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Abstract—In survival analysis a random right-censoring partitions data into uncensored and cen-
sored observations of the lifetime of interest. The dominance of uncensored observations is a familiar
methodology in nonparametric estimation motivated by the classical Kaplan–Meier product-limit
and Cox partial likelihood estimators. Nonetheless, for high rate censoring it is of interest to
understand what, if anything, can be done by aggregating uncensored and censored observations
for the staple nonparametric problems of density and regression estimation. The oracle, who knows
distribution of the censoring lifetime, can use each subsample for consistent estimation and hence
may shed light on the aggregation. The oracle’s asymptotic theory reveals that density estimation,
based on censored observations, is an ill-posed problem with slower rates of risk convergence, the
ill-posedness occurs in frequency-domain, its severity increases with frequency, and accordingly a
special aggregation on low frequencies may be beneficial. On the other hand, censored observations
are not ill-posed for nonparametric regression and the aggregation is feasible. Based on these
theoretical results, methodology of aggregation in frequency domain is developed and proposed
estimators are tested on simulated and real examples.
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1. INTRODUCTION

Consider a lifetime of interest T which is right-censored by another lifetime C. Then instead
of a direct sample from T we get a sample from pair (V,Δ) := (min(T,C), I(T ≤ C)) where I(·)
is the indicator function. Accordingly, the random right-censoring partitions data into uncensored
observations when we observe realizations of T and censored observations when we observe realizations
of C. Assuming that T and C are independent continuous random variables, denote their densities and
survival functions as fT , ST and fC , SC . Then the joint mixed density of (V,Δ) is

fV,Δ(t, δ) = [fT (t)SC(t)]δ[fC(t)ST (t)]1−δ , (t, δ) ∈ [0,∞)× {0, 1}. (1)

Note the symmetry in the formula with respect to T and C, it reflects the fact that C right-censors T and
T right-censors C.

Statistical literature, devoted to analysis of the lifetime of interest T , treats the uncensored subsample
as the dominate one. For instance, the classical Kaplan–Meier estimator of the survival function has
jumps only at uncensored observations of T , and moreover Kaplan and Meier [30] refers to a censored
T as a “loss”. Further, a large portion of statistical literature treats censored observations as “missing
data”, and then uses the Buckley–James imputation of censored observations by statistics based on
uncensored observations.

The aim of the paper is to understand how and when censored observations may be aggregated
with uncensored for nonparametric estimation of the density fT and nonparametric regression of T
on a predictor. Of course, both these subsamples are needed for consistent estimation. Accordingly,
the oracle’s approach is used. The oracle knows distribution of the censoring variable C and may use
uncensored and censored observations separately to answer the raised question. Then the recommended
oracle’s estimators are mimicked by corresponding data-driven nonparametric estimators based on an
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estimated distribution of C . At the same time, if the distribution of C is known or may be estimated
based on an extra sample from C, then the oracle’s approach can be used directly. A practical example
of the latter possibility will be presented in Section 3.

Let us stress that it is of a special interest to consider problems of density and regression estimation
together because conclusions of the asymptotic theory for the problems are different. Namely, for density
no aggregation is needed for asymptotically efficient estimation while for regression the aggregation
is beneficial. At the same time, conclusions of numerical studies for small samples and high rates
of censoring coalesce in terms of feasibility of aggregation for both density and regression estimation
problems.

In the paper, with some obvious but not confusing abuse of the notions, a sample from (V,Δ) is
called right-censored, its subsample with Δ = 1 is called uncensored-data or uncensored observations
because T is observed, and the complementary subsample with Δ = 0 is called censored-data or
censored observations because C is observed.

The context of the paper is as follows. Sections 2 and 3 are devoted to density and regression
problems, respectively. Their structures are identical. The first subsection presents literature review,
it is shown that the literature treats uncensored and censored subsamples differently with the former
being the dominant source of information. The second subsection is the core mathematical statistics
that contains the sharp minimax asymptotic theory. The theory provides both sharp constants and
optimal rates of the MISE (mean integrated squared error) convergence. This section also explains the
corresponding methodology of estimation. Further, it is of a special interest to show that this asymptotic
theory is not just a complicated mathematical exercise, and it can be applied to simulated small samples
and real-life practical examples with high rates of censoring. The latter is done in Subsections 3 and
4, respectively. The interested reader can even begin with Subsections 2.4 and 3.4.2 to check how
the aggregation sheds a new light on longevity of a patient with small cell lung cancer. Proofs are in
Section 4, and conclusions are in Section 5.

2. DENSITY ESTIMATION
The problem of estimation of the density fT based on a right-censored sample of size n from the

pair (V,Δ), defined in the Introduction, is considered. The structure of the section is outlined in the last
paragraph of Section 1.

2.1. Literature Review
It is fair to say that the modern survival analysis, and distribution estimation in particular, are based

on the pathbreaking product-limit methodology of Kaplan and Meier [30] for nonparametric estimation
of survival function by a stepwise function with steps at uncensored lifetimes. The product-limit
methodology is based on the understanding that censored observations are dominated by uncensored.
Moreover, in that seminal paper censored observations are referred to as “losses.” And sure enough,
rigorous proof of the dominance was done later in [1, 4, 21, 38]. It took a bit longer to verify the
dominance for density estimation. Efromovich [18] established that for large samples the oracle, who
knows data and the distribution of censoring variable, can attain the sharp constant and rate of the MISE
(mean integrated squared error) convergence using only uncensored observations. In other words, the
oracle does not need censored observations for efficient estimation of the density, see also an interesting
discussion in [6].

Despite all these results, there are still two unresolved issues. First, it is of interest to understand why
the oracle does not use censored observations. Second, if the rate of censoring is high and the sample
is small [3, 7, 9, 10, 13, 14, 50, 51], can the oracle use censored observations in an optimal way and
aggregate them with uncensored ones? In what follows we present results that shed light on plausible
answers. The theory, presented shorty in Subsection 2.2, shows that using censored observations yields
consistent estimation, but rate of the MISE convergence is slower than for uncensored observations.
In other words, estimation based on censored observations is ill-posed. This is the bad news. The
good news is that the ill-posedness occurs in frequency-domain and low frequencies see only its onset.
Accordingly, the oracle recommends to aggregate low-frequency Fourier coefficient estimates, based
on uncensored and censored observations, and then use a corresponding series density estimate. In
other words, the oracle states that the aggregation must be in frequency-domain and primarily on low
frequencies. The interested reader will be able to check in Subsections 2.3 and 2.4 feasibility of these
recommendation for simulated and real-life small samples, respectively.
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2.2. Asymptotic Theory and Methodology

Let us recall the right-censored model. Estimation of fT is based on a sample (V1,Δ1), . . . , (Vn,Δn)
of n independent and identically distributed observations from the pair (V,Δ) := (min(T,C), I(T ≤
C)). The right-censoring lifetime C partitions the sample into two subsamples where observations of
either T or C are available. We refer to the two subsamples as uncensored and censored observations.
Note that the number N :=

∑n
l=1Δl of uncensored observations has Binomial(P(Δ = 1), n) distribu-

tion.

The main aim of this subsection is to explain what can and cannot be done by using uncensored and
censored observations for estimating density fT of a bounded lifetime of interest T . The oracle estimates
the density over a finite interval, and without loss of generality it is assumed that the density is estimated
over its support [0, 1]. It is also assumed that SC(1) > 0, this allows consistent estimation. The oracle
knows density fC of the censoring variable, and accordingly can propose consistent estimators based
on each of the two subsamples. In what follows qn := �ln(n+ 20)�, sn := 3 + �ln(ln(n+ 3))�, and �x�
is the smallest integer that larger or equal to x.

We begin with assumptions.

Assumption 1. The lifetime T is independent of the censoring lifetime C.

This is a standard assumption in the literature. Next, following [18], we introduce a class of estimated
densities. Denote by {ϕ0(t) := 1, ϕj(t) := 21/2 cos(πjt), j = 1, 2, . . .} the cosine basis on [0, 1], and
introduce a shrinking local Sobolev class of α-fold differentiable densities supported on [0, 1],

Fn := Fn(f0, α,Q) :=
{
f : f(t) = f0(t) + g(t)I(t ∈ [0, 1]),

g ∈ S1(α,Q), |g(t)| ≤ min
x∈[0,1]

f0(t)/sn, t ∈ [0, 1]
}
. (2)

Here the anchor density f0 is supported, continuous and positive on [0, 1], and for k ∈ {0, 1}

Sk(α,Q) :=

⎧⎨
⎩g : g(t) =

∞∑
j=k

θjϕj(t),
∞∑
j=k

(1 + (πj)2α)θ2j ≤ Q < ∞, t ∈ [0, 1]

⎫⎬
⎭ . (3)

The class S0(α,Q) is called the global Sobolev class, S1(α,Q) ⊂ S0(α,Q), and S1(α,Q) is the class
of Sobolev functions integrated to zero. As we will see shortly in Theorem 1, we need to use the
local Sobolev class (2) because the Fisher information for right-censored observations depends on an
underlying density. Let us also stress that f0 is not necessarily the underlying density of interest, it
simply anchors all underlying densities fT in its vanishing in L1-norm vicinity.

