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Abstract—Our research employs general empirical process methods to investigate and
establish moderate deviation principles for kernel-type function estimators that rely on
an infinite-dimensional covariate, subject to mild regularity conditions. In doing so, we intro-
duce a valuable moderate deviation principle for a function-indexed process, utilizing intricate
exponential contiguity arguments. The primary objective of this paper is to contribute to the existing
literature on functional data analysis by establishing functional moderate deviation principles for
both Nadaraya–Watson and conditional distribution processes. These principles serve as funda-
mental tools for analyzing and understanding the behavior of these processes in the context of
functional data analysis. By extending the scope of moderate deviation principles to the realm of
functional data analysis, we enhance our understanding of the statistical properties and limitations
of kernel-type function estimators when dealing with infinite-dimensional covariates. Our findings
provide valuable insights and contribute to the advancement of statistical methodology in functional
data analysis.
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1. INTRODUCTION

The regression analysis has proved to be a flexible tool and provided a powerful statistical
modeling framework in various applied and theoretical contexts where one intends to model the
predictive relationship between related responses and predictors. It is worth noticing that the parametric
regression models provide useful tools for analyzing practical data when the models are correctly
specified but may suffer from large modelling biases if the structures of the models are misspecified,
which is the case in many practical problems. As an alternative, nonparametric smoothing methods
ease the concerns of modeling biases. Kernel nonparametric function estimation methods are popular,
presenting only one of many approaches to constructing good function estimators, including nearest-
neighbor, spline and wavelet methods. These methods have been applied to a wide variety of
data. In the present paper, we shall focus on constructing consistent kernel-type estimators. For
good sources of references to the research literature in this area along with statistical applications,
consult [20, 26, 27, 30, 31, 35, 39, 51, 52, 57, 76, 78, 106, 108, 124, 126, 128, 130, 136, 138] and the
references therein.
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Recently, increasing interest has been given to regression models in which the response variable is
real-valued, and the explanatory variable takes the form of smooth functions that vary randomly between
repeated observations or measurements. Statistical problems related to the study of functional random
variables, that is to say, variables with values in an infinite-dimensional space, have known, since the last
decades, a growing interest in the statistics literature. The development of this research theme is indeed
motivated by the abundance of data measured on an increasingly fine temporal/spatial grid as is the
case, for instance, in meteorology, medicine, satellite imagery, and many other research areas. Thus, the
statistical modeling of these data, seen as random functions, led to several challenging theoretical and
numerical research questions. For an overview of theoretical as well as practical aspects of functional
data analysis, the reader can refer to the monographs of [14] for linear models for random variables
taking values in a Hilbert space, [120] for scalar-on-function and function-on-function linear models,
functional principle component analysis, and parametric discriminant analysis. Ferraty and Vieu [62]
however focused more on nonparametric methods and mainly kernel-type estimation for scalar-on-
function nonlinear regression models. They extended such tools to classification and discrimination
analysis. Horváth and Kokoszka [82] discussed the generalization of several interesting concepts in
statistics, such as goodness-of-fit tests, portmanteau tests, and change detection, to the functional data
framework. For the latest contributions in FDA and its related topics, one can refer to [1–4, 18, 25,
37, 54, 93, 103, 139]. In various scenarios, there is a keen interest in gauging the rate at which specific
probabilities converge. Frequently, these probabilities exhibit rapid exponential convergence. Numerous
researchers have explored large deviations and unearthed various applications, primarily within the
realm of mathematical physics. To be more precise, the utilization of large deviation results in the
fields of probability and statistics encompasses a wide range of applications. The primary application of
statistics is in the evaluation of efficiency through the comparison of test procedures. This allows for the
determination of the procedure that is most efficient based on the minimum amount of data required to
achieve predefined performance levels, which are typically expressed in terms of the risk of the first kind,
test power, and alternative hypotheses. For further information, refer to [112]. Additional applications
arise in the assessment of estimate techniques, wherein the inaccuracy rates associated with each
method are taken into account and subsequently compared. It is important to observe that
large deviation results can serve as effective tools for establishing the consistency of estimators and
their convergence rates. Valuable resources on the subject of large deviations can be found in [9, 49,
50, 132]. Extending beyond the conventional results of weak and strong convergence in regression
analysis, the problem of functional moderate deviations introduces new challenges that these existing
frameworks cannot readily address. There exists an extensive large and moderate deviation literature
involving many areas of probability and statistics. We refer to the book of [49] and the references therein
for an account of large deviation results and applications. In the nonparametric function estimation
setting, several results have been obtained in these last years. We refer to [114], where the studies involve
the Nadaraya–Watson and histogram estimates of the regression function, respectively both in the real
vector case. Louani and Ould Maouloud [95] established a large deviation principle (LDP, in short) for a
vector process, allowing to derive LDP’s for the kernel density and regression function estimators by the
contraction principle. Further results for the multivariate regression estimates are due to [105], where
large together with moderate deviation principles are stated for the Nadaraya–Watson estimator as well
as for the semi-recursive kernel estimator. Large deviation results for the kernel regression function
estimate on a functional covariate are obtained by [95]. For more references we refer to [10–12, 42, 60,
66, 75, 84–86, 88, 104, 117, 119, 123, 125, 133].

The selection of the kernel function in our setup is mostly unconstrained, except for meeting certain
mild requirements that will be provided subsequently. However, the choice of bandwidth presents a
greater challenge. It is important to acknowledge that the selection of the bandwidth plays a critical
role in achieving a good rate of consistency. Specifically, it significantly impacts the magnitude of bias
in the estimate. Broadly speaking, our focus lies in determining bandwidth that yields an estimator
exhibiting a favorable trade-off between the bias and variance of the estimators under consideration. It
is more suitable to evaluate the variability of bandwidth based on the applied criteria, available data, and
location, which cannot be obtained by conventional methods. For further elaboration and analysis on
the subject, readers are encouraged to consult [96]. The main aim of the present paper is to establish

MATHEMATICAL METHODS OF STATISTICS Vol. 33 No. 1 2024



28 BERRAHOU et al.

large deviation and moderate deviation1) results in the functional data uniformly in the bandwidth. The
uniform in bandwidth problem has attracted great attention, we refer to [15, 17, 21, 22, 25, 27, 29,
33, 34, 43, 47, 53, 59, 96, 98, 99]. To effectively tackle the challenges posed by functional moderate
deviations, novel methodologies, and theoretical frameworks must be developed. Advanced statistical
techniques, such as empirical process theory offer promising avenues for addressing these challenges.
By extending our focus beyond the conventional regression models and embracing the complexities of
functional moderate deviations, we can enhance our understanding of the behavior and limitations of
kernel estimators. This, in turn, provides valuable insights into the underlying processes and patterns
within functional data.

The layout of the article is as follows. Section 2 gives the notation and the definitions we need.
Section 3 shows the moderate deviation principle, which is equivalent to the moderate deviation principle
of the finite-dimensional distributions, given in Theorem 3.1, plus an exponential asymptotic equicon-
tinuity condition concerning a pseudometric, given in Theorem 3.2. Section 4 provides applications
of our main results including the kernel regression function estimate in Subsection 4.1, the kernel
conditional distribution function in Subsection 4.2, The kernel quantile regression in Subsection 4.3, the
kernel conditional density function in Subsection 4.4 and finally the kernel conditional copula function in
Subsection 4.5. We discuss a bandwidth choice for practical use in Section 5. A summary of the findings
highlighting remaining open issues may be found in Section 6. All proofs are deferred to Section 7. Due
to the lengthiness of the proofs, we limit ourselves to the most important arguments. Finally, a few
relevant technical results are given in Appendix A.

2. THE GENERAL PROCESS

We consider a sequence {(Xi, Yi) : i ≥ 1} of i.i.d. pairs of random copies of the random element
[rv] (X,Y ), where X takes its values in some abstract space E and Y is a R

q-valued random variable,
q ≥ 1, with density g(·), concerning the Lebesgue measure on R

q. Suppose that E is endowed with
a semi-metric d(·, ·)2) defining a topology to measure the proximity between two elements of E and
which is disconnected from the definition of X to avoid measurability problems. This covers the case of
semi-normed spaces of possibly infinite dimension (e.g., Hilbert or Banach spaces). We will consider
especially the conditional expectation of l(Y ) given X = x,

rl(x) := E(l(Y1)|X1 = x), x ∈ E ,
whenever this regression function is meaningful. Here and elsewhere, l(·) denotes a specified measurable
function from R

q to R, which is assumed to be bounded on each compact sub-interval of Rq. The general
Nadaraya–Watson [107, 137] type estimator of rl(·) has been introduced by [61], for l(y) = y. It is
defined, for any fixed x ∈ E , by

r̂ln(x, h) =

∑n
i=1 l(Yi)K(h−1d(x,Xi))∑n

i=1 K(h−1d(x,Xi))
:=

r̂ln,2(x, h)

r̂ln,1(x, h)
, (2.1)

where K(·) is a real-valued kernel function, h is the bandwidth parameter and, for k = 1, 2 and

r̂ln,k(x, h) =
1

nE[Δ1(x, h)]

n∑
i=1

lk−1(Yi)Δi(x, h),

1)Let us first recall the concept of large and moderate deviations. A sequence {Zn, n ≥ 1} of R-valued random variables is
said to satisfy a large deviation principle (LDP) with speed vn and rate function I(·) if for any closed set F ⊂ R,

lim sup
n→∞

v−1
n log (P (Zn ∈ F )) ≤ − inf

x∈F
I(x)

and any open set G ⊂ R,

lim inf
n→∞

v−1
n log (P (Zn ∈ G)) ≥ − inf

x∈G
I(x).

Let an be a nonrandom sequence that goes to infinity, if there exists function c(n), and (an (Zn − c(n))) satisfies an LDP,
then Zn is said to satisfy a moderate deviation principles (MDP). Roughly speaking, the MDP for Zn is the LDP for
(an (Zn − c(n))).

2)A semi-metric (sometimes called pseudo-metric) d(·, ·) is a metric which allows d(x1, x2) = 0 for some x1 �= x2.

MATHEMATICAL METHODS OF STATISTICS Vol. 33 No. 1 2024



FUNCTIONAL UNIFORM-IN-BANDWIDTH MODERATE 29

where Δi(x, h) = K(h−1d(x,Xi)). Notice that taking lA(y) = 1l{y∈A} in the statement (2.1), where A

is a subset of R, we obtain the well-known kernel estimator μ̂(A|x) of the conditional empirical measure

μ(A|x) := P(Y1 ∈ A|X = x).

Properties of μ̂(A|x), whenever A = (∞, t] for t ∈ R and x ∈ R, have been investigated by several
authors among whom we cite [16, 17, 121, 122, 129]. In the functional data case, see [18, 65, 103].

The purpose of this paper is to establish some general moderate deviation results which allow us
to derive, under mild regularity conditions, as a by-product the uniform functional moderate deviation
principle for the kernel l-indexed regression function estimator, whenever l(·) belongs to an appropriate
class L. Towards this end, consider two real continuous functions, cl(·) from E to R, dl(·) from E to
R and define the following process. For any x ∈ E and z = (l, �) ∈ L ×H0, where H0 = [ϑ1, ϑ2] and
0 < ϑ1 < ϑ2 < ∞, set (assuming that this expression is meaningful)

Wn(x, z) =
1

nE[Δ1(x, �h)]

n∑
i=1

{(
cl(x)l(Yi) + dl(x)

)
Δi(x, �h) −E

[(
cl(x)l(Yi) + dl(x)

)
Δi(x, �h)

]}

:=
1

nE[Δ1(x, �h)]

n∑
i=1

{
Mx,l(Yi)Δi(x, �h) −E

[
Mx,l(Yi)Δi(x, �h)

]}
. (2.2)

In what follows, we first establish a functional uniform moderate deviation principle for the process
{Wn(x, z) : z ∈ L ×H0}, with a fixed x ∈ J , where J denotes a suitable subset of E . Subsequently,
through the utilization of exponential contiguity arguments, we deduce the corresponding moderate
deviation principle for the regression estimate r̂ln(·), encompassing the kernel distribution estimator. To
provide more clarity, we present a corollary that delineates the behavior of the conditional distribution
kernel estimator under scenarios of moderate deviations. This is complemented by the introduction of
innovative applications of our main findings, as detailed in Section 4. Finally, we establish the moderate
deviation principle for {

sup
(x,z)∈J×L×H0

|Wn(x, z)|
}
.

