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Abstract—A method for calculating the effective elasticity moduli of porous composite materials is commit-
ted. Its distinctive feature is in calculating the elasticity moduli of the composite solid phase through the effec-
tive volume averaging of component deformations. Analytical dependences for calculating effective deforma-
tion volume averaging of the solid phase and its components are presented. The results of a calculation of the
macroscopic Young modulus of porous composites agrees well with the experimental data.
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INTRODUCTION
The development of modern branches of industry

is in many aspects associated with the development
and application of various composite materials,
including porous ones. The reliable quantitative eval-
uation of physicomechanical properties, in particular,
elastic ones, is one factor in yielding the operational
reliability of constructional elements made of porous
materials. When predicting macroscopic or effective
properties of porous composites, two problems are
solved sequentially. Initially, the effective properties of
a multicomponent solid phase are determined. Then
the effective properties of the porous material itself are
calculated. Porous materials are considered two-phase
composites with zero material constants of one phase.

The known methods of mechanics of microinho-
mogeneous media [1–4] do not allow us to describe
the elastic properties of composites with an arbitrary
content and strong distinction of elasticity moduli of
components. This circumstance is especially
attributed to porous materials, which have maximally
possible distinction of component properties. The
asymptotic averaging method [5] allows us to calculate
the effective properties of composites at any difference
in properties and any component geometry. However,
the “pay” for accuracy is the complexity of the math-
ematical apparatus and performed constructions, and
this method is available only for innumerous special-
ists. The numerical finite element method allows us to
form a three-dimensional representative cell, which
reflects an actual heterogeneous structure, and
describe mechanical properties of the composite with
a high accuracy. However, when forming the three-
dimensional structural model and discretizing it, a

complex software should be developed or commercial
software complexes, for example Ansys, should be
used.

The authors of [6, 7] developed a mathematically
simple method of calculating the effective mechanical
properties of isotropic composites. Its distinctive fea-
ture is in calculating the composite properties through
the effective volume averaging of component defor-
mations. The latter are determined from the solution
of the boundary problem of deforming the representa-
tive cell of a two-phase composite with consideration
for the deformation variant of the porous material.
Thereby, the case of the limiting possible case of dis-
tinction of phase characteristics and maximal defor-
mation concentration in composite components is
taken into account. The authors of [6] found analytical
dependences for calculating the effective shear and
bulk compression moduli in the approximation of a
plane phase interface. The results of calculation
according to model [6] agree well with the experimen-
tal data.

In this study we consider the calculation by the
effective volume-averaging method for elastic con-
stants of porous composites.

ELASTIC CONSTANTS
IN THE EFFECTIVE DEFORMATION 

VOLUME-AVERAGING METHOD
To calculate elastic constants of porous materials

with a composite solid phase, the same dependences
and relationships are used as for materials with the
solid phase homogeneous in regards to the composi-
tion. Herewith, an equivalent homogeneous solid
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phase with effective properties is considered instead of
the heterogeneous solid phase. We will determine
effective elastic constants of the heterogeneous solid
phase by the effective deformation volume-averaging
method.

Elastic properties of isotropic materials are charac-
terized by two independent constants. Let us accept
the Young modulus and shear modulus as basic con-
stants. Let us limit ourselves by the consideration of
porous composites with a binary solid phase. Effective
properties of composites with the number of compo-
nents larger than two are found by the sequential
reduction of a multicomponent composition to a
binary one. The effective Young modulus (E0) of a
binary solid phase, which also consists of isotropic
components, will be determined through concentra-
tion coefficients of average deformations as follows:

 (1)
where E1 and E2 are the Young moduli of components,
c1 and c2 are the volume fractions of components, and
Kε1 and Kε2 are concentration coefficients of average
deformations of uniaxial tension εx.

Concentration coefficients of average deformations
represent the ratio of volume-average components (Vk)
of tension deformations  to average tension defor-
mations  in the composite volume (V):

 (2)

Here and below, lower index k is referred to various
components (k = 1, 2).

