weld showed the highest width
of passive region among the weldments. The presence
of a higher number of cathodic Fe and Mn-rich parti-
cles (see Fig. 6c) resist continuous pitting attack and
thereby result in noble corrosion resistance among the
samples.

3.3.3. Creep resistance of the optimized weld. Creep
resistance of the optimized weld was determined using
the impression creep test on the FZ of weldment at a
temperature of 473 K with punching stress of 130 MPa.
The displacement of indenter (impression depth) was
documented continuously as a function of time and
using the data; a creep curve was drawn between the
impression depth and time (see Fig. 8). From that, a
steady-state creep rate, and the impression velocity
of FZ of weldment were determined. It is apparent
from Fig. 8 and Table 9 that the lowest creep rate
l. 61  No. 2  2020
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Fig. 6. HR-TEM shows the fine-scale microstructure of FZ: (a) Bright-field image shows β-phase precipitate at the grain bound-
ary. (b) High-density dislocation bands exist at the grain interior. (c) Bright-field image of rod-like Mn-rich intermetallic particle.
(d) Dark-field image of (c). (e) EDS spectrum taken on the rod-like particle shown (c).
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Fig. 7. Potentiodynamic polarization curve for the opti-
mized weld.
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Fig. 8. Impression depth versus time plot for the optimized
weld.
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(2.75 × 10–7 s–1) was attained in the optimized weld
sample. The increase in creep resistance could be
attributed to the existence of finer Fe and Mn-rich
intermetallic particles at grain interior as well as
boundaries.

4. CONCLUSIONS

In this study, a Taguchi based L9 design was
employed to design the parameters and joining of
AA5083-H111 alloy was successfully carried out using
Spin-Arc GMA welding process. The ANN coupled
with GA algorithm techniques were applied to opti-
mize the three process parameters of Spin-Arc
GMAW process on the creep and corrosion properties
of weldments. The following conclusions are drawn
from the investigation:

• All three factors welding current, filler spinning
speed and filler spin diameter are found to be the most
influential parameters on the creep and corrosion
RUSSIAN JOURNAL OF NON-FERROUS METALS  Vo
properties. Among the factors, the filler spinning
speed had a significant influence (40.11%) on the weld
properties.

• The optimal levels of various Spin-Arc GMAW
process parameters for the highest creep and corrosion
properties were 134 A of welding current, 1050 rpm of
filler spinning speed and 1 mm of filler spin diameter.

• The confirmation test was carried out with opti-
mum parameters and the percentage deviation
between the experimental and predicted values was
less than 4% for all the output responses. It shows that
the developed model can be effectively used to predict
the corrosion and creep properties of Spin-Arc GMA
welded joints.

• The improvement in creep strength, corrosion
resistance and hardness of the optimized weld were
attributed to the high density of dislocations and
nano-scaled cathodic particles formed at the grain
boundaries as well as grain interiors.
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