3. MAIN RESULTS

We will impose the following set of assumptions for our main results.

(A1) K(·) is a nonnegative bounded differentiable kernel over its support [0, 1] and K(1) > 0. The
derivative K ′(·) of K(·) exists on the interval [0, 1] , and it is bounded and satisfies the condition
K ′(t) ≤ 0, ∀t ∈ (0, 1).

(A2) For each x ∈ E and a real number v, there exist a nonnegative functional fv(·), a function gx,v(·)
and a nonnegative real function φ(·) tending to zero, as its argument tends to 0, such that,

(i) F v
x (u) := P(d(x,X1) ≤ u|Y = v) = φ(u)fv(x) + gx,v(u) with, uniformly in v, gx,v(u) =

o(φ(u)) as u → 0 and gx,v(u)/φ(u) is almost surely bounded;

(ii) there exists a nondecreasing bounded function τ0(u) such that, uniformly in u ∈ [0, 1],

φ(uh)

φ(h)
= τ0(u) + o(1), as h ↓ 0.

(A3) Let h = hn and wn be sequences of positive numbers such that, as n → ∞,

hn → 0, wn → ∞,
w2
n

nφ(γh)
→ 0 for some γ ∈ [ϑ1, ϑ2].
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(A4) For any real numbers a and b, and any (x, l) ∈ E × L

(i)
∫

|l1(v)l2(v)|g(v)dv < ∞ for any l1, l2 ∈ L;

(ii)
∫

e|a+bl(v)|fv(x)g(v)dv < ∞; (iii)
∫

e|a+bl(v)|g(v)dv < ∞,

Discussion of Assumptions

Condition (A1) is very usual in nonparametric estimation literature devoted to the functional data
context. Notice that [115] symmetric kernel is not adequate in this context since the random process
d (x,Xi) is positive, therefore we consider K(·) with support [0, 1]. This is a natural generalization
of the assumption usually made on the kernel in the multivariate case where K(·) is supposed to be
a spherically symmetric density function. Because the fact that Lebesgue measure does not exist
on infinite dimension space, assumptions (A2) involve the small ball techniques related to the fractal
dimension used in this paper, for instance, see [100], who in turn was inspired by [68] in his non-
parametric density estimation under functional observations. From [64], one can cite:

1. in the case when E = R
d,P(d(x,X1) ≤ u|Y = v) ≈ C(d)udfv(x), where C(d) is the volume of

the unit ball in R
d;

2. P(d(x,X1) ≤ u|Y = v) ≈ fv(x)u
γ for some γ > 0, then τ0(u) = uγ ;

3. P(d(x,X1) ≤ u|Y = v) ≈ fv(x)u
γ exp {−c/uκ} for some γ > 0 and κ > 0, then τ0(u) = δ1(u),

where δ1(·) is a Dirac function.

Masry [100] explains that if E = R, then the condition coincides with the fundamental axioms of
probability calculus, furthermore if E is an infinitely dimensional Hilbert space then φ(h) can decrease
toward 0 by an exponential speed as n → ∞. (A2) (ii) approximately shows that the small ball probability
can be written approximately as the product of two independent functions, refer to [101] for the diffusion
process, [13] for a Gaussian measure, [91] for a general Gaussian process and has employed these
assumptions [100] for strongly mixing processes. For example, the function φ(·) can be expressed
as φ(ε) = εδ exp(−C/εa) with δ ≥ 0 and a ≥ 0, and it corresponds to the Ornstein–Uhlenbeck and
general diffusion processes (for such processes, a = 2 and δ = 0) and the fractal processes (for such
processes, δ > 0 and a = 0). This class of processes also satisfies condition (A2). For other examples,
we refer to [24, 28, 64, 128]. Since nφ (h) → ∞, suppose φ (h) = n−c for some 0 < c < 1. Then Cond-
ition (A3) is satisfied provided wn = nγ , for 0 < γ < (1− c)/2. Assumptions (A4) are set on to ensure
the needed properties of finiteness and differentiability of the finite-dimensional moment generating
function associated with the process {Wn(x, z) : z ∈ L ×H0}. All these general assumptions are
sufficiently weak relative to the different objects involved in the statement of our main results. They cover
and exploit the principal axes of this contribution, which are the topological structure of the functional
variables, and the probability measure in this functional space. From now on, consider the following
covariance function defined, for any z1 := (l1, �1) ∈ L ×H0, z2 := (l2, �2) ∈ L ×H0 and γ ∈ H0,

Rγ(x, z1, z2) :=
α1(�1, �2)τ(�, γ)

α2
0τ(�1, γ)τ(�2, γ)

∫
Mx,l1(v)Mx,l2(v)fv(x)g(v) dv(∫

fv(x)g(v) dv

)2 , (3.1)

where

α0 = K(1)−
1∫

0

K ′(u)τ0(u) du (3.2)
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and

α1(�1, �2) = K

(
�

�1

)
K

(
�

�2

)
−

1∫
0

(
K

(
�

�1
u

)
K

(
�

�2
u

))′
τ0(u)du

with � = min(�1, �2) and

τ(a, b) = τ0

(a
b

)
1l{a≤b} +

[
τ0

(
b

a

)]−1

1l{a>b},

where 1lA denotes the indicator of A. Note that, τ(a, b) = (τ(b, a))−1 which gives that Rγ(x, z1, z2) =
Rγ(x, z2, z1). Let {Ξγ(x, z) : z ∈ L ×H0} be a mean-zero Gaussian process such that, for any

(z1, z2) ∈
(
L ×H0

)2,

E[Ξγ(x, z1)Ξγ(x, z2)] = Rγ(x, z1, z2).

Let Zx,γ be the closed linear subspace of the space L2, generated by{
Ξγ(x, z) : z ∈ L ×H0

}
.

Define the function ϕ : Zx,γ → l∞
(
L ×H0

)
by

ϕ(ξ)(z) = E[Ξγ(x, z)ξ].

Note that the reproducing kernel Hilbert space is associated with the covariance function Rγ(x, z1, z2)
is the Hilbert space {ϕ(ξ) : ξ ∈ Zx,γ} equipped with the inner product

〈ϕ(ξ1), ϕ(ξ2)〉 = E[ξ1ξ2].

For any (z1, . . . , zm) ∈ L ×H0 and any λ1, . . . , λm ∈ R, set

Γγ
x,z1...,zm(λ1, . . . , λm) = inf

{
2−1E[ξ2] : ξ ∈ Zx,γ, ϕ(ξ)(zj) = λj, 1 ≤ j ≤ m

}
. (3.3)

The following theorem gives a finite-dimensional moderate deviation principle for the process {Wn(x, z) :
z ∈ L ×H0}. Let, for any x ∈ E ,

f(x) =

∫
fv(x)g(v) dv.

Theorem 3.1. Assume that the assumptions (A1)–(A4) are fulfilled. If f(x) > 0 and τ0(
ϑ1
ϑ2
) >

0. Then the random sequence wn(Wn(x, z1), . . . ,Wn(x, zm)) satisfies a LDP with the speed
nφ(γh)/w2

n (γ ∈ H0) and the good rate function Γγ
x,z1...,zm(·) defined in (3.3), where zi = (li, �i),

for i = 1, . . . ,m.
The proof of Theorem 3.1 is postponed until Section 7.
Remark 3.1. For any z := (l, �) ∈ L ×H0, it follows by Theorem 3.1 that the random sequence

wnWn(x, z) satisfies a LDP with the speed nφ(γh)/w2
n (γ ∈ H0) and the good rate function Γγ

x,z(·)
given by

Γγ
x,z(λ) = sup

a

{
λa− 1

2
a2Rγ(x, z, z)

}
=

λ2

2Rγ(x, z, z)
,

where

Rγ(x, z, z) :=

(
K2(1)−

1∫
0

(
K2(u)

)′
τ0(u) du

)
α2
0τ(�, γ)

∫
M2

x,l(v)fv(x)g(v) dv(∫
fv(x)g(v) dv

)2 . (3.4)
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Remark 3.2. If we suppose that the derivative of the function τ0(·) exists and considering the fact
that τ0(0) = 0 and τ0(1) = 1, then, integrating by parts, we obtain

Rγ(x, z, z) =
1

τ(�, γ)

1∫
0

K2(u)τ ′0(u)du

∫
M2

x,l(v)fv(x)g(v)dv

[ 1∫
0

K(u)τ ′0(u)du

]2(∫
fv(x)g(v)dv

)2
,

which gives a simpler form of the rate function. Also, we observe, whenever K(u) = 1l[0,1](u), that

Rγ(x, z, z) =
1

τ(�, γ)

∫
M2

x,l(v)fv(x)g(v)dv(∫
fv(x)g(v)dv

)2 .

In the sequel, we investigate the functional moderate deviation principle of the process{
Wn(x, z) : z ∈ L ×H0

}
in the space l∞

(
L×H0

)
equipped with the uniform topology.

Let L(·) denote the finite-valued measurable envelope function of the class L of measurable functions
on R, that is,

L(y) ≥ sup
l∈L

|l(y)|, y ∈ R.

Define

N(ε,L) = sup
Q

N
(
ε
√

Q(L2),L, dQ
)
,

where the supremum is taken over all probability measures Q on R, for

0 < Q(L2) =

∫
L2(y)dQ(y) < ∞,

and dQ is the L2(Q)-metric. As usual, N(ε,L, dQ) is the minimal number of balls {l : dQ(l, l′) < ε} of
dQ-radius ε needed to cover L. To formulate our functional moderate deviation principle, we consider
some additional conditions.

(B1) (i) For some C ′ > 0 and ν2 > 0,

N(ε,L) ≤ C ′ε−ν2 , 0 < ε < 1;

(ii) L is a pointwise measurable class, that is, there exists a countable subclass L0 of L such
that, for any function l ∈ L, we can find a sequence of function {ln} in L0 for which

ln(y) → l(y), y ∈ R.

(B2) The class

K =

{
x �→ K

(
d(x, u)

h

)
: u ∈ J , h > 0

}
satisfies the Condition (B1).

(B3) Uniformly in v ∈ R, the function fv(.) is continuous and strictly positive on J .

MATHEMATICAL METHODS OF STATISTICS Vol. 33 No. 1 2024



FUNCTIONAL UNIFORM-IN-BANDWIDTH MODERATE 33

As in [48], let us denote by {M(x) : x � 0} a continuous, increasing and non-negative function
fulfilling, for some q > 2, ultimately as x ↑ ∞,

(i) x−qM(x) ↑, (ii) x−1 logM(x) ↓,

where ‘↑’ (resp. ‘↓’) stands for non-decreasing (resp. non-increasing). For each t � M(0), we denote by
Minv(t) the uniquely defined non-negative number such that M

(
Minv(t)

)
= t. The following choices

of M(·) are of particular interest:

(i) M(x) = xp for some p > 2;

(ii) M(x) = exp(sx) for some s > 0.