Theorem 1. Consider a sample of size n from right-censored pair (V,Δ) := (min(T,C),

I(T ≤ C)), and the problem is to estimate density fT of the lifetime of interest T under the MISE
criterion. Let Assumption (1) hold, density fC is positive and continuous on [0, 1], SC(1) > 0,
and the oracle knows the right-censored data, density fC and function class Fn. Then

inf
f̃∗

sup
fT∈Fn

EfT

⎧⎨
⎩(n/du)

2α/(2α+1)

1∫
0

(f̃∗(t)− fT (t))2dt

⎫⎬
⎭ ≥ Pu(1 + on(1)), (4)

where the infimum is over all possible oracle-estimators f̃∗. Furthermore, the lower bound is
sharp and it is attainable by an oracle-estimator f̃∗

u based solely on uncensored observations. If
the oracle uses only censored observations and α > 1, then

inf
f̃∗
c

sup
fT∈Fn

EfT

⎧⎨
⎩(n/dc)

2α/(2α+3)

1∫
0

(f̃∗
c (t)− fT (t))2dt

⎫⎬
⎭ ≥ Pc(1 + on(1)), (5)
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and the lower bound is sharp. Accordingly, censored observations are ill-posed, with respect to
uncensored observations, and using only them slows down rate of the MISE convergence from
n−2α/(2α+1) to n−2α/(2α+3). In (4) and (5)

Pu :=
Q1/(2α+1)α2α/(2α+1)(2α+ 1)1/(2α+1)

[π(α+ 1)]2α/(2α+1)
, (6)

Pc := [Q(2α + 3)]3/(2α+3)(1/3)[α/(π(α + 3))]2α/(2α+3) , (7)

du :=

1∫
0

fT (t)

SC(t)
dt, dc :=

1∫
0

ST (t)

fC(t)
dt. (8)

Now let us present oracle’s estimators that attain the sharp lower bounds (4) and (5). We begin with
the one based on uncensored observations, and note that we are using subscript u to highlight that. Set

θ̃∗u0 := 1, θ̃∗uj := n−1
n∑

l=1

Δl
ϕj(Vl)

SC(Vl)
, j ≥ 1. (9)

Then the oracle-estimator based on uncensored observations is

f̂∗
u(t) :=

Jn∑
j=0

θ̃∗ujI((θ̃
∗
uj)

2 > cTHdun
−1)ϕj(t) +

J∗
un∑

j=Jn+1

(1− (j/J∗
un)

α)θ̃∗ujϕj(t), (10)

where Jn := 4�ln(n+ 3)�, cTH is a positive constant, and

J∗
un := �[(n/du)Qπ−2α(α+ 1)(2α + 1)/α]1/(2α+1)�. (11)

Note that in (10) the classical hard thresholding is used on low frequencies and the shrinkage on high
frequencies. For censored observations, consider the sine basis ψj(t) := 21/2 sin(πjt), j = 1, 2, . . .
Using subscript c to highlight that a statistic is based on censored observations, set

θ̃∗c0 := 1, θ̃∗cj := 21/2 − n−1(πj)

n∑
l=1

(1−Δl)
ψj(Vl)

fC(Vl)
, j ≥ 1. (12)

Then the oracle-estimator based on censored observations is

f̂∗
c (t) :=

Jn∑
j=0

θ̃∗cjI((θ̃
∗
cj)

2 > cTHdcn
−1)ϕj(t) +

J∗
cn∑

j=Jn+1

(1− (j/J∗
cn)

α)θ̃∗cjϕj(t), (13)

where

J∗
cn := �[(n/dc)Qπ−2α−2(α+ 3)(2α + 3)/α]1/(2α+3)�. (14)

Theorem 2. Let Assumption 1 hold. Suppose that the anchor f0 ∈ S0(α+ β,Q′), β > 0, Q′ < ∞
where the global Sobolev class S0 is defined in (3). Consider du and dc defined in (8). If du is finite,
then the oracle-estimator (10), based on uncensored observations, attains the lower bound (4).
If dc is finite, then the oracle-estimator (13), based on censored observations, attains the lower
bound (5). Further, the proposed Fourier coefficient estimates are unbiased and satisfy

Ef{(θ̃∗uj − θj)
2} = n−1σ2

uj , σ2
uj = du(1 + oj(1)) (15)

and
Ef{(θ̃∗cj − θj)

2} = n−1(πj)2σ2
cj, σ2

cj = dc(1 + oj(1)). (16)

These properties yield the following unbiased aggregation of the two Fourier coefficient estimates
based on uncensored-data and censored-data,

θ̃∗aj := θ̃∗uj
(πj)2σ2

cj

(πj)2σ2
cj + σ2

uj

+ θ̃∗cj
σ2
uj

(πj)2σ2
cj + σ2

uj

, (17)
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with the mean squared error satisfying

Ef{(θ̃∗aj − θj)
2} = σ2

uj

(πj)2σ2
cj

(πj)2σ2
cj + σ2

uj

=: σ2
uj(1− νj), 0 < νj < (πj)−2[du/dc](1 + oj(1)). (18)

The assertions of Theorems 1 and 2 highlight and quantify ill-posedness of censored lifetimes with
respect to uncensored. At the same time, formula (16) implies that for small j we see only the onset
of ill-posedness. Accordingly, the frequency-domain aggregation (17) is feasible, line (18) explains its
benefits, and the theory sheds light on the numerical study presented in the next subsections.

The nice feature of the proposed series oracle-estimator is that it implies the following algorithm of
nonparametric estimation that will be referred to as E-estimator.

Algorithm of E-estimation. Let f(x), x ∈ [0, 1] be a square integrable function of interest. There
are three steps that E-estimator makes for its estimation using the cosine basis {ϕj}.

Step 1. The function can be written as f(x) =
∑∞

j=0 θjϕj(x). Here θj :=
∫ 1
0 f(x)ϕj(x)dx

are Fourier coefficients of f . Suggest a sample mean estimator θ̂j of Fourier coefficients θj :=∫ 1
0 f(x)ϕj(x)dx. Then calculate a corresponding sample variance estimator v̂jn of the variance

vjn := Var(θ̂j) of the sample mean estimator.

Step 2. The E-estimator is defined as f̂(x) :=
∑Ĵ

j=0 θ̂jI(θ̂
2
j > cTH v̂jn)ϕj(x). Here the empirical

cutoff is Ĵ := argmin0≤J≤cJ0+cJ1 ln(n)
{
∑J

j=0[2v̂jn − θ̂2j ]}, and cJ0, cJ1, and cTH are parameters (non-
negative constants).

Step 3. If there are bona fide restrictions on f(x) (for instance, the probability density is nonnegative
and integrated to one, or it is known that the function is monotonic) then a projection of f̂(x) on the
bona fide function class is performed, see [17].

Note that Steps 2 and 3 in construction of the E-estimator are the same for all nonparametric
statistical problems. As a result, as soon as a sample mean estimator of Fourier coefficients is proposed,
this Fourier estimator yields the corresponding E-estimator. We will see shortly how the E-estimator
performs.

Now let us explain a general methodology of how to adapt to unknown smoothness of fT by using
a a block-shrinkage estimator. To define the estimator, suppose that the oracle recommends to use a
Fourier estimator θ̄j of θj satisfying E{(θ̄j − θj)

2} = dn−1(1+ on(1) + oj(1)). Set b1 := Jn +1, bk+1 :=

bk + �(1+ 1/sn)
k�, k = 1, 2, . . ., Bk := {j : bk ≤ j < bk+1}, Lk := bk+1 − bk, Kn is the smallest integer

such that bKn ≥ n1/3sn,

Θ̄k := L−1
k

∑
j∈Bk

θ̄2j . (19)

Also denote by d̄ an estimate of d such that E{(d̄− d)2} = on(1). For instance, we can set d̄ :=

n−1
∑n

l=1 Δl[S
C(Vl)]

−2 for uncensored observations, and d̄ := n−1
∑n

l=1(1−Δl)[f
C(Vl)]

−2 for cen-
sored observations. Then the blockwise-shrinkage estimator that adapts to parameters (α,Q) and
matches the MISE of a corresponding oracle’s estimator is

f̄(t) :=
Jn∑
j=0

θ̄jϕj(t) +
Kn∑
k=1

∑
j∈Bk

Θ̄k − d̄n−1

Θ̄k
I(Θ̄k ≥ (1 + 1/qk)d̄n

−1). (20)

If the distribution of C is unknown, then the following method of moments estimator of the survival
function SC is used,

ŜC(t) := exp

{
−n−1

n∑
l=1

(1−Δl)I(Vl ≤ t)/ŜV (Vl)

}
, (21)
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where

ŜV (t) := n−1
n∑

l=1

I(Vl ≥ t). (22)

Note that ŜV (Vl) ≥ n−1, and hence it can be used in the denominators of (21).
Lemma 1. Consider estimation of SC(t) for t ∈ [0, a]. Suppose that Assumption 1 holds and

SV (a) > 0. Then there exist finite positive constants B∗, B and a sequence of finite constants Bk

such that for any l = 1, . . . , n, z ∈ [0, a], positive ν and integer k,

E{[ŜC(Vl)− SC(Vl)]|Vl = z} ≤ B∗n
−1, (23)

P(|ŜC(Vl)− SC(Vl)| > ν|Vl = z} ≤ Bne−nν2/B , (24)

E{[ŜC(Vl)− SC(Vl)]
2k|Vl = z} ≤ Bkn

−k. (25)

Lemma 1 will be proved using familiar properties of Bernoulli sums, and the interested reader can
compare the assertion and simplicity of the proof with the beautiful and mathematically involved theory
of product-limit survival estimators, see a nice exposition in [2]. One more remark about Lemma 1 is due.
Its assumption is standard and requires that we are considering an interval [0, a] such that SV (a) > 0,
and note that SV (a) = ST (a)SC(a).

Due to the symmetry between estimating distributions of C and T , the density fC can be estimated
by the same estimator as fT only with Δ being replaced by 1−Δ.

We have defined all estimates of the nuisance functions used by the oracle.