Average deformations  and  are calcu-

lated by averaging microscopic deformations  over
corresponding volumes:

 (3)

Each component in average composite deforma-
tion  has its own effective fraction and corre-
sponding effective volume Vαk. Then the summary
deformation in composite volume V can be presented
as the sum of average composite deformation  in
volumes Vαk:

 (4)
It follows from the single-valuedness condition of

the deformation sum in the component volume that
the sum of average composite tension deformation

 in effective averaging volumes of components
Vαk will be equal to the sum of averaging tension defor-
mations  in volumes of components Vk:

 (5)
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We derive from dependence (5) that

 (6)

where αεk = Vαk/V is the fraction of effective volume aver-
aging of tension deformations of the kth component. It
follows from the comparison of dependences (2) and (5)
that concentration coefficients Kεk will be equal to

 (7)
After substituting (7) into (1), we have

 (8)
By analogy with dependence (8) for the shear mod-

ulus of the solid phase, we can write

 (9)
where μ1 and μ2 are the shear moduli of components
and αγk are the fractions of effective averaging volumes
of shear deformations of the kth component. Fractions
of effective deformation averaging volumes in (8) and
(9) are associated by relationships [6]

 (10)
Dependences (8) and (9) correspond in structure

to the known Voigt relationship. In contrast to the
Voigt model, fractions of effective averaging volumes
are used in the proposed model instead of volume
fractions of components. Quantitatively, fractions of
effective deformation averaging volumes are the ratio
of the sum of tension or shear deformations to the sum
of tension or shear deformations in the composite vol-
ume [6].

A porous material represents a two-phase compos-
ite consisting of the solid phase and pores. Pores have
zero elasticity moduli. Then, based on (8) and (9), we
derive for the effective Young modulus (E) and shear
modulus (μ) of the porous composite

 (11)
where αt and αs are the fractions of effective averaging
volumes of tension and shear deformations of the solid
phase. Effective averaging volumes αt and αs are
known in mechanics of porous materials as the func-
tions of porosity or relative density. Further we will
also call parameters αt and αs porosity functions.

When calculating elasticity moduli of the porous
material, it is required to calculate the Poisson coeffi-
cient of the composite solid phase. The effective Pois-
son coefficient equals the ratio of the average trans-
verse deformation  to average transverse defor-
mation  of the composite solid phase:

 (12)
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bulk uniformly. According to the definition, deforma-
tions in effective averaging volumes are equal to corre-
sponding average composite deformations:

 (13)

Allowing for (13) and (10), let us express average
deformations through the fractions of effective averag-
ing volumes:

 (14)

and derive for the Poisson coefficient

 (15)

where αy1 and αy2 are the fractions of effective averag-
ing volumes of transverse deformations, for which
condition (10) is also fulfilled. Transverse deformation
εyk in (15) is associated with longitudinal deformation
εxk by the Poisson law: εyk = –νkεxk. Expressing εxk
through εyk, after transformations allowing for rela-
tionships (10) and (13), we derive the following depen-
dence for calculating the Poisson coefficient of the
composite solid phase:

 (16)

EFFECTIVE AVERAGING VOLUMES
AND POROSITY FUNCTION

Effective deformation averaging volumes are found
from the solution of the boundary problem of elastic
deformation of the representative composite cell. The
following analytical dependences of effective defor-
mation averaging volumes are found for the hypo-
thetic case of the plane phase interface [6]:

 (17)

Here, α01 and α02 are effective deformation averag-
ing volumes, or porosity functions of the conditionally
solid phase of the composite [6]. When calculating the
Young modulus, we consider effective averaging vol-
umes of tension deformations: α1 = αε1, α2 = αε2.
Porosity functions under tension are used as parame-
ters α01 and α02: α01 = αt1, α02 = αt2. When calculating
the shear modulus, effective averaging volumes of
shear deformations are determined: α1 = αγ1, α2 = αγ2.
Porosity functions play the role of parameters α01 and
α02 for the shear: α01 = αs1, α02 = αs2. Thus, effective
deformation averaging volumes αεk and αγk are deter-
mined through porosity functions αt and αs.
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Various porosity functions are presented in scien-
tific publications for calculating the elasticity moduli
of porous materials. Elastic properties of powers and
sintered porous materials are described with high
accuracy by a modified Bal’shin dependence [9, 10]:

 (18)

where ρ is the relative density and ρ0 is the initial
(apparent) density of powder. Relative density ρ is
associated with porosity θ by relationship ρ = 1 – θ.

Let us express the porosity function for tension (αt)
through the porosity function for shear (αs). For this
purpose, let us use the dependence for macroscopic
bulk compression modulus K of a porous material
[9, 10]:

 (19)

and equations connecting the Young modulus with
shear and bulk compression moduli:

 (20)

After transformations, we derive

 (21)

The porosity function for shear (αs) is expressed
through the porosity function for tension (αt) as fol-
lows:

 (22)

In calculations we consider the volume fraction of
components ck of relative density ρ in dependence (17)
of porosity functions α01 and α02 instead of relative
density itself. The initial volume fraction of compo-
nents is accepted equal zero: ck0 = 0.