(B4) (i) For some t > max(s, 1),

E
[
exp
(
tL(Y )

)]
< ∞;

(ii)

lim
n→∞

w2
nmax

(
Minv(n), log(n)

)
nφ(γh)

= ∞;

(iii)

lim
n→∞

nφ(γh)Minv(n)−2

max
(
log
(
Minv(n)

)
, log

(
1/φ(γh)

)) = ∞ and lim sup
n→∞

w2
n log

(
Minv(n)

)
nφ(γh)

< ∞;

(iv)

lim sup
n→∞

w2
n log

(
1/φ(γh)

)
nφ(γh)

= 0.

(B′4) (i) There exists a constant L0 > 0 such that L(Y )1l{X∈J } ≤ L0 a.s.;

(ii)

lim sup
n→∞

w2
n log(1/φ(γh))

nφ(γh)
= 0 and lim sup

n→∞

nφ(γh)

log(1/φ(γh))
= ∞.

Comments on Additional Hypotheses

For Assumption (B1)(i), see [116, Examples 26 and 38], [113, Lemma 22], [55, Subsection 4.7.],
[131, Theorem 2.6.7], [89, Subsection 9.1] provide a number of sufficient conditions under which (B1)(i)
holds, we may also refer to [46, 15, 16, 27, Subsection 3.2] for further discussions. For instance, it is
satisfied, for general d ≥ 1, whenever l(x) = Ψ(p(x)), with p(x) is either a polynomial in d variables or
the αth power of the absolute value of a real polynomial for some α > 0 and Ψ(·) is a real-valued function
of bounded variation, which covers commonly used kernels, such as Gaussian, Epanečnikov, Uniform,
etc, we refer the reader to [59, p. 1381]. We also mention that Condition (B1)(i) is satisfied whenever that
class of functions contains functions of bounded variation on R

q (in the sense of Hardy and Kauser ([80,
90, 134]), see, e.g., [44, 81, 111, 135]). Assumption (B1)(ii) is made to avoid measurability difficulties.
Our definition of “pointwise measurability” is borrowed from example 2.3.4 in [131], [72, p. 262] calls
a pointwise measurable function class satisfying the pointwise countable approximation property. This
condition is discussed in [131, Example 2.3.4, p. 110] and [89, Subsection 8.2, p. 110] and it is satisfied
whenever l(·) is right continuous. Assumption (B1)(i) ensures that L is VC type with characteristics C ′

and ν. Condition (B2) in [73] is formulated as follows:

MATHEMATICAL METHODS OF STATISTICS Vol. 33 No. 1 2024



34 BERRAHOU et al.

(B′2) K(x) > 0, is a bounded and compactly supported measurable function that belongs to the linear
span (the set of finite linear combinations) of functions k(x) ≥ 0 satisfying the following property:
the subgraph of k(·), {(s, u) : k(s) ≥ u}, can be represented as a finite number of Boolean
operations among sets of the form {

(s, u) : p(s, u) ≥ ϕ(u)

}
,

where p is a polynomial on R× R and ϕ is an arbitrary real function.

Indeed, for a fixed polynomial p, the family of sets{
{(s, u) : p((s− t)/h, u) ≥ ϕ(u)} : t ∈ R, h > 0

}
is contained in the family of positivity sets of a finite-dimensional space of functions, and then the entropy
bound follows by Theorems 4.2.1 and 4.2.4 in [55]. Our results are demonstrated through an examination
of the bounded scenario, where the Condition (B′4) is imposed, and the unbounded scenarios, which are
explored under the Condition (B4). To establish the result of Theorem 3.2, we may relax and replace the
Assumption (B4)(iv) by the following assumption:

lim sup
n→∞

w2
n log(1/φ(γh))

nφ(γh)
< ∞.

A function π : T → T is said to be a finite partition function of a set T if, for each t ∈ T , π(π(t)) = π(t)
and the cardinality of {π(t) : t ∈ T} is finite. Let π(T ) = {t1, . . . , tm} and Aj = {t ∈ T : π(t) = tj} for
1 ≤ j ≤ m; then {A1, . . . , Am} is a partition of the set T . Note that finite partition functions can be used
to characterize the compactness of l∞(T ). A set B of l∞(T ) is compact if and only if it is closed and
bounded and if for each τ > 0 there exists a finite partition function π : T → T such that

sup
ψ∈B

∣∣ψ(t)− ψ(π(t))
∣∣ ≤ τ,

for instance, see (Theorem IV.5.6 in [56] or [6], p. 573). We also have that if B is a compact set of l∞(T ),
then B is a set of uniformly bounded and uniformly equicontinuous functions in the pseudo-metric space
(T, dB), where

dB(t1, t2) = sup
ψ∈B

|ψ(t1)− ψ(t2)|.

From now on, for any real-valued function ψ defined on a set T , we use the notation

||ψ||T := sup
t∈T

|ψ(t)|.

For future use, let us introduce two classes of continuous and bounded functions on J indexed by L

C :=
{
cl : l ∈ L

}
and D :=

{
dl : l ∈ L

}
.

We shall always assume that the classes C and D are compact with respect to the uniform topology. Let
us define

CL := sup
{
||cl||J : l ∈ L

}
and DL := sup

{
||dl||J : l ∈ L

}
.

For any x ∈ J , the moderate deviation principle for the process {Wn(x, z) : z ∈ L ×H0} in the space
l∞
(
L ×H0

)
is presented in the following theorem.

Theorem 3.2. Assume that Assumptions (A1)–(A4), (B1)–(B3), and (B4) or (B′4) hold true,

and τ0(
ϑ1

ϑ2
) > 0. Furthermore, consider the classes of continuous functions C and D given above.

Then we have, for any γ ∈ H0 and any x ∈ J ,

(i) for any 0 < c < ∞, {ψ ∈ l∞(L ×H0) : I
γ
x (ψ) ≤ c} is a compact set of l∞(L ×H0);
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(ii) for all open subsets O of l∞(L ×H0),

lim inf
n→∞

w2
n

nφ(γh)
log

(
P

{
wnWn(x, ·) ∈ O

})
≥ − inf

ψ∈O
Iγx (ψ)

and for all closed subsets F of l∞(L ×H0),

lim sup
n→∞

w2
n

nφ(γh)
log

(
P

{
wnWn(x, ·) ∈ F

})
≤ − inf

ψ∈F
Iγx (ψ),

where

Iγx (ψ) = inf

{
2−1E[ξ2] : ξ ∈ Zx,γ , ϕ(ξ) = ψ

}
. (3.5)

The proof of Theorem 3.2 is postponed until Section 7.

Remark 3.3. Making use of similar arguments as in the paper [8, p. 5], it follows, whenever
sup

z∈L×H0

Rγ(x, z, z) > 0, that for any λ ≥ 0,

inf
{ψ∈l∞(L×H0):supz∈L×H0

|ψ(z)|≥λ}
Iγx (ψ) =

λ2

2 sup
z∈L×H0

Rγ(x, z, z)

and, whenever supz∈L×H0
Rγ(x, z, z) = 0,

Iγx (ψ) =

⎧⎪⎨⎪⎩
0, if sup

z∈L×H0

|ψ(z)| = 0

∞, if sup
z∈L×H0

|ψ(z)| > 0.

Therefore, by Theorem 3.2, for any λ ≥ 0, we have

lim
n→∞

w2
n

nφ(γh)
log P

(
wn sup

z∈L×H0

|Wn(x, z)| ≥ λ

)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− λ2

2 sup
z∈L×H0

Rγ(x, z, z)
if sup

z∈L×H0

Rγ(x, z, z) > 0

−∞ if sup
z∈L×H0

Rγ(x, z, z) = 0

=: −Iγx (λ).

The uniform moderate deviations principle on J × L ×H0 is presented in the following theorem.
Towards this end, for any ε > 0, consider the following number

N (ε,J , d) = min

{
n : there exist x1, . . . , xn in J such that for any x ∈ J

there exists 1 ≤ k ≤ n such that d(x, xk) < ε

}
,

which is the minimal number of open ball with d-radius ε needed to cover the subset J . We assume that
J satisfies the following property.

(J) For any ε > 0, there exists C > 0 and ν > 0 such that N (ε,J , d) ≤ Cε−ν .
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Theorem 3.3. If assumptions of Theorem 3.2 and assumption (J) hold, then for any λ > 0,

lim
n→∞

w2
n

nφ(γh)
log

(
P

{
sup

(x,z)∈J×L×H0

wn |Wn(x, z)| > λ

})
= −Iγ(λ),

where

Iγ(λ) = inf
x∈J

Iγx (λ).

The proof of Theorem 3.3 is postponed until Section 7.

Remark 3.4. As in the [97] bootstrap, see also [19, 36, 127] for recent references. Following
[46], we introduce an auxiliary i.i.d. sequence Z = Z1, Z2, . . . of real-valued rv’s, independent of
{(Xi, Yi) : i ≥ 1}, and such that

(R1) E(Z) = 1; E
(
Z2
)
= 2;

(R2) for some ε > 0, E
(
etZ
)
< ∞ for all |t| ≤ ε.

Setting Tn = Z1 + · · ·+ Zn we define the {Wi,n : 1 ≤ i ≤ n}, by setting, for i = 1, . . . , n

Wi,n =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Zi

Tn
=

Zi
n∑

j=1

Zj

when Tn > 0

1

n
when Tn ≤ 0.

Introduce the resampled version of the process (2.2) given by

W ∗
n(x, z) =

1

nE[Δ1(x, �h)]

n∑
i=1

{(
cl(x)l(Yi)Zi + dl(x)

)
Δi(x, �h)

−E

[(
cl(x)l(Yi)Zi + dl(x)

)
Δi(x, �h)

]}
. (3.6)

Following [46], we observe that W ∗
n(x, l, h) reduces to a process of the form Wn(x, l

∗, h), for a suitable
measurable l∗(·), and after some easy changes. Without loss of generality, we set Z = Q(U) and
Zi = Q (Ui) for i = 1, . . . , n, where U and U1, . . . , Un are independent rv’s, with a uniform distribution
on (0, 1), and independent of {(Xi, Yi) : 1 ≤ i ≤ n}. This allows us to define a measurable function ψ∗(·)
on R

q+1, and a rvY∗, by

Y∗ =
[
U Y1

]′
∈ R

1+q and l∗ (Y∗) = Q(U)l(Y ) = Zl(Y ).

Letting (Xi,Y
∗
i ) , i = 1, 2, . . ., denote i.i.d. random copies of (X,Y∗), it is readily checked that

{(Xi,Y
∗
i ) : 1 ≤ i ≤ n}, and l∗(·) fulfill the general assumptions imposed in Theorem 3.2. Then the

process {
wnW

∗
n(x, z) : z ∈ L ×H0

}
satisfies a LDP in the space l∞(L ×H0) with the speed nφ(γh)/w2

n and the good rate function Iγx (·).
Then we have, for any γ ∈ H0 and any x ∈ J ,

(i) for any 0 < c < ∞, {ψ ∈ l∞(L ×H0) : I
γ
x (ψ) ≤ c} is a compact set of l∞(L ×H0);

MATHEMATICAL METHODS OF STATISTICS Vol. 33 No. 1 2024



FUNCTIONAL UNIFORM-IN-BANDWIDTH MODERATE 37

(ii) for all open subsets O of l∞(L ×H0),

lim inf
n→∞

w2
n

nφ(γh)
log

(
P

{
wnW

∗
n(x, ·) ∈ O

})
≥ − inf

ψ∈O
Iγ(ψ)

and for all closed subsets F of l∞(L ×H0),

lim sup
n→∞

w2
n

nφ(γh)
log

(
P

{
wnW

∗
n(x, ·) ∈ F

})
≤ − inf

ψ∈F
Iγx (ψ),

where we recall

Iγx (ψ) = inf

{
2−1E[ξ2] : ξ ∈ Zγ , ϕ(ξ) = ψ

}
. (3.7)

By Theorem 3.3 we have, for any λ > 0,

lim
n→∞

w2
n

nφ(γh)
log

(
P

{
sup

(x,z)∈J×L×H0

wn |W ∗
n(x, z)| > λ

})
= −Iγ(λ),

while it is possible that the last result also holds for the exchangeably weighted bootstrap, such a
determination is beyond the scope of this paper and appears to be quite difficult.