2.3. Numerical Study

Three rows of diagrams in Fig. 1 present results of different simulations, the simulations and
diagrams are explained in the caption, and all estimates are data-driven. The top row presents the
case when 23.5% of observations are censored (the theoretical P(Δ = 0) = 0.25), the underlying density
fT is the Bathtub (the solid line and see its discussion in [28]), and the censoring distribution is
Uniform(0, 1.5). The short-dashed line is the hidden-data density estimate based on underlying (hidden)
observations of T , this data-driven estimate is from R-package [20] and it is used as a benchmark. As we
see, the hidden-data estimate is good and it indicates that the underlying sample is reasonable. All other
estimates are based on the right-censored data. The circles show estimates of fC(Vl), l = 1, . . . , n. The
dotted line is the uncensored-data estimate of fT , it is based on uncensored observations, shown by
the circles in the top-left diagram with Δ = 1, and on estimated survival function of C. This estimate
is also from R-package [20]. Visualization of the uncensored observations supports the estimate. Now
let us look at the 47 censored observations shown in the left-top diagram by the circles with Δ = 0.
Visual analysis does not help us to see the underlying density because censored observations are ill-
posed. Indeed, according to (1), censored observations allow us to evaluate ST , and then its derivative
yields the density. This is why it is difficult to visualize the underlying density in censored observations.
Nonetheless, despite the small sample size and ill-posedness, let us look at the dot-dashed line which
is the proposed density estimate based on the censored observations. The estimate is surprisingly good,
and it will be explained shortly why such an outcome is possible. The long-dashed line is the proposed
aggregated estimate. The middle row of diagrams shows a similar experiment with the same underlying
density and the larger rate of censoring, here the theoretical P(Δ = 0) = 0.38. The particular simulation
is chosen to show that despite the larger number of censored observations, the censored-data estimate
(the dot-dashed line) is clearly worse than the others. This outcome is a real possibility due to the ill-
posedness of censored observations. At the same time, the aggregated estimate is very good, and this
is the main message of this simulation. The bottom row is devoted to estimation of the Bimodal density
defined in ([20], p. 32). Here P(Δ = 0) = 0.5, and for the particular simulation the rate of censoring is
48%. Despite the larger number of censored observations, the estimate based on censored observations
(the dot-dashed line) is dramatically worse than the estimate based on uncensored observations (the
dotted line). Repeated simulations have indicated similar outcomes.
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Fig. 1. Density estimation for three simulated examples shown in the corresponding rows. In each row the left
diagram shows pairs (Vl,Δl), l = 1, . . . , n as well as the sample size n and the number of uncensored observations
N :=

∑n
l=1 Δl. In these three experiments the censoring distributions are Uniform(0, b) with b equal to 1.5, 1.01,

and 1.1, respectively. A right diagram shows estimates of fC(Vl) by the circles. An underlying density fT is shown
by the solid line, it is the Bathtub in the two top diagrams and the bimodal in the bottom digram. The short-
dashed, dotted, dot-dashed, and long-dashed lines are hidden-data, uncensored-data, censored-data, and aggregated
estimates, respectively.

Let us explain the difference between the top two and the bottom experiments. The Bathtub density,
considered in the two top experiments, is a low-frequency curve while the Bimodal is a high-frequency
curve, see ([17], Sect. 3.3). This explains why estimates based on ill-posed censored observations
may be visually appealing for the Bathtub density and not for the Bimodal. Now let us look at the
aggregated estimates (the long-dashed lines). It is plain to realize that they are not from a class
{f̃A = λf̃1 + (1− λ)f̃2, λ ∈ [0, 1]} of traditionally studied estimates aggregated in the time-domain,
see a discussion and mathematically beautiful results in [40, 43, 47]. Instead, a special aggregation
in frequency-domain is used, and this is why the aggregation may be beneficial even if a censored-data
estimate is not good as in the case of the two bottom diagrams.

Are there situations when for small samples the ill-posed censored-data estimate may outperform
the uncensored-data estimate? Figure 2 presents such examples. The left column of diagrams exhibits
a particular outcome for an experiment identical to the top one in Fig. 1 only here the uniform C is
replaced by C = 0.01 + Z, fZ(t) = [1 + 0.8 cos(πt)]I(t ∈ [0, 1]). Due to this monotonically decreasing
density there are no observations of V larger 0.77 and just one uncensored observation larger 0.43.
This creates a challenge for estimating right tail of the density, and this challenge is emphasized by the
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Fig. 2. Density estimation for two simulated examples with high censoring of right tail. Curves are the same as in
Fig. 1, and the data diagrams additionally show the Kaplan–Meier cdf estimate.

classical Kaplan–Meier estimator of the cdf shown in the top diagram by the stepwise solid line. The
uncensored-data estimate (the dotted line) cannot correctly evaluate the right tail but the censored-
data estimate (the dot-dashed line) may and does. Further, note that the censored-data estimate also
helps the aggregated estimate (the long-dashed line) to better exhibit the right tail. At the same time, all
estimates nicely show the left tail of the underlying Bathtub density (the solid line). It is also insightful to
use this example and shed extra light on the theory presented in Theorem 2. A direct calculation shows
that for the problem at hand the coefficients of difficulty (8) for the uncensored and censored observations
are du = 7.9 and dc = 0.4, respectively. At first glance this creates a huge advantage for the uncensored-
data estimator, but the core issue is that this estimator is ill-posed and lines (15) and (16) allow us to
appreciate that. Indeed, while the constant in variance of the uncensored-data Fourier estimate θ̃∗uj is

du = 7.9, for censored observations and θ̃∗cj it is (πj)2dc which, as an example, yields values 3.9, 15.8,
and 35.5 for j =1, 2, and 3, respectively. This is why censored observations are called ill-posed, and at
the same time the dramatically smaller dc gives a chance to small samples.

Now let us look at the second experiment in Fig. 2. The right column of diagrams in Fig. 2 exhibits
a simulation similar to the top one in Fig. 1 only here the distribution of censoring C is Uniform(0, 0.9).
Note that no consistent estimation of fT over its support is possible in this case, but still the estimators
can be used because all their denominators are bounded from zero. In the top-right diagram we observe
the extremely challenging data for right tail estimation, and the Kaplan–Meier estimator (the step-wise
solid line) sheds an extra light on the complexity. Nonetheless, the censored-data estimate (the dot-
dashed line) nicely exhibits the underlying density over its support, and it is dramatically better than the
uncensored-data estimate (the dotted line). Further, the aggregated estimate is again better than the
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Table 1. Numerical analysis of the three experiments in Fig. 1 (experiments 1–3) and two experiments in Fig. 2
(experiments 4, 5). Each entry in columns 2-5 is written as a ratio where: The numerator is the integrated squared
error (ISE) of the estimate shown in Figs. 1, 2. The denominator is the median, over 5000 repeated simulations,
of ratios between ISEs of the hidden-data estimate and the estimate indicated in the column. The last column
shows theoretical rates of censoring

Experiment Hidden-data Uncensored-data Censored-data Aggregated E{1−Δ}
estimate estimate estimate estimate

1 0.0002/1 0.003/0.80 0.026/0.03 0.0024/0.81 0.25

2 0.0038/1 0.012/0.25 0.36/0.05 0.0027/0.34 0.38

3 0.051/1 0.092/0.52 0.33/0.13 0.091/0.54 0.50

4 0.0045/1 0.141/0.08 0.0064/0.10 0.074/0.13 0.49

5 0.0095/1 0.229/0.06 0.010/0.07 0.17/0.08 0.42

uncensored-data estimate. Of course, here for consistent estimation the interval of estimation should be
decreased, see [18, 21, 32, 34].

To finish discussion of Figs. 1 and 2, let us present integrated squared errors of the estimates for
the five simulations, and then compare them with results of an intensive numerical study based on
5000 repeated simulations for each experiment. Results for empirical integrated squared errors (ISE)
are shown in Table 1 whose caption explains the entries. We begin with experiment in the top row
of Fig. 1, that is with Experiment 1. For the particular data shown in Fig. 1, the hidden-data estimate
clearly dominates the others, and the uncensored-data estimate is dramatically better than the censored-
data estimate. Nonetheless, the aggregated estimate is much better (in terms of its ISE) than the
uncensored-data estimate and also better than the censored-data estimate. Overall, as the repeated
simulations show (see the denominators), the particular experiment in Fig. 1 shows us a better side of
the aggregation, because in a long run the aggregated estimator is only a bit better than the uncensored-
data estimator. Further, on average the censored-data estimate is dramatically worse than the one
shown in the right-top diagram in Fig. 1. This is the essence of ill-posedness. We will return to
discussion of the outcome shortly, and now let us look at Experiment 2 which is similar to the previous
only now the rate of censoring jumps from 25% to 38%. Due to the smaller number of uncensored
observations, the uncensored-data estimator performs dramatically worse than in the Experiment 1 but
still dominates the censored-data estimate. The good news is that the aggregated estimator performs
significantly better than the uncensored-data estimator due to the high rate of censoring. For the
experiment 3, as it could be expected, the censored-data estimator performs worse than the uncensored-
data one, but again the aggregation improves the censored-data and uncensored-data estimators.
Finally, for the challenging, due to sparse right-tail observations, experiments 4 and 5 we see the clear
dominance of the censored-data estimator over the uncensored-data estimator due to the better right
tails. Further, similarly to the other experiments, the aggregated estimator dominates the two others.

We can make the following conclusions for density estimation: (i) under a mild assumption, asymp-
totically uncensored observations dominate censored ones due to ill-posedness of censored observations;
(ii) for small samples and high rates of censoring it may be beneficial to aggregate these observations;
(iii) aggregation may not benefit estimation of high-frequency densities but it definitely does not hurt
the estimation; and (iv) the censored-data estimate may help in analysis of censored data with sparse
right-tail observations.

2.4. Lung Cancer Data

Let us complement the above-presented numerical study by analysis of the Arm A small cell lung
cancer (SCLC) clinical study data presented in the JASA [49]. The data contains right-censored survival
lifetimes, in days, and age, in years. The censoring is caused by administrative end of the study, and
according to the paper it is independent of the survival lifetime and the age. Here we are interested in the
density of survival lifetimes, and in the next section consider the regression problem. Let us note that
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Fig. 3. Data and density estimates for lung cancer data. In the bottom diagram the solid, dashed, and dotted lines are
the uncensored-data, censored-data, and aggregated estimates of fT , respectively, and the circles show estimates of
fC(Vl).

about 15% of all lung cancer cases are the SCLC and this is the most aggressive type of lung cancer with
extremely short survival times after the cancer diagnosis. Figure 3 shows the right-censored lifetimes
and estimates. The data resembles the sparse right-tail simulations of Fig. 2, only now we do not know
the underlying density.