Effective elasticity moduli of the porous composite
are calculated as follows. Initially, effective deforma-
tion averaging volumes are calculated from depen-
dences (17). When calculating the shear modulus, we
accept in (17)

 (23)

When calculating the Young modulus, we consider
parameters of tension deformation:

(24)

where ν1 and ν2 are the Poisson coefficients of compo-
nents of the composite solid phase.
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At known effective deformation averaging vol-
umes, effective elasticity moduli of the composite
solid phase E0 and μ0 are determined from depen-
dences (8) and (9). Then target effective elasticity
moduli of the porous composite are calculated from
dependences (11). Relative density ρ is used in depen-
dences (18) and (21) of porosity functions αs and αt,
while the effective Poisson coefficient calculated from
formula (16) is used in dependence (21).

TEST CALCULATIONS
OF THE EFFECTIVE YOUNG MODULUS

We verified the accuracy of the proposed method
using the experimental data of elastic properties of
porous two-phase composites. It should be noted that
the number of publications in which reliable results of
experimental investigations into the influence of poros-
ity on elastic constants of composites is very limited.

Figure 1 shows the calculated and experimental
dependences of the Young modulus of the Fe–Cu
porous pseudoalloy depending on the bulk iron con-
tent at porosity values θ = 0.15 and 0.25. The experi-
mental data are taken from [11] and have a very large
spread of experimental points caused by the essential
inhomogeneity of the sample structure. We accepted
that component 1 is copper and component 2 is iron.
We accepted the following Young moduli [12]: E1 =
129 GPa and E2 = 211 GPa, and the Poisson coeffi-
cients [13]: ν1 = 0.28 and ν2 = 0.34. Allowing for a
large spread of the experimental data, the results of
calculation show the quite acceptable accuracy (see
Fig. 1).

The more exact experimental data were found in
[14] for the Al2O3–ZrO2 sintered two-phase compos-
ite. We accepted in calculations that component 1 is
aluminum oxide Al2O3 and component 2 is zirconium
dioxide ZrO2. We accepted the following elastic con-
stants [14]: E1 = 400 GPa, ν1 = 0.23 for Al2O3 and E2 =
210 GPa and ν2 = 0.31 for ZrO2. We initially calculated
the dependence of the effective Young modulus (E0) of
the Al2O3–ZrO2 composite on the bulk content of zir-
conium dioxide (c2). The results of calculations
describe the experimental data with high accuracy
(Fig. 2).

Then we calculated effective Young moduli of porous
composites of the composition Al2O3–10.5 vol % ZrO2
and Al2O3–72.6 vol % ZrO2 with various degrees of
porosity. The results of calculation also agree well the
experimental data in this case (Fig. 3).

Thus, the proposed method and calculated depen-
dences make it possible to describe elastic properties of
both composite solid phase and porous composites
rather exactly.

Fig. 1. Results of calculating the Young modulus for the
Fe–Cu pseudoalloy at porosity (a) θ = 0.15 and (b) 0.25.
Points correspond to the experiment [11].
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Fig. 2. Results of calculating the Young modulus for the
Al2O3–ZrO2 sintered composite. Points correspond to the
experiment [14].
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CONCLUSIONS
To calculate macroscopic elastic moduli of porous

composite materials, the same dependences as for
porous materials with a solid phase homogeneous in
regards to the composition can be used. Herewith, the
heterogeneous solid phase is replaced by the equiva-
lent homogeneous solid phase with effective elasticity
moduli. Effective elasticity moduli of the composite
solid phase can be calculated by the method of effec-
tive averaging volumes of component deformations.
Calculated dependences of effective averaging vol-

umes through porosity functions take into account the
deforming variant of porous materials and, conse-
quently, the maximally possible distinction in compo-
nent properties of the porous material. The proposed
dependences of porosity functions and effective defor-
mation averaging volumes of allow us to describe the
effective Young modulus of both the composite solid
phase and porous composites adequately.
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Fig. 3. Results of calculating the Young modulus for the
(a) Al2O3–10.5 vol % ZrO2 and (b) Al2O3–72.6 vol %
ZrO2 porous sintered composite. Points correspond to
experiment [14].
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