Remark 3.1. According to [64], our methodology is heavily dependent on the distribution function
φ(·). This is evident in our conditions (via the function τ0(·)) and in the convergence rates of our estimate
(via the asymptotic behavior of the quantity nφ(h)). More precisely, the behavior of φ(·) around 0 turns
out to be of paramount importance. Thus, the tiny ball probabilities of the underlying functional variable
X are crucial. In probability theory, the calculation of the quantity P(||X − x|| < s) for “small” s (i.e.,
for s tending toward zero) and for a fixed x is known as the “small ball problem.” Unfortunately, there
are solutions for very few random variables (or processes) X even when x = 0. In several functional
spaces, taking x �= 0 results in formidable obstacles that may be insurmountable. Typically, authors
emphasize Gaussian random variables. We refer you to [91] for a summary of the key findings regarding
the probability of small balls. If X is a Gaussian random element on the separable Banach space E and x
belongs to the reproducing kernel Hilbert space associated with X, then the following well-known result
holds:

P(||X − x|| ≤ s) ∼ CxP(||X|| ≤ s), as s → 0.

As far as we know, the results that are available in the published literature are basically all of the forms

P(||X − x|| < s) ∼ cxs
−α exp

(
−C/sβ

)
,

where α, β, cχ, and C are positive constants and || · || may be a supremum norm, a Lp norm or a Besov
norm. The interested reader can refer to [62–64, 128] for more discussion. Notice that the pioneer
book by [62] extensively comments on the links between nonparametric functional statistics small-ball
probability theory and topological structure on the functional space E .

4. APPLICATIONS

While only the examples provided below will be discussed, they serve as archetypes for various
functionals and can be explored similarly.

4.1. The Kernel Regression Function Estimate

Some further conditions are needed to establish the functional moderate deviations principle for the
kernel regression function estimate r̂ln(x).

(C1) (i) For each (x, x′) ∈ J 2, l ∈ L, and some constants β > 0 and ς > 0

|rl(x)− rl(x′)| ≤ ςd(x, x′)β ;
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(ii) wnh
β → 0 as n → ∞.

Assumption (C1)(i) imposes some smoothness of the regression operator. Define the function Iγx,1(·) as

the function Iγx (·) in the statement (3.5), with cl(x) = 1 and dl(x) = −rl(x) for any x ∈ J . The large
deviation principle for the process {wn(r̂

l
n(x, �h) − rl(x)) : (l, �) ∈ L ×H0} in the space l∞(L ×H0)

is presented in following corollary.
Corollary 4.1. Under the assumption of Theorem 3.2, assume that the Conditions (C1) hold.

Then the process {
wn(r̂

l
n(x, �h) − rl(x)) : (l, �) ∈ L ×H0

}
satisfies a LDP in the space l∞(L ×H0) with the speed nφ(γh)/w2

n and the good rate function
Iγx,1(·).

The proof of Corollary 4.1 is postponed until Section 7.
Proposition 4.1. Under the assumption of Theorem 3.2, assume that the Conditions (C1) hold.

Then, for any δ > 0, we have

lim
n→∞

w2
n

nφ(γh)
logP

(
∃x ∈ E , rl(x) /∈

[
r̂ln(x, h) − δ

σ̂n
wn

, r̂ln(x, h) + δ
σ̂n
wn

])
= −δ2

2
.

Moreover, the sequence of sets of functions

Dn =

{
g : E → R,

∣∣∣g(x)− r̂ln(x, h)
∣∣∣ ≤ δ

σ̂n
wn

, ∀x ∈ E
}
,

is an asymptotic almost sure sequence of confidence regions of rl(x), here σ̂2
n := σ̂2

n(x) is any
consistent estimate of the r̂ln(x, h)’s variance.

Remark 4.2. Let || · || be a norm on E = R
d. Denote by B(x, r) the set of all points z ∈ R

d satisfying
||x− z|| ≤ r. For each n ≥ 1 and k ∈ {1, . . . , n}, the k-nearest neighbor bandwidth at x is denoted by
k̂n,x and defined as the smallest radius r ≥ 0 such that the ball B(x, r) contains at least k points from
the collection {X1, . . . ,Xn}, i.e.,

k̂n,x = inf

{
r ≥ 0 :

n∑
i=1

1lB(x,r)(Xi) ≥ k

}
.

The k-nearest neighbor estimate of the regression function, x �→ E[l(Y )|X = x], is defined as, for all
x ∈ R

d,
n∑

i=1

l(Yi)1lB(x,k̂n,x)
(Xi)/

n∑
i=1

1lB(x,k̂n,x)
(Xi).

This estimate is an adaptive bandwidth version of the Nadaraya–Watson estimate which here would
be defined in the same way except that a non-random bandwidth (depending only on n, e.g., n−1/5) is
used in place of k̂n,x. It would be of interest to investigate the process defined in (2.2) in the k-nearest
neighbor setting.

4.2. The Kernel Conditional Distribution Function

To present the functional moderate deviations principle for the conditional distribution function
estimate F̂nh(t|x) := μ̂((∞, t]|x) for (x, t) ∈ J × R as a special case, the Conditions (C1) have to be
formulated for the conditional distribution function F (t|x) := μ((∞, t]|x) for (x, t) ∈ J × R as follows.

(C2) (i) For any (x, x′) ∈ J 2, any (t, t′) ∈ R
2q, some β1 > 0 β2 > 0 and a constant ς ′ > 0

|F (t|x)− F (t′|x′)| ≤ ς ′
(
d(x, x′)β1 + ||t− t′||β2

)
;
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(ii) wnh
β1 → 0 as n → ∞.

Assumption (C2)(i) introduces a level of smoothness to the conditional distribution. Define the function
Iγ2,x(·) as the function Iγx (·) in statement (3.5), where l(y) = 1l(∞,t](y), cl(x) = 1, and dl(x) = −F (t|x)
for any (x, t) ∈ J × R. Let the conditional distribution function estimate be defined as follows

F̂n,h(t|x) =
∑n

i=1 1l(∞,t](Yi)K(h−1d(x,Xi))∑n
i=1 K(h−1d(x,Xi))

. (4.1)

The large deviation principle for the process {wn(F̂n,�h(t|x)−F (t|x)) : (t, �)×R×H0} in l∞(R×H0)
is presented in the following corollary.

Corollary 4.2. Assume that assumptions (A1)–(A5), (B2)–(B3), and (C2) hold true. Then the
process {

wn(F̂n,�h(t|x)− F (t|x)) : (t, �) ∈ R×H0

}
satisfies a large deviations in l∞(R×H0) with the speed nφ(γh)/w2

n and the good rate function
Iγ2,x(·).

The proof of Corollary 4.2 is postponed until Section 7.

4.3. The Kernel Quantile Regression

For a given α ∈ (0, 1), the αth-order conditional quantile of the distribution of a real-valued Y given
X = x is defined as

qα(x) = inf

{
y ∈ R : F (y|x) ≥ α

}
.

Notice that, whenever F (·|x) is strictly increasing and continuous in a neighborhood of qα(x), the
function F (·|x) has a unique quantile of order α at a point qα(x), that is F (qα(x)|x) = α. In such
case

qα(x) = F−1(α|x) = inf

{
y ∈ R : F (y|x) ≥ α

}
,

which may be estimated uniquely by

q̂n,α(x, �) = F̂−1
n,�h(α|x).

Conditional quantiles have been widely studied in the literature when the predictor X is of finite
dimension, see for instance, [45]. Let us first recall some conceptions of Hadamard differentiability [70,
89, 131]. Let X and Y be two metrizable topological linear spaces. A map Φ defined on a subset DΦ of X
with values in Y is called Hadamard differentiable at x if there exists a continuous mapping Φ′

x : X �→ Y
such that

lim
n→∞

Φ (x+ tnνn)− Φ(x)

tn
= Φ′

x(h)

holds for all sequences tn converging to 0+ and νn converging to ν in X such that x+ tnνn ∈ DΦ for
every n.

Corollary 4.3. Let 0 < p < q < 1 be fixed and let F (·|x) be a conditional distribution function
with continuous and positive derivative f(·|x) on the interval

[
F−1(p|x)− ε, F−1(q|x) + ε

]
for

some ε > 0. Then, under conditions of Corollary 4.2, the process {wn (q̂n,α(x, �) − qα(x))} satisfies
the LDP in l∞([p, q]×H0) with speed nφ(γh)/w2

n and rate function IEQ
γ,x given by

IEQ
γ,x (φ) = inf

{
Iγ2,x(ψ) : −

ψ
(
F−1(t|x)

)
f (F−1(t|x)) = φ(x) for all t ∈ [p, q]

}
.

The proof of Corollary 4.3 is postponed until Section 7.
Remark 4.3. It will be interesting to extend our findings to the following settings.
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1. (Expectile regression.) For p ∈ (0, 1), let l(T − θ) = (p − {T − θ ≤ 0})|T − θ|, then the zero
of rl(·) with respect to θ leads to quantities called expectiles by [110]. Expectiles, as defined by
[110], may be introduced either as a generalization of the mean or as an alternative to quantiles.
Indeed, classical regression provides us with a high sensitivity to extreme values, allowing for
more reactive risk management. Quantile regression, on the other hand, provides the ability to
acquire exhaustive information on the effect of the explanatory variable on the response variable
by examining its conditional distribution, refer to [102, 103] for further details on expectiles in
functional data setting.

2. (Conditional winsorized mean.) As in [83], if we consider l(T − θ) = −k, T − θ, k if T − θ < −k,
|T − θ| ≤ k, orT − θ > k, then the zero of rl(·) with respect to θ will be the conditional winsorized
mean. Notably, this parameter was not considered in the literature on nonparametric functional
data analysis involving wavelet estimators. Our paper offers asymptotic results for the conditional
winsorized mean when the covariates are functions.

4.4. The Kernel Conditional Density Function

By setting l(·) = 1
h1
K1(h

−1
1 (· − t)), for t ∈ R, h1 is a bandwidth parameter and K1(·) is the kernel

function, into (2.1), we obtain the kernel estimator of the conditional density function f(t|x) given by

f̂n,bh(t|x) =
∑n

i=1
1
h1
K1(h

−1
1 (Yi − t))K(bh−1d(x,Xi))∑n

i=1K(bh−1d(x,Xi))
. (4.2)

(C3) (i) For any (x, x′) ∈ J 2, any (t, t′) ∈ [a, b]2 ⊂ R
2, some β1 > 0, β2 > 0, and a constant � > 0

|f(t|x)− f(t′|x′)| ≤ �

(
d(x, x′)β1 + |t− t′|β2

)
;

(ii) wn(h
β1 + hβ2

1 ) → 0 as n → ∞.

(B′′2) The class

K̃ =

{
(h, x, y) �→ K

(
y − t

h1

)
K

(
d(x, x′)

h

)
: x′ ∈ J , t ∈ R, h > 0

}
satisfies the Condition (B1).

Assumption (C3)(i) imposes some smoothness of the conditional density. Define the function Iγ3,x(·) as

the function Iγx (·) in the statement (3.5), with l(·) = 1
h1
K1(h

−1
1 (· − t)), cl(x) = 1 and dl(x) = −f(t|x)

for any (x, t) ∈ J × [a, b].