The top diagram exhibits the data. We are dealing with a small sample, rate of censoring is 24%, and
right-tail observations are sparse. Note that the seven largest observations of V are censoring times, and
they point upon a subset of relatively large underlying lifetimes T . The largest VlΔl = 1221 days, and
note that the Kaplan–Meier (KM) estimator of 1− ST provides no information about the distribution
of T beyond that time. In the bottom diagram the circles show the estimates of fC(Vl), l = 1, . . . , n,
and the lines are estimates of fT (t) for t ∈ [0, V(n)] where V(n) denotes the largest order statistic. The
solid line is the uncensored-data estimate. It indicates two strata of underlying lifetimes. The stratum of
smaller lifetimes has the mode near 500, and the stratum of larger lifetimes begins with values exceeding
1700. The dashed line shows the censored-data estimate, and it even more articulately points upon two
strata of lifetimes. At the same time, keeping in mind its ill-posedness and the extremely small size of the
censored-data, its overall shape should be considered with the grain of salt. The aggregated estimate
is shown by the dotted line which makes the right strata a bit more pronounced with respect to the
uncensored-data estimate. A plausible explanation of the two strata can be found in the publication [37]
in the Journal of Clinical Oncology devoted to the lung cancer study. According to the publication, the
survival of participants was primarily defined by the binary stage of cancer, limited or extensive. This is
what the density estimates tell us about. Interestingly, the conclusion about two strata is different from
the unimodal on [0,∞) Bayesian density estimate in [42]. We will continue discussion of the lung cancer
data in Subsection 3.4.2 where we look at regression of the survival lifetime on the patient’s age.
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3. NONPARAMETRIC REGRESSION WITH CENSORED RESPONSES

The structure of this section is identical to the previous one, that is we begin with the literature review
which is followed by asymptotic theory, methodology, numerical study, and analysis of real data.

3.1. Literature Review

It is well documented in the literature that the Kaplan–Meier’s understanding of the dominance
of uncensored observations was also pathbreaking in regression estimation. The dominance is at the
core of the seminal Cox’s papers [11, 12] where the methodology of partial likelihood was proposed.
Later, using information calculations, it was established in [22, 41] that the Cox’s estimator is nearly
fully efficient. Using the dominance principle, Buckley and James [8] suggested to replace censored
responses by their conditional expectations calculated using uncensored observation. This novel
imputation approach and the estimator got their name, and the estimator was rigorously studied
in [29, 44], and also see an interesting discussion of the imputation in [45]. Discussion of several
other related ideas, all of whom are based on the dominance principle, can be found in [29, 33, 39,
48]. There is also a large literature specifically devoted to nonparametric regression with censored
responses. Fan and Gijbels [23] use uncensored observations to construct nonparametric imputation of
censored responses, and then apply a nonparametric estimator to the transformed responses. This is an
interesting and technically challenging nonparametric development of the Buckley–James imputation
method. Interesting and sophisticated regression estimators, based on the dominance of uncensored
observations, Kaplan–Meier methodology and Buckley–James imputation, can be found in [5, 16, 20,
25, 26, 31, 36, 48].

Surprisingly, it will be shown in the next Subsection 3.2 that, in contrary to the above-discussed
problem of density estimation, censored observations are no longer ill-posed for nonparametric regres-
sion estimation. Namely, censored observations allow the oracle to estimate nonparametric regression
with the same rate as uncensored observations. Accordingly, there is no superiority of uncensored
observations over censored ones, and the oracle recommends to use an aggregated, in frequency
domain, regression estimator. Then in Subsections 3.3 and 3.4 we will have a chance to evaluate this
recommendation using a numerical study when we know the underlying regression as well as analysis
of real-life examples.

3.2. Asymptotic Theory and Methodology

There is an underlying pair of interest (X,T ) where X is the predictor and lifetime T is the response,
and the problem is to estimate nonparametric regression m(x) = E{T |X = x}. The response T is not
observed directly. Instead, we observe a sample of size n of independent and identically distributed
observations from the triplet (X,V,Δ) where V := min(T,C), Δ := I(T ≤ C) and C is the censoring
variable. The censoring partitions data into uncensored and censored observations when we observe
realizations of (X,T,Δ = 1) and (X,C,Δ = 0), respectively.

As we know from the literature review presented in Subsection 3.1, the principle of dominance
of uncensored observations is believed to be valid for nonparametric regression. Let us explore this
issue using the oracle approach. We begin with several assumptions that resemble assumptions of
Section 2. More general settings are considered in Section 5. In what follows we use sequences qn
and sn introduced in Section 2.

Assumption 2. The conditional density fT |X(t|x) is supported on [0, t∗)× [0, 1] where t∗ is
either a finite number or infinity. Censoring variable C is a continuous lifetime, its density fC is
positive and continuous on [0, t∗), and C is independent of (X,T ). Predictor X is a continuous
variable with density fX which is continuous, positive, and supported on [0, 1].

Our next assumption is about the oracle.
Assumption 3. The oracle knows an anchor conditional survival function S0(t|x), (t, x) ∈

[0, t∗)× [0, 1]. Anchor S0(t|x) is continuous in (t, x), differentiable in t, and for any positive
constant a < t∗

min
x∈[0,1]

min
t∈[0,a]

S0(t|x) ≥ u1(a) > 0, max
x∈[0,1]

max
t∈[0,a]

∂S0(t|x)/∂t ≤ −u2(a) < 0. (26)
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Set m0(x) :=
∫∞
0 S0(t|x)dt. The oracle knows that an underlying ST |X belongs to the following

local shrinking Sobolev class

F(α,Q,m0, n) :=

⎧⎨
⎩ST |X(t|x) :

∞∫
0

ST |X(t|x)dt ∈ M(α,Q,m0, n)

⎫⎬
⎭ , (27)

where

M(α,Q,m0, n)

:= {m(x) : m(x) = m0(x) + g(x), g(x) ∈ M(α,Q), |g(x)| ≤ 1/sn, x ∈ [0, 1]} , (28)

M(α,Q) :=

⎧⎨
⎩g(x) : g(x) =

∞∑
j=0

θjϕj(x),
∞∑
j=0

[1 + (πj)2α]θ2j ≤ Q < ∞, x ∈ [0, 1]

⎫⎬
⎭ . (29)

Let us explain these assumptions. The conditional survival function S0(t|x) anchors all possible
underlying survival functions whose regression functions satisfy the additive perturbation (28). Because
a conditional survival function must be bona fide (nonnegative and nonincreasing in t), restriction (26)
on the anchor is introduced. Also note that the second inequality in (26) implies that the anchor

conditional density f
T |X
0 (t|x) is positive on [0, 1] × [0, a]. Let us note that a may depend on n. Line

(29) defines a global Sobolev class of α-fold differentiable functions traditionally studied in the classical
nonparametric regression theory devoted to the model T = m(X) + σ(x)ξ where ξ is a standard normal
variable (error) independent of X, see [27]. Then it is known that, based on a direct sample of size n

from (X, T ), the regression function can be estimated with the classical rate n−2α/(2α+1) of the MISE
convergence.

Let us present a lower bound for MISE of the oracle who uses only censored observations.
Theorem 3. Consider a nonparametric regression problem of estimating m(x) = E{T |X = x}

by the oracle who knows the nuisance functions fX , fC and the function class F(α,Q,m0, n).
The oracle uses only censored observations from a sample of size n from (X,V,Δ). Suppose that
Assumptions 2, 3 hold and

Dc :=

1∫
0

∫∞
0

ST |X(t|x)
fC(t)

dt

fX(x)
dx < ∞. (30)

Then

inf
m̃∗

sup
ST |X∈F(α,Q,m0,n)

[n/Dc]
2α/(2α+1)

EST |X

⎧⎨
⎩

1∫
0

(m̃∗(x)−m(x))2dx

⎫⎬
⎭ ≥ P (1 + on(1)). (31)

Here the infimum is taken over all possible oracle-estimators and P is equal to the right side of
(6). Further, if the anchor m0 ∈ M(α + β,Q′), β > 0, Q′ < ∞, then the lower bound is attainable
by an oracle-estimator that does not use the anchor.

Several comments are due. First, n−2α/(2α+1) is the optimal rate of regression estimation for the
case of a directly observed sample from (X,T ), and Theorem 3 asserts that using censored observations
yields the same rate. Accordingly, for the regression problem censored observations are no longer ill-
posed and the idea of aggregation is fertile. Second, for direct observations and a classical regression
Y = m(x) + σ(x)ξ with standard Normal ξ we would see in the lower bound (31) the functional D :=∫ 1
0 σ2(x)[fX(x)]−1dx in place of Dc. This allows us to conclude that using only censored observations

is similar to the classical regression with normal regression errors and the scale function

σ(x) =

⎡
⎣ ∞∫

0

ST |X(t|x)
fC(t)

dt

⎤
⎦
1/2

. (32)
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This is an interesting outcome of the theory which sheds a new light on regression with right-censored
responses. Third, the integral (30) can be finite even if T is supported on [0,∞), in this case the
conditional survival ST |X(t|x) should decrease in t a “bit” faster than fC(t), for instance if for large
t we have ST |X(t|x)/fC(t) ≤ Bt−1−ν , ν > 0. The corresponding example will be considered shortly in
Subsection 3.3.

Let us present a series oracle-estimator (compare with the estimators in Section 2) which is based
on censored observations and attains the lower bound (31). The proof of this assertion can be found in
the next section. Set

m̂∗(x) :=
Jn∑
j=0

θ̂∗cjI((θ̂
∗
cj)

2 > cTHDcn
−1)ϕj(x) +

J ′
cn∑

j=Jn+1

(1− (j/J ′
cn)

α)θ̂∗cjϕj(x), (33)

where Jn and cTH are the same as in Section 2, J ′
cn is equal to the right side of (11) with du being

replaced by Dc, and

θ̂∗cj := n−1
n∑

l=1

(1−Δl)ϕj(Xl)

fX(Xl)fC(Vl)
. (34)

It will be also shown in the next section that θ̂cj is unbiased estimate of Fourier coefficient θj :=∫ 1
0 m(x)ϕj(x)dx and

E{(θ̂∗cj − θj)
2} = n−1Dc(1 + oj(1)). (35)

Then, following Section 2, we can use the data-driven E-estimator for small samples and the blockwise-
shrinkage estimator for sharp-minimax estimation. Further, in place of unknown densities fX and fC

we can use the E-estimates presented in Section 2.
Nonparametric regression based on uncensored observations is discussed in [20]. The aggregation

of Fourier coefficient estimates in frequency domain is the same as in Section 2 and it is based on the
variances of aggregated Fourier coefficient estimates.

Let us check performance of the proposed regression E-estimators for small samples.

3.3. Numerical Study

Figure 4 presents data and regression estimates for a simulated example. Let us describe the
experiment and the diagrams. The response T has exponential distribution with mean m(x) = E{T |X =
x} being the Bimodal density (recall Fig. 1) plus 0.3. The censoring variable is exponential with mean 2,
and the predictor X is uniform on [0, 1]. Let us explain the diagrams. The top diagram shows censored
observations by the crosses and uncensored by the circles, N is the number of uncensored observations.
The middle diagram shows the underlying (hidden) scattergram from (X,T ), and the solid and short-
dashed lines are the underlying regression and the estimate of the R-package [20]. In the bottom diagram
we see the same solid and short-dashed lines as in the middle diagram. Further, the dotted line is the
uncensored-data estimate, the dot-dashed line is the censored-data estimate, the long-dashed line is
the aggregated estimate; all these estimates are data-driven and based on the scattergram shown in the
top diagram.

Now we are ready to analyze the data and the estimates. In the top diagram we see a sample of
size n from (X,V,Δ) := (X,min(T,C), I(T ≤ C)), and the problem is to estimate the nonparametric
regression m(x) := E{T |X = x}. Note that about a third of observations are censored. It is of interest to
compare the scattergram of right-censored data with the underlying (hidden) scattergram from (X,T )
shown in the middle diagram. The underlying scattergram exhibits a complicated heteroscedastic
regression. The regression function, shown by the solid line, has the shape of Bimodal density studied in
Fig. 1. Accordingly, we know that the regression is a high-frequency function, and recall that censored
observations could not help to estimate the Bimodal density. In the bottom diagram of Fig. 4 the solid
and short-dashed lines are the same as in the middle diagram, that is we see the underlying regression
and its estimate based on the hidden data. The hidden-data estimate serves as a benchmark. The
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Fig. 4. Simulated nonparametric regression with predictor X and randomly right-censored response T .

estimate is relatively good and indicates a “fair” sample from (X, T ). The dotted line is the uncensored-
data estimate, the dot-dashed line is the censored-data estimate, and the long-dashed line shows the
aggregated estimate. These three estimates are data-driven, and let us look at them more closely. They
correctly show the bimodal shape but the magnitude of the right mode is small. This could be predicted
from analysis of the two scattergrams because all realizations of T larger than 6 are censored. As about
another mode, it is shifted to the left and the reason for this is clear from the scattergram. Surprisingly,
the estimate based on censored observations, despite their relatively small number, is better than the
estimate based on uncensored observations. Also, note that while for density estimation the high-
frequency nature of the Bimodal prevented its fair estimation based on censored observations, there
is no such issue for the regression. Aggregated estimate (the long-dashed line) is the best and it is
dramatically better than the uncensored-data estimate. The visual analysis is supported by the empirical
ISEs. Namely, the integrated squared errors of the hidden-data, uncensored-data, censored-data and
aggregated estimates are 0.12, 0.36, 0.30, and 0.29, respectively.

Now let us present results of a numerical study based on 5000 repeated simulations of Fig. 4. The
mean rate of censoring is 36%, that is in Fig. 3 we see a bit less than the mean number of censored
observations. The average ISEs are 0.14, 0.36, 0.27, and 0.25 for the hidden-data, uncensored-data,
censored-data, and aggregated estimates, respectively. We may conclude that the shown in Fig. 4
estimates are typical in terms of their ISEs, and that the idea of aggregating uncensored and censored
observations in nonparametric regression is feasible even for high-frequency regression functions.

3.4. Analysis of Real Data

We are considering in turn two practical examples with high rates of censoring. The first example is
the environmental study by BIFAR. It is of a special interest to us because, due to the small number of
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observations (n = 34, N = 16), the BIFAR provided an extra sample of censoring variable. Accordingly,
we can use the oracle’s methodology of estimation presented in Subsection 3.2. The second example is
continuation of the lung cancer example of Subsection 2.4.

3.4.1. Environmental example. Wastewater treatment facilities are designed to speed up the
natural process of purifying water. With billions of people and even more wastewater, the natural process
is overloaded. Without wastewater treatment, the amount of wastewater would cause environmental
devastation by discharging into the environment. Moreover, wastewater treatment plays critical role in
climate change mitigation by reducing greenhouse gas emission, see [15].

Wastewater centrifuge is a part of industrial wastewater treatment plant, see [15, 24, 35]. Centrifugal
thickening and dewatering of sludge is a high speed process that uses the force from rapid rotation
of a cylindrical bowl to separate wastewater solids from liquid. The sludge accumulates on the bowl
periphery, and the internal conveyer scrapes towards the sludge discharge ports to produce a non-liquid
material referred to as the cake. Because of the abrasive nature of many sludges, especially some mining,
industrial and sewage sludges, hard-facing materials are applied to the leading edges of the conveyer
blades. The wearing surfaces are replaceable but this can be done only by the manufacturer due to
necessity to balance the conveyer. Accordingly, it is important to know lifetime of the conveyer blade.

Another important issue, related to the lifetime of the conveyer blade, is the level of grit in the treated
waste. Grit is the heavy inorganic solids that could cause excessive mechanical wear. Grit is heavier than
organic solids and includes sand, gravel, clay, metal filings, seeds, and other similar materials. Several
processes are used for grit removal. All of the processes are based on the fact that grit is heavier than
organic solids, which should be kept in suspension for treatment in subsequent processes. Grit removal
is done by grit separators that are relatively expensive and may slow waste water flow.

The environmental company BIFAR conducted a controlled study devoted to exploring how lifetime
T of a conveyer blade depends on concentration of grit. There are two facts about the study that should
be mentioned. First, the lifetime of modern blades is relatively long and may last several years. This
explains why only n = 34 observations are available. Second, while industrial centrifuge is a device with
many parts that may break down, only lifetime C of bearings right censors T . In the BIFAR experiment
only 16 observations of T are uncensored, that is N =

∑34
l=1Δl = 16. These n and N are very small for

nonparametric estimation. To help with the estimation, BIFAR provided data about directly observed
nE = 54 lifetimes of bearings. These observations were used to construct E-estimate of fC . The final
remark is about used predictor. It is difficult to control the level of grit in the waste supplied to the
centrifuge, but plain to define cost of a preliminary grit separation. Accordingly, BIFAR provided cost X
of grit separation and recommended it as the predictor.

The available data and corresponding estimates are shown in Fig. 5 and its caption explains the
diagrams. Uncensored observations are shown by circles in the left-top diagram, censored observations
are shown by crosses in the right-top diagram, and these observations together are shown in the left-
bottom diagram. The above-explained extra observations of C are shown by triangles in the right-
bottom diagram, and the estimated density fC is shown by the solid line. Note that the support of C in
the extra sample is clearly larger than [0, V(n)], and hence SC(V(n)) > 0. This yields validity of using the
developed estimators.

The uncensored-data regression estimate (the solid line in the left-top diagram) looks reasonable for
the shown scattegram, but please keep in mind that the observations are biased because fV |Δ(t|1) =
fT (t)SC (t)
P(Δ=1) . Accordingly, visualization should be used with vigilance. The right top diagram shows us 18

censored observations, that is the lifetimes of bearings. Note that the censored-data regression estimate
(the solid line) is not “supported” by the data visualization, and we already know that for censored data
this is not a defining factor in judging the estimate.

Figure 5d shows us the total right-censored BIFAR data and the aggregated regression estimate (the
solid line). Let us stress that here all available observations are used to construct the estimate.

Table 2 sheds extra light on the BIFAR data and the three regression estimates. Estimates of Fourier
coefficient θ0 =

∫ 1
0 m(x)dx are presented in the second column. The estimates are very close, and

note how aggregation of the uncensored and censored observations decreases the standard deviation.
The latter is not a surprise due to the high rate of censoring. Estimates of Fourier coefficient θ1 =∫ 1
0 m(x)21/2 cos(πjx)dx are presented in the third column. This parameter defines “slope” of the
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Fig. 5. BIFAR data. (a) Shows uncensored observations of T overlaid by the uncensored-data regression estimate.
(b) Shows censored observations, that is observations of C, overlaid by the censored-data regression estimate. (c)
Shows the total right-censored BIFAR data overlaid by the aggregated regression estimate. (d) Shows the extra
sample of the censoring variable and the density estimate. All observations are linearly transformed by the BIFAR.

regression. Note the difference in conclusions of the uncensored-data and censored-data regression
estimators about θ1, and we can also see this in the slopes of the corresponding regressions shown
in Fig. 5. The aggregated Fourier estimate is more close to the uncensored-data estimate of θ1 than
to the censored-data one, and this is because the standard deviation of the uncensored-data Fourier
estimate is almost twice smaller. All other Fourier estimates are insignificant and hard-thresholded by
the regression E-estimators. Accordingly, all three estimates are of the form m̂(x) = θ̂0 + θ̂1ϕ1(x).