Corollary 4.4. Assume that assumptions (A1)–(A5), (B′′2)–(B4), and (C3) hold. Then the
process {

wn(f̂n,�h(t|x)− f(t|x)) : (t, �) ∈ [a, b]×H0

}
satisfies large deviations in l∞([a, b] ×H0) with the speed nh1φ(γh)/w

2
n and the good rate

function Iγ3,x(·).

The proof of Corollary 4.4 is similar to the proof of Corollary 4.2 and therefore omitted.
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4.5. The Kernel Conditional Copula Function

Let us recall the setting of [69]. Assume that (X1, Y11, Y21) , . . . , (Xn, Y1n, Y2n) is a sample of n
independent and identically distributed triples of random variables. The random variables Y1i and Y2i

are real and the Xi’s are random elements. Suppose that the conditional distribution of (Y1, Y2)
	 given

X = x exists and denote the corresponding conditional joint distribution function by

Hx (y1, y2) = P (Y1 ≤ y1, Y2 ≤ y2|X = x) .

If the marginals of Hx(·, ·) denoted as

F1x (y1) = P (Y1 ≤ y1|X = x) , F2x (y2) = P (Y2 ≤ y2|X = x)

are continuous, then according to Sklar’s theorem (see e.g., [109]) there exists a unique copula Cx(·, ·)
which equals

Cx (u1, u2) = Hx

(
F−1
1x (u1) , F

−1
2x (u2)

)
,

where

F−1
1x (u) = inf {y : F1x(y) ≥ u}

is the conditional quantile function of Y1 given X = x and F−1
2x (·) is the conditional quantile function of

Y2 given X = x. The conditional copula Cx(·, ·) fully describes the conditional dependence structure of
(Y1, Y2)

	 given X = x. An estimator of the joint conditional distribution function Hx(·, ·) is

Hxh (y1, y2) =

∑n
i=1 1l {Y1i ≤ y1, Y2i ≤ y2}K(h−1d(x,Xi))∑n

i=1 K(h−1d(x,Xi))
. (4.3)

Then analogously as in [69] and [23] one can suggest the following empirical estimator of the copula
Cx(·, ·)

Cx,h (u1, u2) = Hxh

(
F−1
1xh (u1) , F

−1
2xh (u2)

)
, 0 ≤ u1, u2 ≤ 1,

where F1xh(·) and F2xh(·) are the corresponding marginal distribution functions of Hxh(·, ·), i.e.,
F1xh (y1) = Hxh (y1,+∞) and F2xh (y2) = Hxh (+∞, y2).

Corollary 4.5. Let 0 < p < q < 1 be fixed. Suppose that F1x (·) and F2x (·) are continuously
differentiable on the intervals

[
F−1
1x (p)− ε, F−1

1x (q) + ε
]

and
[
F−1
2x (p)− ε, F−1

2x (q) + ε
]

with strictly
positive derivatives f1(·|x) and f2(·|x), respectively, for some ε > 0. Furthermore, assume that
∂Hx/∂y1 and ∂Hx/∂y2 exist and are continuous on the product intervals. Then, under conditions
of Corollary 4.2, the process{

wn(Cx,�h(u1, u2)− Cx(u1, u2)) : ((u1, u2), �) ∈ [p, q]2 ×H0

}
satisfies the LDP in l∞

(
[p, q]2 ×H0

)
with speed nφ(γh)/w2

n and rate function ICγ,x(·) defined by

ICγ,x(φ) = inf
{
Iγ1,x(�) : Φ′

H(�) = φ
}
,

where
Φ′
H(�)(u1, u2) = �

(
F−1
1x (u1), F

−1
2x (u2)

)
− ∂Hx

∂y1

(
F−1
1,x (u1), F

−1
2,x (u2)

) �
(
F−1
1,x (u1),∞

)
f1

(
F−1
1,x (u1)|x

)
− ∂Hx

∂y1

(
F−1
1,x (u1), F

−1
2,x (u2)

) �
(
F−1
2,x (u2),∞

)
f2

(
F−1
2,x (u2)|x

) .

Corollary 4.5 is a direct consequence Corollary 4.2, Lemma 3.9.28 of [131] (or [32]) and Theorem 3.1
of [67] in a similar way as in Theorem 4.6 of the last mentioned reference.
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Remark 4.4. We define the conditional hazard function on R by

S(·|x) = f(·|x)
1− F (·|x) .

The kernel estimator Sn;hn(y|x) is defined for all y ∈ R such that F (y|x) < 1, by

Sn;hn(t|x) =
f̂n(t|x)

1− F̂n(t|x)
.

Our result can be applied to Sn;hn(t|x) by combining Corollaries 4.2 and 4.4.

Remark 4.5. The use of the single index model has been adopted to decrease the dimensionality of the
explanatory variable, aiming to circumvent the “curse of dimensionality” while preserving the benefits
of nonparametric smoothing in multivariate regression over the past few decades. By assuming X is a
Hilbert space, in the single index setting, the process in (2.2) takes the form

Wn(x, l, θ, ϑ) =
1

nE[Δ1(x, θ, ϑh)]

n∑
i=1

{(
cl(x)l(Yi) + dl(x)

)
Δi(x, θ, ϑh)

−E

[(
cl(x)l(Yi) + dl(x)

)
Δi(x, θ, ϑh)

]}
, (4.4)

where θ is a functional single index valued in a subset Θ of a separable Hilbert space X and Δi(x, θ, h) =
K(h−1|〈X − x, θ〉|), one can refer to [37, 38]. Although it is conceivable that our findings may apply to
the single index model, establishing such a conclusion is outside the purview of this paper and seems to
pose significant challenges.

Remark 4.6. This study holds significance in the realm of functional data analysis. Firstly, the results
presented in this paper are enriched by an additional uniformity constraint, specifically an ≤ h ≤ bn.
Secondly, the scope of applications is broadened to encompass novel areas in the field, including kernel
quantile regression, kernel conditional density function, and kernel conditional copula function. These
extensions represent pioneering contributions in functional data analysis. The findings of this study
play a crucial role in establishing uniform consistency for various estimators, employing data-driven
bandwidths, associated with the aforementioned applications. Further insights and relevant results can
be explored in [41] and [94].

5. THE BANDWIDTH SELECTION CRITERION

Numerous methods have been developed to construct asymptotically optimal bandwidth selection
rules for nonparametric kernel estimators, particularly for the Nadaraya–Watson regression estimator.
Prominent works in this regard include [25, 30, 77, 79, 118]. The selection of this parameter is crucial,
whether in the standard finite-dimensional case or within the infinite-dimensional framework, to ensure
effective practical performance. Let’s define the leave-out-(Xi, Yi) estimator for the regression function

r̂l;jn (x) =

∑n
i=1,i 
=j l(Yi)K(h−1d(x,Xi))∑n

i=1,i 
=j K(h−1d(x,Xi))
. (5.1)

To minimize the quadratic loss function, we introduce the following criterion, where W(·) is a known
non-negative weight function

CV (ϕ, hn) :=
1

n

n∑
j=1

(
l (Yj)− r̂l;jn (Xi)

)2
W (Xj) . (5.2)

Following the ideas developed by [118], a natural way for choosing the bandwidth is to minimize the
precedent criterion, so let’s choose ĥn ∈ [an, bn] minimizing among h ∈ [an, bn] :

CV (ϕ, hn) .
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One can replace (5.2) by

ĈV (ϕ, h) :=
1

n

n∑
j=1

(
l (Yj)− r̂l;jn (Xi)

)2
Ŵ (xj ,x) . (5.3)

In practice, one takes for j = 1, . . . , n, the uniform global weights W (xj) = 1, and the local weights

Ŵ(xj ,x) =

{
1 if d(xj ,x) ≤ h

0 otherwise.

By similar reasoning, one can select ĥn for the process defined in (2.2). Let us define

Ŵn(x, l) = Wn(x, l, ĥn) =
1

nE[Δ1(x, ĥn)]

n∑
i=1

{(
cl(x)l(Yi) + dl(x)

)
Δi(x, ĥn)

−E

[(
cl(x)l(Yi) + dl(x)

)
(x, ĥn)

]}
. (5.4)

The following corollary is an immediate consequence of Theorem 3.2.

Corollary 5.1. Assume that assumptions (A1)–(A4), (B1)–(B3), and (B4) or (B′4) hold true.
Furthermore, consider the classes of continuous functions C and D given above. Then we have,
for any x ∈ J ,

(i) for any 0 < c < ∞, {ψ ∈ l∞(L) : Ix(ψ) ≤ c} is a compact set of l∞(L);

(ii) for all open subsets O of l∞(L),

lim inf
n→∞

w2
n

nφ(ĥn)
log

(
P

{
wnŴn(x, ·) ∈ O

})
≥ − inf

ψ∈O
Ix(ψ)

and for all closed subsets F of l∞(L),

lim sup
n→∞

w2
n

nφ(ĥn)
log

(
P

{
wnŴn(x, ·) ∈ F

})
≤ − inf

ψ∈F
Ix(ψ),

where

Ix(ψ) = inf

{
2−1E[ξ2] : ξ ∈ Z̃x, ϕ(ξ) = ψ

}
, (5.5)

and Z̃x is the closed linear subspace of the space L2 generated by the mean-zero Gaussian

process
{
Ξ(x, l) : l ∈ L

}
.

As in [87], let us minimize the following errors:

Err1
(
f̂n,b, f

)
=

∫∫ {
f̂n,b(y|x)− f(y|x)

}2
W1(x)W2(y)dP(x, y),

Err2
(
f̂n,b, f

)
=

1

n

n∑
i=1

{
f̂n,b(Yi|Xi)− f(Yi|Xi)

}2 W1 (Xi)W2 (Yi)

f(Yi|Xi)
,

or

Err3
(
f̂n,b, f

)
=

∫∫
E
{
f̂n,b(y|x)− f(y|x)

}2
W1(x)W2(y)dP(x, y),
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where W1(·) and W2(·) are some non-negative weight functions. These theoretical errors are not
computable in practice and the following leave-one-out cross-validation criterion can be constructed
to approximate them in some fully data-driven way:

CV(b) =
1

n

n∑
i=1

W1 (Xi)

∫ (
f̂−i
n,b(y|Xi)

)2
W2(y)dP(y)−

2

n

n∑
i=1

f̂−i
n,b(Yi|Xi)W1 (Xi)W2 (Yi) ,

where

f̂−i
n,b(t|Xi) =

∑n
j=1,j 
=i

1
h1
K1(h

−1
1 (Yj − t))K(h−1d(x,Xj))∑n

j=1,i 
=j K(b−1d(x,Xj))
. (5.6)

Then the smoothing parameter b is selected by the following procedure:

ĥ = arg min
an≤h≤bn

CV(h).

While the aforementioned cross-validation procedures focus on approximating quadratic errors of
estimation, alternative approaches for selecting smoothing parameters may prioritize optimizing the
predictive power of the method. This can be achieved by minimizing one of the following prediction
criteria

h̃(1) = arg min
an≤h≤bn

n∑
i=1

(
Yi − Ŷ

(1)
i

)2
,

where the prediction is performed using either of the conditional median

F̂−i
nh

(
1

2
|x, h

)
=

∑n
j=1,j 
=i 1l(∞,t](Yj)K(h−1d(x,Xj))∑n

j=1,j 
=iK(h−1d(x,Xj))
and Ŷ

(1)
i =

{
F̂−i
nh

}−1
(
1

2
|Xi, h

)
(5.7)

or

h̃(2) = arg min
an≤b≤bn

n∑
i=1

(
Yi − Ŷ

(2)
i

)2
,

using the conditional mode, viz.

Ŷ
(2)
i = argmax

y
f̂−i
n,b(y|Xi).