The BIFAR example is of a special interest because it shows how the extra sample from C may help

Table 2. Estimated Fourier coefficients and corresponding standard deviations for the three regression estimates
shown in Fig. 5. Each entry is written as A/B where A is the estimate and B is its standard deviation

Estimand θ0 θ1 θ2 θ3 θ4

Uncensored-data 0.56/0.16 –0.15/0.07 –0.01/0.05 0.04/0.05 –0.05/0.05

Censored-data 0.58/0.16 –0.27/0.13 –0.17/0.21 0.16/0.14 0.18/0.21

Aggregated 0.57/0.11 –0.18/0.06 –0.02/0.05 0.06/0.05 0.05/0.05

MATHEMATICAL METHODS OF STATISTICS Vol. 33 No. 2 2024



170 EFROMOVICH

40 50 60 70 80
0

500

1500

1000

Censored data, n = 62, N = 47

X

V

40 50 60 70 80
200

400

600

Regression estimates

x

m
(x

)

Fig. 6. Regression estimates for the lung cancer clinical study. The circles and the crosses show the uncensored
and censored lifetimes. The solid, dashed and dotted lines are the uncensored-data, censored-data and aggregated
estimates.

to deal with extremely small, for nonparametric estimation, samples of right censored data. This is also
the real example which shows feasibility of the oracle’s methodology.

3.4.2. Lung cancer example. Here we look at the regression for the lung cancer study for which we
already estimated densities of survival and censoring lifetimes in Section 2. Recall that in the JASA paper
[49] the regression data is provided with predictor X being the age of a participant, and it is explained
that the censoring lifetime C does not depend on the predictor. The data and the estimates are shown in
Fig. 6. Let us look at them.

The top diagram in Fig. 6 shows the scattergram of the right-censored data. Several interesting
observations can be made about the data. First, note that the lifetimes are relatively small for the five
youngest and four oldest participants. Second, the largest lifetimes are the censored lifetimes (the
crosses) for the middle age participants. Accordingly, we can expect that the regression should have
a pronounced maximum for the middle age and decreasing tails. And indeed, these observations are
reflected by the all regression estimates. Further, as it could be expected from the scattergram, the
censored-data estimate (the dashed line) is the most pronounced, but due to the smaller number of
censored lifetimes (the crosses) its effect on the aggregated estimate is minor. According to [37], the
small cell lung cancer is extremely aggressive and smoking is one of the main factors. This may explain
the data and the underlying message of the regression estimates. In the JASA paper [49] a log-linear
regression was studied, and correspondingly this interesting effect of the age could not be revealed.

We may conclude that the proposed methodology of regression for right-censored responses is
feasible and can be recommended for analysis of real data.
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4. PROOFS

Proof of Theorem 1. Lower bound (4) and its sharpness for uncensored observations (a subsample
with Δ = 1) is established in [18]. Let us prove lower bound (5) for censored observations which
establishes ill-posedness of the data. The proof is involved and it is worthwhile begin with the heuristic.
The main step is to replace the nonparametric minimax by a parametric minimax for increasing number
of parameters, and then bound from below the parametric minimax by a corresponding Bayes risk. The
choice of parameters should be such that the corresponding classical parametric Fisher informations are
constants as functions in t. As we will see shortly, Fisher informations are functionals of fC(t)/ST (t).
This triggers the necessity to divide the studied interval [0, 1] into a sequence of subintervals with
decreasing length as n → ∞. This step allows us to deal with almost constant Fisher information for
each subinterval. Correspondingly, for each subinterval its own Sobolev class of parametric densities
is proposed. Then the main issue is how to spread the power Q of the global Sobolev class over the
subintervals, and this is done inversely proportional to the local Fisher informations. Several other
comments are also due. The density must be from the class Fn, and to achieve that we sew local
functions at boundaries of the subintervals using so-called flattop kernels, the latter is a standard
technique in harmonic analysis. Another issue is the right boundary where ST (t) may be too close to
zero. To deal with this issue we bound from below the MISE considered over interval [0, 1] by the MISE
considered over a subinterval [0, a] with some fixed a ∈ (0, 1). To implement this idea, we divide the unit
interval into sn subintervals and then consider only subintervals within [0, a]. Finally, to highlight steps
that shed light on ill-posedness and to make the proof shorter, whenever possible we are using technical
results of [18] obtained in the proof of lower bound (4).

Now we begin the outlined steps of the proof of lower bound (5). Set s := sn := 3 + �ln(ln(n+ 3))�,
where �x� is the smallest integer larger or equal to x. Recall that f0 is the anchor density of the
considered local Sobolev class of underlying densities, S0(t) :=

∫ 1
t f0(u)du is the anchor survival

function, B denotes a generic positive constant, a ∈ (0, 1) is a constant. Let φ(x) = φ(n, x) denote
a sequence of flattop kernels such that for a given n: the kernel is zero beyond (0, 1), α-fold contin-
uously differentiable on (−∞,∞), 0 ≤ φ(x) ≤ 1, φ(x) = 1 for 2(ln(n))−2 ≤ x ≤ 1− 2(ln(n))−2, and
|φ(m)| ≤ B(ln(n))2m, see examples of the kernel in [19]. We divide the unit interval [0, 1] into s equal
subintervals and numerate them using index k = 0, 1, . . . , s− 1. On each subinterval we introduce
the sine basis ψskj(t) := s1/2ψj(st− k), j = 1, 2, . . ., ψj(t) := 21/2 sin(πjt) and the corresponding

flattop kernel φsk(t) := φ(st− k). Also set Qsk = (Q− 1/s)(I−1
s Isk)

−1, Isk = fC(k/s)/S0(k/s),

I−1
s =

∑�sa�
k=0(1/Isk) where 
x� is the largest integer not exceeding x. Note that, as was explained in

the heuristic, only subintervals of [0, a] are considered. Also set

Jsk := �[(α + 3)(2α + 3)α−1(sπ)−2α−2QskIskn]
1/(2α+3)�.

We begin with replacing the studied local Sobolev class by a sequence in n of parametric classes of
densities that are subclasses of the local Sobolev class. Set S0(t) := 1−

∫ t
0 f0(v)dv,

Hs =

⎧⎨
⎩f : S(t) =

1∫
t

f(v)dv, S(t) = S0(t) +

�as�∑
k=0

gsk(t)φsk(t),

gsk(t) =

Jsk∑
j=�Jsk/ ln(n)�

(πjs)−1νskjψskj(t),

|dgsk(t)/dt|2 ≤ s3 ln(n)Jskn
−1,

Jsk∑
j=�Jsk/ ln(n)�

(πj)2αν2skj ≤ s−2αQsk, f ≥ 0, t ∈ [0, 1]

⎫⎬
⎭ .

Let us comment on the class Hs. The flattop kernels are used to smoothly “sew” the additive
permutations gsk at the boundaries, and also note that the permutations are zero (vanish) at the
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boundary points. If we “ignore” the flattop kernels and differentiate a survival function from Hs, then we
get an additive permutation studied in [18] and matching the underlying local Sobolev class of densities.
The reason why we are dealing with the specific class of survival functions is because the likelihood of
censored observations is defined by the survival function and not the density, recall (1), and accordingly
it is convenient to define the class Hs via survival functions. Then following [18] we get Hs ⊂ Fn for all
sufficiently large n, and accordingly in (5) we can replace the supremum over Fn by supremum over Hs.
Our final remark is that Hs is a class of densities created by additive perturbations of the anchor density
f0 on each of the first 
as�+1 subintervals of [0, 1]. Note that the additive perturbations are independent
of each other. Thus we get the inequality,

sup
f∈Fn

Ef

⎧⎨
⎩

1∫
0

(f̃∗(t)− f(t))2dt

⎫⎬
⎭ ≥ sup

f∈Hs

�as�∑
k=0

Ef

⎧⎪⎨
⎪⎩

(k+1)/s∫
k/s

(f̃∗(t)− f(t))2dt

⎫⎪⎬
⎪⎭ . (36)

Now we can use the classical approach of bounding from below the studied minimax risk by a
Bayesian risk using independent zero mean Normal priors for parameters νskj. Namely, for νskj the
variance of normal prior is set to

τ2skj = (πjs)2n−1(1− 3q−1
∗ )I−1

sk max(q−1
∗ ,min(q∗, [(Jsk/j)

α − 1])),

where q∗ > 3 is a constant that may be as large as desired. Next we need to make several straightforward
calculations. We begin with calculating Fisher information for parameter νskj and censored pair
((1 −Δ)C,Δ), recall that we are verifying the lower bound (5) for the oracle who uses only censored
observations. This is the step that will shed light on ill-posedness of censored observations. The
corresponding mixed density is

f (1−Δ)C,Δ(t, δ) = [fC(t)ST (t)]1−δ [P(Δ = 1)]δ

= [fC(t)ST (t)]1−δ

⎡
⎣1−

1∫
0

fC(v)ST (v)dv

⎤
⎦
δ

. (37)

Here the first factor corresponds to density of censored pair (V,Δ) with Δ = 0 while the second factor
is the corresponding value of the probability mass function of the Bernoulli random variable Δ, as we
will see shortly the second factor yields a negligibly small component of the Fisher information. The
parametric Fisher information is

Iskj := E

⎧⎪⎨
⎪⎩
⎡
⎢⎣∂ ln([fC(C)S(C)]1−Δ

⎡
⎣1−

1∫
0

fC(u)S(u)du

⎤
⎦
Δ

)/∂νskj

⎤
⎥⎦
2⎫⎪⎬
⎪⎭

= E

{
(1−Δ)

[∂S(C)/∂νskj ]
2

[S(C)]2

}
+ E

{
Δ
[
∫ 1
0 fC(u)(∂S(u)/∂νskj)du]

2

[P(Δ = 1)]2

}

= (πjs)−2

[
Ef0

{
(1−Δ)

[ψskj(C)φsk(C)]2

[S(C)]2

}

+E

{
Δ
[
∫ 1
0 fC(u)ψskj(u)φsk(u)du]

2

[P(Δ = 1)]2

}]

= (πjs)−2

⎡
⎣ 1∫

0

[fC(u)/S0(u)][ψskj(u)φsk(u)]
2du

+

1∫
0

fC(u)ψskj(u)φsk(u)du/P(Δ = 1)

⎤
⎦
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= (πjs)−2[fC(k/s)/S0(k/s)](1 + on(1))

= (πjs)−2Isk(1 + on(1)). (38)

In the next to last line we used definition of ψskj, which is element of the sine basis on the kth subinterval,
and that φsk is the flattop kernel on that subinterval, as well as the assumption about continuity and
smoothness of fC and S0. Formula (38) sheds light on the ill-posedness because we see that the Fisher
information decreases as the frequency j increases. This is what creates the ill-posedness in frequency
domain for censored observations.

Now we make several more calculations. First we get via approximation of a sum by a corresponding
integral,

R(J, n, d) := n−1d
J∑

j=0

(πjs)2[1− (j/J)α] = n−1J3d(πs)2
α

3(α+ 3)
(1 + oJ(1)). (39)

Second, using the same calculation technique, we find that solution with respect to J of the equation
dn−1

∑J
j=1(πjs)

2α+2[(J/j)α − 1] = Q∗ is

J(n, s, d,Q∗) =

[
nQ∗(α+ 3)(2α + 3)

d(πs)2α+2α

]1/(2α+3)

(1 + on(1)). (40)

Using (36), the above-defined Bayesian approach, (38)–(40), and following steps of the proof in [18]
we get

sup
f∈Fn

Ef

⎧⎨
⎩

1∫
0

(f̃∗(t)− f(t))2dt

⎫⎬
⎭ ≥

�as�∑
k=1

Ak + on(1)n
−2α/(2α+3) , (41)

where
Ak ≥ R(J(n, s, I−1

sk , Qsk), n, I
−1
sk )(1 + on(1))

= n−1[J(n, s, I−1
sk , Qsk)]

3I−1
sk (πs)2α[3(α + 3)]−1(1 + on(1))

= Pcn
−2α/(2α+3)[s2α+2I−1

s ]−3/(2α+3)s2I−1
sk (1 + on(1))

= Pcn
−2α/(2α+3)[s−1I−1

s ]−3/(2α+3)s−1I−1
sk (1 + on(1)).

Now note that s−1I−1
s = s−1

∑�as�
k=0 I

−1
sk =

∫ a
0 [S0(v)/f

C(v)]dv(1 + on(1)). We conclude that

�as�∑
k=0

Ak ≥ Pc

⎡
⎣n/

a∫
0

[S0(v)/f
C(v)]dv

⎤
⎦
−2α/(2α+3)

(1 + on(1)).

Now recall that dc =
∫ 1
0 [S0(v)/f

C(v)]dv. Because a may be chosen as close to 1 as desired, this
finishes the proof of lower bound (5). Sharpness of the lower bounds will follow from the verified below
Theorem 2. Theorem 1 is proved.

Proof of Theorem 2. We begin with the following assertion that evaluates MISE of the low-
frequency component of the density estimate. Suppose that E{(κ̃j − κj)

2} ≤ B∗n−1. Then we can
write that

E{(κ̃jI(κ̃2j > cTHdn−1)− κj)
2} ≤ 2[E{(κ̃j − κj)

2}+ E{κ2jI(κ̃2j ≤ cTHdn−1)}]
≤ 2[B∗n

−1 + 4E{[κ̃2j + (κ̃j − κj)
2]I(κ̃2j ≤ cTHdn−1)} = on(1)snn

−1.

Accordingly, the MISE of the low-frequency component of the estimate is on(1)n
−2α/(2α+1), and we

need only to study MISE of the high-frequency component. Note that this is an interesting result
because the low-frequency component inspires the E-estimator for small samples while the high-
frequency component yields asymptotic efficiency (sharp constant and optimal rate). Further, note that
cTH may depend on n and this does not change the result. For instance, cTH = 2 ln(n) implies the
classical hard thresholding [17]. Now let us return to the proof.

MATHEMATICAL METHODS OF STATISTICS Vol. 33 No. 2 2024



174 EFROMOVICH

The case of using uncensored observations is considered in [18]. The new here is the case of
censored observations and the aggregation. We begin with analysis of the Fourier estimate θ̃∗cj defined
in (12). Recall that {ψj(x)} and {ϕj(x)} are the sine and cosine bases on [0, 1]. Using iid of censored
observations and (1) we can write for j ≥ 1,

E{θ̃∗cj} = 21/2 − E

{
n−1(πj)

n∑
l=1

(1−Δl)
ψj(Vl)

fC(Vl)

}

= 21/2 − (πj)E

{
(1−Δ)

ψj(V )

fC(V )

}

= 21/2 − (πj)

∞∫
0

ST (t)ψj(t)dt.

We continue using ϕj(0) = 21/2 , integration by parts, and the assumed support [0, 1] of T ,

E{θ̃∗cj} = 21/2 − (πj)[−ST (t)(πj)−1ϕj(t)|1t=0 − (πj)−1

1∫
0

fT (t)ϕj(t)dt]

= 21/2 − [21/2 −
1∫

0

fT (t)ϕj(t)dt] = θj .

This proves that the estimate is unbiased. Next, again using (1) we write,

n(πj)−2
E{(θ̃∗cj − θj)

2} = E

{
(1−Δ)ψ2

j (V )

[fC(V )]2

}
=

1∫
0

ST (t)ψ2
j (t)

fC(t)
dt = dc(1 + oj(1)).

This verifies (16). To verify (17), (18) we note that if random variables Z and Y have the same
mean and variances σ2

Z and σ2
Y , then the aggregation λZ + (1− λ)Y has the minimal variance when

λ = σ2
Y /[σ

2
Z + σ2

Y ]. Now we verify that the density estimate (13) attains the lower bound (5). Let B
denotes generic positive constants. Using the Parseval identity and the above-verified properties of θ̃cj
we get,

E

⎧⎨
⎩

1∫
0

(f̃∗
c (t)− f(t))2dt

⎫⎬
⎭

=

Jn∑
j=1

E{θ̃∗cj − θj)
2}+

J∗
cn∑

j=Jn+1

E{[(1− (j/J∗
cn)

α)θ̃j − θj]
2}+

∑
j>J∗

cn

θ2j

=

J∗
cn∑

j=1

E{(θ̃∗cj − θj)
2}

+ E

⎧⎨
⎩

J∗
cn∑

j=Jn+1

[(1− (j/J∗
cn)

α)(θ̃∗cj − θj) + (j/J∗
cn)

αθj]
2

⎫⎬
⎭+

∑
j>J∗

cn

θ2j

≤ Bn−1J2
n + n−1

J∗
cn∑

j=1

(πj)2(1− (j/J∗
cn)

α)2dc(1 + oj(1)) +
∑
j>Jn

(j/J∗
cn)

2αθ2j . (42)

For the considered functional class of densities we have∑
j>Jn

(j/J∗
cn)

2αθ2j ≤ (πJ∗
cn)

−2αQ(1 + on(1))
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due to the assumed smoothness of the anchor. Using this relation as well as (40) with s = 1 and Q∗ = Q,
we get

dcn
−1

J∗
cn∑

j=Jn+1

(πj)2α+2[(J∗
cn/j)

α − 1] = Q(1 + on(1)),

and then can write, ∑
j>Jn

(j/J∗
cn)

2αθ2j

≤ (πJ∗
cn)

−2αdcn
−1

J∗
cn∑

j=Jn+1

(πj)2α+2[(J∗
cn/j)

α − 1](1 + on(1))

= n−1dc

J∗
cn∑

j=Jn+1

(πj)2[(j/J∗
cn))

α − (j/J∗
cn)

−2α](1 + on(1)).

Using this relation in (42), together with (7), (14), and (39) we conclude that

E

⎧⎨
⎩

1∫
0

(f̃∗
c (t)− f(t))2dt

⎫⎬
⎭

≤ Bn−1J3
n + n−1dc

J∗
cn∑

j=1

(πj)2[1− (j/J∗
cn)

α]

≤ n−1dc[J
∗
cn]

3π2 α

3(α+ 3)
(1 + on(1))

= (n/d)−2α/(2α+3)Pc(1 + on(1)).

Sharp minimax property of f̃∗
c is established. Theorem 2 is proved.

Proof of Lemma 1. Let us look at the estimate (22) of the survival function SV (t) := E{I(V ≥ t)}
of the continuos and always observed random variable V ,

ŜV (t) := n−1
n∑

l=1

I(Vl ≥ t).

This is the classical sample mean estimate based on the sample of n Bernoulli random variables
I(Vl ≥ t), l = 1, 2, . . . , n, and it is assumed that we are considering this estimate for t ∈ [0, a] and
SV (a) > 0. Then the relations (23)–(25) of the verified Lemma 1, where (ŜV , SV ) are used in place
of (ŜC , SC), hold according to classical properties of a sum of Bernoulli random variables, see [20,
Sect. 1.3]. Next we note that

SC(t) = e−
∫ t
0 [f

C(v)/SC (v)]dv = e−
∫ t
0 fV,Δ(v,0)/SV (v)]dv = e−E{(1−Δ)I(V ∈[0,t])/SV (V )}.

Now we can note that (21) is the plug-in sample mean estimate, and the assertion of Lemma 1 follows
from the Taylor formula and a straightforward calculation. Lemma 1 is verified.

Proof of Theorem 3. The proof follows along lines of the proof of Theorem 1 and, whenever possible,
it uses the same notations. The main difference is in the necessity to use more complicated parametric
classes because those used in the proof of Theorem 1 are too “simple” and yield a lower bound smaller
than the verified (31). Nonetheless, to simplify the presentation, we first introduce a parametric class
that is similar to Hs, used in the proof of Theorem 1, and then it will be explained how to modify it for
more “complicated”, or we can say less favorable, estimation. Introduce a class of additive perturbations
of the anchor regression,

Ms :=

{
m(x) : m(x) := m0(x) +

s−2∑
k=1

gk(x)I(1/s ≤ x ≤ 1− 1/s), gk(x) ∈ Msk

}
,
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where classes Msk will be defined shortly. In what follows, similarly to the proof of Theorem 1, we are
dividing the interval [0, 1] into s subintervals, and then use the additive perturbation only at the inner
intervals. Then we are following steps of the proof of Theorem 1 and use the same flattop kernels to
smoothly sew additive perturbations on the subintervals of [0, 1]. Namely, for 1 ≤ k ≤ s− 2we introduce
ϕskj(x) :=

√
sϕj(sx− k),

g[k](x) :=

J(k)∑
j=J ′(k)

νskjϕskj(x),

g(k)(x) := g[k](x)φsk(x),

J(k) := �[n(2α + 1)(α + 1)s−2αQsk(απ
2α)−1]1/(2α+1)�,

J ′(k) := �J(k)/ ln(n)�, Qsk := (Q− 1/s)(I−1
s Isk)

−1,

I−1
sk :=

t∗∫
0

S0(t|k/s)
fX(k/s)fC(t)

dt,

and I−1
s :=

∑s−2
k=1(1/Isk).