For more discussion, one can refer to [16, 17, 29].

Remark 5.2. It is essential to highlight that the primary challenge in employing an estimator like the
one in (2.1) lies in properly selecting the smoothing parameter h. The consistency results with uniformity
in bandwidth, as presented in Corollary 4.1, indicate that the choice of h1 and h2 within certain intervals
guarantees the moderate deviations principle for r̂ln(x, h). In other words, the fluctuations in bandwidth
within a small interval do not impact the moderate deviations principle of the nonparametric estimator
r̂ln(x, h) for rl(x).

Remark 5.3. It is straightforward to modify the proofs of our results to show that it remains true
when the entropy condition is substituted by the bracketing condition.3) For some C0 > 0 and v0 > 0,

N[ ] (F , L2(P), ε) ≤ C0ε
−v0 , 0 < ε < 1.

Remark 5.4. Observe that the standardizing factor is (nφ(hn))
1/2 with φ(hn) → 0, indicating a lower

rate of convergence. This is the cost incurred when concluding the conditional (local) quantities.

3)Given two functions l and u, the interval [l, u] represents the set of all functions f such that l ≤ f ≤ u. An ε-bracket
is defined as [l, u] with ||u− l|| < ε. The bracketing number N[ ](F , || · ||, ε) corresponds to the minimum number of ε-
brackets required to encompass the class F . The entropy with bracketing is expressed as the logarithm of the bracketing
number. It’s important to note that, in the definition of the bracketing number, the upper and lower bounds u and l of the
brackets need not be part of F itself, but they are assumed to have finite norms, refer to Definition 2.1.6 in [131].
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6. CONCLUSIONS
We employ general empirical process methods to establish, under mild regularity conditions, the

functional moderate deviations of kernel-type function estimators that are dependent on an infinite-
dimensional covariate. We present a valuable moderate deviation principle for a function-indexed
process by leveraging intricate exponential contiguity arguments. The moderate deviation principles
are a useful tool in analyzing the behavior of the estimators in question. This paper aims to make
several noteworthy contributions to the existing literature on functional data analysis. Specifically, we
focus on establishing functional moderate deviation principles for the Nadaraya–Watson estimators, the
conditional distribution processes, the kernel quantile regression, the kernel conditional density function,
and the kernel conditional copula function. Our findings extend the current knowledge in the field and
offer new avenues for future research in functional data analysis. Extending our work to encompass
k-nearest neighbors estimators holds a significant interest. However, achieving this goal requires the
development of new technical arguments, as it presently lies beyond reasonable expectations. Exploring
the realm of k-nearest neighbors estimators would expand the scope of our research and provide valuable
insights into their performance and properties. Additional extensions involve models about dimension
reduction. While our paper presents fully nonparametric functional models, recent FDA literature
has emphasized the interest in semi-parametric models as a bridge between flexible (but excessively
dimensional) and low dimensional (but excessively restrictive) linear models. This field comprises,
for example, functional single index models (refer to [37, 38, 74] for the most recent advancements),
projection pursuit models (refer to [40]), and partial linear models (refer to [5, 92]). As far as we are aware,
the majority of the literature proposed in these models relates to moderate deviations principals, and we
hypothesize that our ideas and methodologies could likely be used successfully for deriving such results,
thereby opening up new research avenues. Such an extension would require innovative approaches
and advanced theoretical frameworks to effectively tackle the challenges associated with projection
pursuit regression and projection pursuit conditional distribution processes. By embarking on this
path, we can further enrich the existing literature and contribute to advancing functional data analysis.
Finally, the extensions of our ideas would concern dependent statistical samples with possible time series
applications. The literature on dependent kernel functional estimators has been rather developed (cf. [24,
28, 62, 100, 128]) but always with moderate deviation results. Note that this extension should be harder
to get than the previous ones because one main difficulty in developing such a dependent extension of
our work would be the statement of new probabilistic results since those used herein (cf. results in
[6, 8]) are specific to iid samples. In conclusion, our ongoing exploration involves extending our ideas
to encompass dependent statistical samples, with potential applications in time series analysis. The
existing body of work on dependent kernel functional estimators has seen significant development, as
documented in sources such as [24, 28, 62, 100]. However, it is worth noting that these developments
have generally been investigated without moderate deviation results. It is important to acknowledge that
extending our research in this direction presents a more formidable challenge compared to our previous
endeavors. The primary obstacle lies in the necessity of formulating novel probabilistic results, as the
ones employed in our current work, as demonstrated in [6–7], are tailored specifically for independent
and identically distributed (i.i.d.) samples.

7. PROOFS
In this section, we present the proofs for all the theoretical findings outlined in this study. The

previously introduced notation will be consistently applied throughout the ensuing discussion. We now
explore slightly more generalized processes compared to those defined in (2.2). Specifically, we offer a
broader framework that does not necessitate Mx,l(·) = cl(x)l(·) + dl(x). The proof of Theorems 3.1 and
3.2 is intricate and will be dissected into multiple lemmas, each elucidated in Section 8.

Proof of Theorem 3.1
The proof utilizes the Gärtner–Ellis theorem as a principal tool. For any integer k ≥ 1 and arbitrary

(x, l, �) ∈ E × L ×H0, it is asserted that, for any nonnegative real function Mx,l(·) defined over the
domain R, one may discern the following

E[Mx,l(Y )Δ1(x, �h)] =

1∫
0

∫
Mx,l(v)K(u) dP

(
d(x,X1)

�h
≤ u, Y ≤ v

)

MATHEMATICAL METHODS OF STATISTICS Vol. 33 No. 1 2024



46 BERRAHOU et al.

=

1∫
0

∫
Mx,l(v)K(u) dP

(
d(x,X1)

�h
≤ u|Y = v

)
g(v) dv

:=

∫
Mx,l(v)Sx,�(v, h)g(v) dv.

Given the existence of K ′(·), it follows

K(u) = K(0) +

u∫
0

K ′(t) dt,

which, by using a Condition (A2)(i), implies that

Sx,�(v, h) = K(0)F v
x (�h) +

1∫
0

⎛⎝ t∫
0

K ′(u) du

⎞⎠ dP

(
d(x,X1)

�h
≤ t|Y = v

)

= K(0)F v
x (�h) +

1∫
0

K ′(u)P

(
u ≤ d(x,X1)

�h
≤ 1|Y = v

)
du

= K(1)F v
x (�h)−

1∫
0

K ′(u)F v
x (u�h) du

= K(1)
(
φ(�h)fv(x) + gx,v(�h)

)
−

1∫
0

K ′(u)
(
φ(u�h)fv(x) + gx,v(u�h)

)
du

= φ(�h)

⎧⎨⎩K(1)
(
fv(x) +

gx,v(�h)

φ(�h)

)
−

1∫
0

K ′(u)
φ(u�h)

φ(�h)

(
fv(x) +

gx,v(u�h)

φ(u�h)

)
du

⎫⎬⎭
:= φ(�h)Lx,�(v, h).

Therefore, for any (x, l, �) ∈ E × L ×H0, we infer

E[Mx,l(Y )Δ1(x, �h)] = φ(�h)

∫
Lx,�(v, h)Mx,l(v)g(v) dv. (7.1)

Let y1 := (x, l1) and y2 := (x, l2) in E × L, and (�1, �2) ∈ (H0)
2. For any real function My1,y2(·) defined

on R such that E[|My1,y2(Y )|] < ∞, observe that

E[My1,y2(Y )Δ1(x, �1h)Δ1(x, �2h)]

=

1∫
0

∫
My1,y2(v)K(

�

�1
u)K(

�

�2
u) dP

(
d(x,X1)

�h
≤ u|Y = v

)
g(v) dv

:=

∫
My1,y2(v)Sx,�1,�2(v, h)g(v) dv.

Similarly, we have

K

(
�

�1
u

)
K

(
�

�2
u

)
= K(0)2 +

u∫
0

(
K

(
�

�1
t

)
K

(
�

�2
t

))′
dt,

which, by using the Condition (A2)(i), implies that

Sx,�1,�2(v, h) = φ(�h)

{
K

(
�

�1

)
K

(
�

�2

)(
fv(x) +

gx,v(�h)

φ(�h)

)
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−
1∫

0

(
K

(
�

�1
u

)
K

(
�

�2
u

))′φ(u�h)

φ(�h)

(
fv(x) +

gx,v(u�h)

φ(u�h)

)
du

}
:= φ(�h)Lx,�1,�2(v, h).

Therefore, we have

E[My1,y2(Y )Δ1(x, �1h)Δ1(x, �2h)] = φ(�h)

∫
Lx,�1,�2(v, h)My1 ,y2(v)g(v) dv. (7.2)

For some γ ∈ H0, set βn = nφ(γh)/wn. For any tuple (θ1, . . . , θm) ∈ R
m, the Laplace transform

corresponding to βn(Wn(x, z1), . . . ,Wn(x, zm)) is explicitly defined as follows

Φx,z1,...,zm
n (θ1, . . . , θm)

= E

[
exp

{〈
(θ1, . . . , θm), βn

(
Wn(x, z1), . . . ,Wn(x, zm)

)〉}]

= E

⎡⎣exp
⎧⎨⎩

n∑
i=1

m∑
j=1

βnθj

nE
[
Δ1(x, �jh)]

(
Mx,lj (Yi)Δi(x, �jh)−E

[
Mx,lj(Yi)Δi(x, �jh)

])⎫⎬⎭
⎤⎦

=

⎛⎝E

⎡⎣exp
⎧⎨⎩

m∑
j=1

βnθj

nE
[
Δ1(x, �jh)]

(
Mx,lj (Y )Δ1(x, �jh)−E

[
Mx,lj(Y )Δ1(x, �jh)

])⎫⎬⎭
⎤⎦⎞⎠n

:=
(
ϕx,z1,...,zm
n (θ1, . . . , θm)

)n
. (7.3)

Let us now evaluate the quantity ϕx,z1,...,zm
n (θ1, . . . , θm). We remark that

ϕx,z1,...,zm
n (θ1, . . . , θm) = 1 +

1

2
T1 + T2, (7.4)

where

T1 = E

⎡⎣⎧⎨⎩
m∑
j=1

θjβn
nE[Δ1(x, �jh)]

(
Mx,lj (Y )Δ1(x, �jh)−E[Mx,lj(Y )Δ1(x, �jh)]

)⎫⎬⎭
2⎤⎦

and

T2 =
∞∑
k=3

1

k!

(
βn
n

)k

E

⎡⎢⎣
∣∣∣∣∣∣
m∑
j=1

θj
E[Δ1(x, �jh)]

{
Mx,lj(Y )Δ1(x, �jh)−E

[
Mx,lj(Y )Δ1(x, �jh)

]}∣∣∣∣∣∣
k
⎤⎥⎦ .

Now, observe that

T1 =
m∑
j=1

m∑
p=1

θjθpβ
2
n

n2E[Δ1(x, �jh)]E[Δ1(x, �ph)]
E

[
Mx,lj(Y ))Mx,lp(Y )Δ1(x, �jh)Δ1(xp, �ph)

]

−
m∑
j=1

m∑
p=1

θjθpβ
2
n

n2E[Δ1(x, �jh)]E[Δ1(x, �ph)]
E

[
Mx,lj(Y )Δ1(x, �jh)

]
E

[
Mx,lp(Y )Δ1(x, �ph)

]

:=
β2
n

n2
(T1,1 − T1,2). (7.5)

Let � = min(�j , �p) be defined. Referring to (7.2) and under the conditions (A1)–(A2) and (A4)(ii) we
deduce that

lim
n→∞

1

φ(�h)
E

[
Mx,lj(Y ))Mx,lp(Y )Δ1(x, �jh)Δ1(x, �ph)

]
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= α1(�j , �p)

∫
Mx,lj(v))Mx,lp(v)fv(x)g(v) dv, (7.6)

where

α1(�j , �p) = K

(
�

�j

)
K

(
�

�p

)
−

1∫
0

(
K

(
�

�j
u

)
K

(
�

�p
u

))′
τ0(u)du,

Using the equality (7.1) with Mx,l(v) = 1, in accordance with conditions (A1)–(A2), we find

lim
n→∞

1

φ(�jh)
E[Δ1(x, �jh)] =

⎛⎝K(1)−
1∫

0

K ′(u)τ0(u) du

⎞⎠∫ fv(x)g(v) dv

:= α0

∫
fv(x)g(v) dv. (7.7)

Now, by Condition (A2)(ii), we have

lim
n→∞

φ(γh)φ(�h)

φ(�jh)φ(�ph)
=

τ(�, γ)

τ(�j , γ)τ(�p, γ)
.