Using these sequences we define classes Msk used in the definition of Ms,

Msk :=

{
g : g(x) = g(k)(x)I(k/s ≤ x ≤ (k + 1)/s),

J(k)∑
j=J ′(k)

(πj)2αν2skj ≤ s−2αQsk, |g[k](x)|2 ≤ s3 ln(n)J(k)n−1

}
.

Note that a regression function from the class Msk can be written as

m(x) = m0(x) +

s−2∑
k=1

J(k)∑
j=J ′(k)

νskjϕskj(x)φsk(x).

Next five steps follow along lines of the proof of Theorem 1. First, direct calculations show that the
class F includes Ms. Second, we introduce

τskj := [n−1(1− 3q−1
∗ )I−1

sk max(q−1
∗ ,min(q∗, (J(k)/j)

α − 1))]1/2,

where q∗ > 3 is a constant that may be as large as desired. Note that νskj = τskj satisfy the definition of
classes Msk, and for k = 1, . . . , s− 2 we can introduce the following sets of these parameters,

Θsk :=

⎧⎨
⎩�νsk :

J(k)∑
j=J ′(k)

(πj)2αν2skj ≤ s−2αQsk, |g[k](x)|2 ≤ s3 ln(n)J(k)n−1

⎫⎬
⎭ .

Here �νsk := {νskJ ′(k), . . . , νskJ(k)}, and note that �τsk := {τskJ ′(k), . . . , τskJ(k)} ∈ Θsk. The third step is

to use the Parseval identity, notation ν̃∗skj :=
∫ (k+1)/s
k/s g̃∗(x)ϕskj(x)dx, the fact that the oracle knows the

anchor m0, and conclude that

sup
ST |X∈F(α,Q,m0,n)

E

⎧⎨
⎩

1∫
0

(m̃∗(x)−m(x))2dx

⎫⎬
⎭

≥ (1− s−1)

s−2∑
k=1

sup
�νsk∈Θsk

J(k)∑
j=J ′(k)

E
{
(ν̃∗skj − νskj)

2
}
+ o(1)n−2α/(2α+1). (43)
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The fourth step, motivated by the proof of Theorem 1, is to bound from below the supremum of
expectations on the right side of (43) by Bayesian risks via introducing independent and zero mean
normal random variables ζskj with the above-defined corresponding variances τ2skj. Then a direct
calculation shows that for the considered regression this step yields a smaller lower bound than the
verified one. This is the earlier-mentioned place were a more complicated parametric class and less
favorable prior is needed. We do that by creating another layer of parameters, and then by using new
normal variables for defining the desired least favorable prior. Set

S(t|x) := S0(t|x) +
s−2∑
k=1

J(k)∑
j=J ′(k)

s−2∑
r=1

	ln(s)
∑
i=1

κskjriϕskj(x)φsk(x)ψsri(t).

Here ψsri(t) := (s/t∗)1/2ψi(st/t
∗ − r), ψi(t) = 21/2 sin(πit)I(t ∈ [0, 1]). Note that if |κskjri| ≤

n−1/3/s5 (and compare this bound with τskj being of order n−1/2 in the proof of Theorem 1), then
|∂[S(t|x)− S0(t|x)]/∂t| = on(1). This and Assumption 3 allow us to conclude that S(t|x) is a bona fide
survival function for all large n. Further, the corresponding regression is

m(x) = m0(x) +

s−2∑
k=1

J(k)∑
j=J ′(k)

[ s−2∑
r=1

	ln(s)
∑
i=1

bsriκskjri

]
ϕskj(x)φsk(x),

where bsri :=
∫ t∗
0 ψsri(t)dt. Using the Parseval identity we get

∑∞
i=1 b

2
sri = t∗/s. The last equality

allows us to introduce independent Normal random variables ζskjri with zero mean and variance

S0(r/s|k/s)
fX(k/s)fC(r/s)

[n−1(1− 3q−1
∗ )max(q−1

∗ ,min(q∗, (J(k)/j)
α − 1))],

compare with τ2skj. Further, a direct calculation shows that

E

⎧⎨
⎩
⎛
⎝s−2∑

r=1

	ln(s)
∑
i=1

bsriζskjri

⎞
⎠

2⎫⎬
⎭ = τ2skj(1 + on(1)).

The fifth step is to calculate parametric Fisher informations. Recall that the oracle uses only
uncensored observations, and this is equivalent to having a sample of size n from the triplet (X, (1 −
Δ)C,Δ). Consider corresponding elements of the Fisher matrix,

Iskj(r1, i1, r2, i2) := E

{
2∏

l=1

[∂ ln(fX(X)fX,(1−Δ)C,Δ(X, (1 −Δ)C,Δ)/∂κskjrlil ]

}
.

Direct calculations, similar to those in the proof of Theorem 1, yield that Iskj is a block-diagonal matrix
and Iskj = diag(B1, . . . , Bs−2) where each Br is a �ln(s)� × �ln(s)� matrix with diagonal elements
Br(i1, i1) = [S0(r/s|k/s)/fX(k/s)fC(r/s)]−1(1 + o∗n(1)), where for some finite constant B∗ we have
|on(1)| < B∗/s uniformly over all considered parameters, and absolute values of all other elements
are bounded by B∗/s. Accordingly, the inverse Fisher matrix I−1

skj satisfies for the vector-row �bsk :=

(bsk11, . . . , bsk(s−2)	ln(s)
) the relation

�bskI−1
skj

�b T
sk =

t∗∫
0

S0(t|k/s)
fX(k/s)fC(t)

dt(1 + on(1)) = I−1
sk (1 + on(1)).

This, (41), (42) and direct calculations yield

inf sup
�νsk∈Θsk

J(k)∑
j=J ′(k)

E{(ν̃∗skj − νskj)
2} ≥ (nIsk)

−2α/(2α+1)P (1 + on(1)), (44)
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where the infimum is over all possible oracle-estimators of �νsk considered in Theorem 3. The rest of the
proof of the lower bound (31) follows along lines of the proof of Theorem 1.

Now let us show that the lower bound is sharp and is attainable by the series estimate (33). For the
proposed Fourier coefficient estimator (34) we can write,

E{θ̂∗cj} = E

{
(1−Δ)ϕj(X)

fX(X)fC(V )

}

=

1∫
0

∞∫
0

fX(x)ST |X(t|x)fC(t)ϕj(x)

fX(x)fC(t)
dtdx

=

1∫
0

⎡
⎣ ∞∫

0

ST |X(t|x)dt

⎤
⎦ϕj(x)dx =

1∫
0

m(x)ϕj(x)dx = θj.

Thus the estimate is unbiased. Further,

E{(θ̂∗cj − θj)
2} = n−1

[
E

{
(1−Δ)ϕ2

j (X)

fX(X)fC(V )

2}
− θ2j

]
= n−1Dc(1 + oj(1)).

This verifies (35). Using these two results, we can use the proof of Theorem 2 to verify efficiency of (33)
and sharpness of the lower bound. Theorem 3 is proved.

5. CONCLUSIONS

Right-censoring partitions data into uncensored and censored observations when either the lifetime
of interest T or the censoring variable C are observed. The dominance of uncensored observations
over censored ones is a familiar principle in the survival analysis literature. The paper addresses the
dominance principle both theoretically, using the oracle’s approach, and numerically. The obtained
answer is two-fold. First, for nonparametric density estimation the dominance principle is correct,
and the problem of density estimation based on censored-data is ill-posed. This is the bad news, the
good news is that the ill-posedness is defined in frequency domain with its onset on low frequencies.
Accordingly, it may be beneficial to aggregate uncensored and censored observations for estimating
low-frequency components of the density. Second, for nonparametric regression censored-data are not
ill-posed, and then their special aggregation in frequency domain is beneficial.

It is important to stress that the proposed aggregation is different from the classical one performed in
the time domain. The time-domain aggregation uses a set of already calculated nonparametric estimates
and then tries to create a better one with the main application being adaptation to unknown smoothness
and/or dimensionality. The proposed methodology suggests to aggregate individual Fourier coefficient
estimates based on complementary subsamples of uncensored and censored observations, that is the
aggregation is done in the frequency domain.

The developed aggregation methodology is beneficial for data with high rate censoring and/or small
sample sizes. Further, the improvement may be dramatic for data with sparse right-tail observations.

Let us also comment on one interesting byproduct of the developed oracle’s theory. It shows that
if distribution of the censoring variable is known, then the oracle recommends to use relatively simple
efficient estimators. Accordingly, whenever possible it is desirable to get an extra information about the
censoring variable and then mimic the oracle. The environmental example of Subsection 3.4.1 illustrates
this possibility.

Now let us briefly comment on topics for future research.
(1) Considered model of nonparametric regression assumes that the predictor and response (X,T )

are independent of the censoring variable C . This is a classical model and occurs in many applications,
see [32, 34, 39]. A more general model is when T and C are conditionally independent given predictor X.
In this case the developed methodology is still applicable with the estimates ŜC and f̂C being replaced
by ŜC|X and f̂C|X , respectively.
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(2) Estimation of conditional density fT |X is theoretically challenging and practically important
problem. Note that both the classical and quantile nonparametric regressions are functionals of the
conditional density.

(3) Nonparametric estimation of the hazard rate and conditional hazard rate. This topic is of a
particular interest in actuarial science, biostatistics and reliability theory, see [20].

(4) Missing data is a traditional complication in survival analysis. It is known that in the case of a
classical (no censoring) regression, cases of missing responses and predictors require different methods
of estimation. It will be of interest to understand how missing and right-censoring interact, and then
develop optimal estimators.
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