Therefore, we obtain

lim
n→∞

φ(γh)T1,1 =
m∑
j=1

m∑
p=1

θjθp
α1(�j , �p)τ(�, γ)

α2
0τ(�j , γ)τ(�p, γ)

∫
Mx,lj(v))Mx,lp(v)fv(x)g(v) dv(∫
fv(x)g(v) dv

)(∫
fv(x)g(v) dv

) . (7.8)

Making use of the condition (A3), we infer that

lim
n→∞

β2
n

n2
T1,1 = 0. (7.9)

Likewise, by the condition (A3), we derive

lim
n→∞

φ(γh)T1,2 = 0 and lim
n→∞

β2
n

n2
T1,2 = 0. (7.10)

Using the Cr-inequality and the boundedness of K(·), we get, for some κ0 > 0,

T2 ≤
m∑
j=1

∞∑
k=3

1

k!

(
2mβn
n

)k κk0 |θj |kE
[
|Mx,lj (Y )|kΔ1(x, �jh)

](
E[Δ1(x, �jh)]

)k . (7.11)

By (7.1), and making use of the conditions (A1)–(A2), there exists a constant κ1 > 0 such that

E
[
|Mx,lj(Y )|kΔ1(x, �jh)

]
< κk1φ(�jh)

(∫
|Mx,lj(v)|kfv(x)g(v)dv +

∫
|Mx,lj(v)|kg(v)dv

)
. (7.12)

Again, by the equality (7.1) with Mx,l(·) = 1, we have

E[Δ1(x, �jh)] = φ(�jh)

∫
Lx,�j(v, h)g(v) dv := φ(�jh)T (x, �jh). (7.13)

For each j = 1, . . . ,m, under conditions (A1)–(A2) and considering the fact that f(x) > 0, we obtain

lim
h→0

T (x, �jh) > 0. (7.14)
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For sufficiently large n and for some γ ∈ H0, there exists t0 > 0 such that 2mβn/(nφ(γh)) = 2m/wn ≤
t0. Now, by employing (7.11)–(7.14), we derive

T2 ≤
(

2mβn
t0nφ(γh)

)3

φ(γh)

m∑
j=1

(
τ(�j, γ) + o(1)

)(∫ [
exp

{
t0κ0|θjMx,lj (v)|(

τ(�j , γ) + o(1)
)
T (x, �jh)

}
fv(x)

+ exp

{
t0C|θjMx,lj (v)|(

τ(�j , γ) + o(1)
)
T (x, �jh)

}]
g(v)dv

)
.

Making use of (7.14), we readily infer

T2 ≤ κ2

(
2mβn

t0nφ(γh)

)3

φ(γh)

m∑
j=1

(∫ [
exp
(
t0κ3|θjMx,lj(v)|

)
fv(x)

+ exp
(
t0κ3|θjMx,lj(v)|

) ]
g(v)dv

)
,

where κ2, κ3 > 0. By Conditions (A4)(ii)–(iii), we get

T2 = O

((
βn

nφ(γh)

)3

φ(γh)

)
. (7.15)

Thus, based on the Condition (A3), we deduce

lim
n→∞

T2 = 0 and lim
n→∞

n2φ(γh)

β2
n

T2 = 0. (7.16)

By combining (7.3)–(7.10) with (7.15), we readily obtain

lim
n→∞

nφ(γh)

β2
n

log Φx,z1,...,zm
n (θ1, . . . , θm) =

1

2

m∑
j=1

m∑
p=1

θjθpRγ(x, zj , zp)

:= Ψx,z1,...,zm
γ (θ1 . . . , θm),

where the function Rγ is defined in the Statement (3.1). Note that the Condition (A4) implies that
the function Ψx,z1,...,zm

γ is finite and differentiable everywhere. The Fenchel–Legendre transform of
Ψx,z1,...,zm

γ is given by

Γγ
x,z1...,zm(λ1, . . . , λm) = sup

(θ1,...,θm)

{
m∑
i=1

λjθj −Ψx,z1,...,zm
γ (θ1, . . . , θm)

}
.

We need to establish the essential smoothness of the function Ψx,z1,...,zm
γ and utilize the Gärtner–Ellis

theorem for the proof, as outlined in [49] on page 44. Under the assumption (A4), it is evident that the
interior of the set

D = {(θ1, . . . , θm) : Ψx,z1,...,zm
γ (θ1, . . . , θm) < ∞}

is not empty. Furthermore, considering these conditions, the function Ψz1,...,zm
γ is shown to be steep,

establishing its essential smoothness. In conclusion, this ensures that for any θ1, . . . , θm ∈ R, the
function holds the properties necessary for applying the Gärtner–Ellis theorem in our proof

m∑
j,p

θjθpRγ(x, zj , zp) ≥ 0,

there exists a mean-zero Gaussian process {Ξγ(x, z), z ∈ L ×H0} such that

E[Ξγ(x, z1)Ξγ(x, z2)] = Rγ(x, z1, z2) for each z1, z2,∈ L ×H0.

Considering Eq. (3.3) and employing Lemma 4.1 from the work of [7], one can express the rate function
as follows

Γγ
x,z1...,zm(λ1, . . . , λm) = inf

{
2−1E[ξ2] : ξ ∈ Zγ , E[Ξγ(x, zj)ξ] = λj for each 1 ≤ j ≤ m

}
,
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where Zγ is defined in the introduction of this rate function [7, p. 6]. �
The proof of The demonstration of Theorem 3.2 requires several intermediary results, which we

present in the following set of lemmas.
Lemma 7.1. Under the assumptions (A1)–(A2) and (B3) we have, for any nonnegative function

M0(·) such that E[M0(Y )] < ∞,

lim
n→∞

sup
(x,�)∈J×H0

∣∣∣∣E[M0(Y )Δ1(x, �h)]

φ(�h)
− α0

∫
M0(v)fv(x)g(v) dv

∣∣∣∣ = 0,

where α0 is given in (3.2).
The proof of Lemma 7.1 is postponed until Section 8.
In the proof of Theorem 3.2 we shall apply Lemma 7.1 with M0(·) belongs to a finite class M0 of

nonnegative real valued functions such that E[M0(Y )] < ∞. Denote

εn = sup
(x,�)∈J×H0

∣∣∣∣E[M0(Y )Δ1(x, �h)]

φ(�h)
− α0

∫
M0(v)fv(x)g(v) dv

∣∣∣∣ .
By Lemma 7.1

εn → 0 as n → ∞.

By condition (B3), we have δf := infv infx∈J fv(x) > 0 and therefore, for n large enough,

εn ≤ δf
2

min

{∫
M0(v)g(v) dv : M0 ∈ M0

}
.

Then for any (x, �) ∈ J ×H0 and M0(·) ∈ M0, we have

φ(�h)α0

2
J(M0) ≤ E[M0(Y )Δ1(x, �h)] ≤ 2φ(�h)α0J(M0),

where J(M0) :=
∫
M0(v)fv(x)g(v) dv. By assumptions (A1) and (A2) we can see that α0 > 0. Then by

condition (B4)(i) and the fact that 0 < τ0

(
ϑ1

ϑ2

)
≤ τ0

(
�

γ

)
, we obtain, for any (x, �) ∈ J ×H0,

C1φ(γh) ≤ E[M0(Y )Δ1(x, �h)] ≤ C2φ(γh), (7.17)

where C1 and C2 are two strictly positive constants. For any l ∈ L, set

M̄x,l(v) = cl(x)l(v)1l{L(v)≤Minv(n)} + dl(x). (7.18)

Lemma 7.2. Assuming that the conditions (A1)–(A2), (B1), (B3), and (B4)(i) or (B′4)(i) are

satisfied, along with τ0

(
ϑ1

ϑ2

)
> 0, then for any given ε > 0, there exists a finite subclass Lε of L

such that, for sufficiently large n, for any l1 ∈ L, we have

min
l2∈Lε

sup
x∈J

sup
�∈H0

E

[{
M̄x,l1(Y )− M̄x,l2(Y )

}2
(
Δ1(x, �h)

)2
(E[Δ1(x, �h)])2/φ(γh)

]
≤ ε. (7.19)

The proof of Lemma 7.2 is postponed until Section 8.
Set ε > 0 and select n0 > 0 to be sufficiently large such that (7.19) holds for all n ≥ n0. For any

l1, l2 ∈ L, define

dL(l1, l2) = sup
n≥n0

sup
x∈J

sup
�∈H0

E

[{
M̄x,l1(Y )− M̄x,l2(Y )

}2
(
Δ1(x, �h)

)2
(E[Δ1(x, �h)])2/φ(γh)

]
.

Consider any ζ1, ζ2 > 0 and define

F0(ζ1, ζ2) =
{
(z1, z2) ∈

(
L ×H0

)2
: dL(l1, l2) ≤ ζ1 and |�1 − �2| ≤ ζ2

}
,

where zi = (li, �i), i = 1, 2. For any 0 < δ < 1, let ln = N (δφ(γh),J , d).
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Proposition 7.3. Under assumptions of Theorem 3.2, for any η > 0, we have, for any x ∈ J

lim
(δ,ζ1,ζ2)→(0,0,0)

lim sup
n→∞

w2
n

nφ(γh)

× log P

(
sup

y∈B(x,δφ(γh))
sup

(z1,z2)∈F0(ζ1,ζ2)
wn|Wn(x, z1)−Wn(y, z2)| ≥ η

)
= −∞,

where B(x, δφ(γh)) is the open ball with the center x and the radius δφ(γh). In order to prove
Proposition 7.3, we need an exponential inequality for the empirical process. Let us introduce first
some additional notation. Let (X ,A) be a measurable space on which we consider a uniformly bounded
collection of measurable functions F . The class F is said to be a bounded measurable VC class of
functions if it satisfies the Condition (B1). For any map T from F into R, set

||T ||F = sup
g∈F

|T (g)|.

Let μ be any probability measure on (X ,A) and Pr =
∏

i∈N μi the probability measure product where,
for i ∈ N, μi = μ. Set πi : XN �→ X , i ∈ N, to be the coordinate functions. The following lemma is due
to [71].

Lemma 7.4. Let F be a measurable uniformly VC class of functions, and σ2 and U be any
numbers such that σ2 ≥ supf∈F VarPr(f), U ≥ supf∈F ||f ||∞, and 0 < σ2 ≤ U/2. Then there exist
constants C and M depending only on the characteristic (C, ν) of the class F , such that the
inequality

Pr

(∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

g(πi)−EPr[g(πi)]

∣∣∣∣∣
∣∣∣∣∣
F

> t

)

≤ M exp

{
− t

MU
log

(
1 +

tU

M(
√
nσ + U

√
log(U/σ))2

)}
, (7.20)

whenever

t ≥ C

(
U log

(
U

σ

)
+

√
nσ
√

log(U/σ)

)
.

The proof of Proposition 7.3 is split up into two cases, the unbounded case where the Assump-
tion (B4) is assumed and the bounded case where we suppose that the Condition (B′4) is satisfied.

The unbounded case will follow as a consequence of a sequence of lemmas. Set, for any (x, z) =
(x, l, �) ∈ J × L ×H0

W̃n(x, z) =
1

nE[Δ1(x, �h)]

n∑
i=1

{
M̄x,l(Yi)Δi(x, �h)−E

[
M̄x,l(Yi)Δi(x, �h)

]}
.

We will first show that the processes{
wnWn(x, z) : z ∈ J × L ×H0

}
and

{
wnW̃n(x, z) : z ∈ J × L ×H0

}
are exponentially contiguous.

Lemma 7.5. Under the assumptions (A1)–(A3) and (B3–(B4)(ii), for any η > 0, we have

lim sup
n→∞

w2
n

nφ(γh)
log P

(
sup

z∈J×L×H0

wn|Wn(x, z)− W̃n(x, z)| ≥ η

)
= −∞.

The proof of Lemma 7.5 is postponed until Section 8.
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For any z = (l, �) ∈ L ×H0 and x ∈ J , set

Bn,x,z(u, v) = φ(γh)
M̄x,l(v)K(d(u, x)/�h)

E[Δ1(x, �h)]
. (7.21)

Lemma 7.6. Assume that assumptions (A1)–(A2) and (B1)–(B3) hold true. Furthermore,
consider the classes of continuous functions C and D given above. Then the class

M :=

{
(u, v) �→ Bn,x1,z1(u, v) −Bn,x2,z2(u, v) : (x1, x2) ∈ J 2, (z1, z2) ∈

(
L ×H0

)2}
is a pointwise measurable class of functions with the envelope function

G(x, v) := C0(CLL(v) +DL),

and satisfying the condition

N(ε,M) ≤ C1ε
−ν , 0 < ε < 1,

where C0, C1, and ν are suitable positive constants.
The proof of Lemma 7.6 is postponed until Section 8.
Lemma 7.7. Assuming that the conditions (A1)–(A2), (B1), (B3), and (B4)(i) or (B′4)(i) are

satisfied, along with τ0

(
ϑ1

ϑ2

)
> 0, then, for n large enough and any ε > 0, there exist δ, ζ1, ζ2 > 0

such that for any (z1, z2) ∈ F0(ζ1, ζ2), we have, for any x1, x2 ∈ J such that d(x1, x2) ≤ δφ(γh),

Var(Bn,x1,z1(X,Y )−Bn,x2,z2(X,Y )) ≤ C εφ(γh)

for suitable constant C > 0.
The proof of Lemma 7.7 is postponed until Section 8.

Proof of Proposition 7.3

The proof uses Lemma 7.4 as a device. By Lemma 7.6 the following classes

Fn,x(δ, ζ1, ζ2) =

{
(u, v) �→ Bn,x,z1(u, v) −Bn,y,z2(x, v) : y ∈ B(x, δφ(γh)), (z1, z2) ∈ F0(ζ1, ζ2)

}
are measurable VC classes of functions. Now, for n large enough, take U = C0(CL +DL)Minv(n)
where C0 is as in Lemma 7.6, F = Fn,x(δ, ζ1, ζ2) and by Lemma 7.7 σ2 = Cεφ(γh). Then, for n large
enough, we have σ ≤ U/2, and by the Condition (B4)(iii)–(iv), we infer

√
nσC̄ ≥ U

√
log(U/σ), for suitable constant C̄

and

lim sup
n→∞

wn

(
U log(U/σ) +

√
nσ
√

log(U/σ)

)
nφ(γh)

≤ lim sup
n→∞

(1 + C̄)wn
√
nσ
√

log(U/σ)

nφ(γh)
< ∞.

Consequently, there exists a positive integer number n0 such that for any n ≥ n0

nφ(γh)

wn
≥ C̄1

(
U log(U/σ) +

√
nσ
√

log(U/σ)

)
and

√
nσ + U

√
log(U/σ) ≤ (1 + C̄)

√
nCεφ(γh).

Applying Lemma 7.4, for any n ≥ n0, we obtain

P

(
sup

(y,z1,z2)∈B(x,δφ(γh))×F0(ζ1,ζ2)
wn|W̃n(x, z1)− W̃n(y, z2)| ≥ η

)
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≤ M exp

{
− nφ(γh)η

wnMC0(CL +DL)Minv(n)
log

(
1 +

ηC0(CL +DL)Minv(n)

wnM(1 + C̄)2Cε

)}
.

Therefore, by (B4)(iii)–(iv), we infer

lim sup
n→∞

w2
n

nφ(γh)
log

(
P

(
sup

(y,z1,z2)∈B(x,δφ(γh))×F0(ζ1,ζ2)
wn|W̃n(x, z1)− W̃n(y, z2)| ≥ η

))

≤ − η2

M2(1 + C̄)2Cε
. (7.22)

Letting ε go to 0, we prove that the process{
W̃n(x, z) : (x, z) ∈ J × L ×H0

}
fulfills the results of Proposition 7.3. Finally, the same conclusion holds for the process {Wn(x, z) :
(x, z) ∈ J × L ×H0} in the unbounded case in view of Lemma 7.5. In the Bounded case, under
Condition (B′4), we take

U = C0(CLL0 +DL) and σ2 = Cεφ(γh).

The same arguments as above yield, under the Condition (B′4), the same inequality as in (7.22). This
achieves the proof. �

Proof of Theorem 3.2

By combining the findings from Theorem 3.1, Proposition 7.3, and Lemma 7.2, and by applying
Theorem 3.1 in [6], we can establish that the process {wnWn(x, z) : z ∈ L×H0} satisfies the large
deviation principle within l∞(L ×H0), featuring the speed nφ(γh)/w2

n and the corresponding good rate
function

Iγx (ψ) = sup

{
Γγ
x,z1...,zm(ψ(z1), . . . , ψ(zm)) : zi ∈ L ×H0, i = 1, . . . ,m,m ≥ 1

}
.

Finally, by Theorem 4.2 in [7] this rate function can be expressed as

Iγx (ψ) = inf

{
2−1E[ξ2] : ξ ∈ Zx,γ, ϕ(ξ) = ψ

}
.

Hence the proof is complete. �
By condition (J) there exists xn,1, . . . , xn,ln in J such that

J ⊂
ln⋃
k=1

Bn,k,

and there exists ν ≥ 0 such that ln ≤ C(δφ(γh))−ν , for some suitable positive constant C. Here Bn,k

denotes the open ball with center xn,k and radius δφ(γh).

Proof of Theorem 3.3

The lower bound is easy. In fact, for any x ∈ J , by Theorem 3.2 we have

lim inf
n→∞

w2
n

nφ(γh)
log

(
P

{
wn||Wn||∞ > λ

})
≥ lim inf

n→∞
w2
n

nφ(γh)
log

(
P

{
wn sup

z∈L×H0

|Wn(x, z)| > λ

})
≥ −Iγx (λ).
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Hence

lim inf
n→∞

w2
n

nφ(γh)
log

(
P

{
wn||Wn||∞ > λ

})
≥ −Iγ(λ).

Now we show the upper bound. By considering the condition (J) and applying Proposition 7.3 we obtain
from the Condition (B4)(iv) and inequality log(a+ b) ≤ log 2 + max(log a, log b), a ≥ 0, b ≥ 0, for any
ε < λ,

lim sup
n→∞

w2
n

nφ(γh)
log

(
P

{
wn||Wn||∞ > λ

})

≤ lim sup
δ→0

lim sup
n→∞

w2
n

nφ(γh)
log

(
P

{
wn max

1≤k≤ln
sup

x∈Bn,k

sup
z∈L×H0

|Wn(x, z) −Wn(xn,k, z)| > ε

}

+ P

{
wn max

1≤k≤ln
sup

z∈L×H0

|Wn(xn,k, z)| > λ− ε

})

≤ lim sup
δ→0

lim sup
n→∞

w2
n

nφ(γh)
log

(
P

{
wn max

1≤k≤ln
sup

z∈L×H0

|Wn(xn,k, z)| > λ− ε

})
.

On the other hand

lim sup
n→∞

w2
n

nφ(γh)
log

(
P

{
wn max

1≤k≤ln
sup

z∈L×H0

|Wn(xn,k, z)| > λ− ε

})

≤ lim sup
n→∞

w2
n

nφ(γh)
log
(
ln) + sup

x∈J
lim sup
n→∞

w2
n

nφ(γh)
log

(
P

{
wn sup

z∈L×H0

|Wn(x, z)| > λ− ε

})
.

It follows, by Condition (B4)(iv) that

lim sup
n→∞

w2
n

nφ(γh)
log

(
P

{
wn||Wn||∞ > λ

})
≤ −Iγ(λ− ε).

The demonstration of Theorem 3.3 may be concluded through the asymptotic limit of the parameter ε
converging towards zero since the function Iγ(·) is continuous. �

To prove Corollary 4.1, we need some intermediate results. For any x ∈ J and any (l, �) ∈ L ×H0,
set

Bn(x, l, �) = cl(x)

(
r̂ln,2(x, �h)− rl(x)

)
+ dl(x)

(
r̂ln,1(x, �h) − 1

)
. (7.23)

Lemma 7.8. Under the assumption of Theorem 3.2, assume that the condition (C1) holds.
Then the process {

wnBn(x, l, �) : (l, �) ∈ L×H0

}
satisfies a large deviation principle in l∞(L ×H0) with the speed (nφ(γh)/w2

n) and the good rate
function Iγ1,x(·).

The proof of Lemma 7.8 is postponed until Section 8.

Proof of Corollary 4.1

By choosing cl(x) = 1 and dl(x) = −rl(x), the sequence Bn(x, l, �h) in (7.23) may be then
written as

Bn(x, l, �h) =

(
r̂ln,2(x, �h)− rl(x)

)
− rl(x)

(
r̂ln,1(x, �h)− 1

)
.
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The subsequent statements show that the processes{
wn(r̂

l
n(x, �h)− rl(x, �h)) : (l, �) ∈ L ×H0

}
and {

wnBn(x, l, �h) : (l, �) ∈ L ×H0

}
are exponentially contiguous. Indeed, we have

P

(
wn sup

(l,�)∈L×H0

∣∣∣∣r̂ln(x, �h) − rl(x, �h) −Bn(x, l, �h)

∣∣∣∣ > η

)

≤ P

(
wn sup

(l,�)∈L×H0

∣∣∣∣Bn(x, l, �h)

(
1

r̂ln,1(x, �h)
− 1

)∣∣∣∣ > η, inf
�∈H0

r̂ln,1(x, �h) ≥ 1/2

)

+ P

(
inf

�∈H0

r̂ln,1(x, �h) < 1/2

)

≤ P

(
√
wn sup

(l,�)∈L×H0

|Bn(x, l, �h)| >
√
η

)
+ P

(
√
wn sup

�∈H0

|r̂ln,1(x, �h) − 1| > √
η/2

)

+ P

(
sup
�∈H0

|r̂ln,1(x, �h)− 1| > 1

2

)
.

Since lim
n→∞

wn = ∞, for n large enough, it follows that

P

(
wn sup

(l,�)∈L×H0

∣∣∣∣r̂ln(x, �h) − rl(x, �h) −Bn(x, l, �h)

∣∣∣∣ > η

)

≤ 3max

{
P

(√
wn sup

(l,�)∈L×H0

|Bn(x, l, �h)| >
√
η
)
,P
(√

wn sup
�∈H0

|r̂ln,1(x, �h)− 1| > √
η/2
)}

.

Now, by Lemma 7.8 the sequence{
wnBn(x, l, �h) : (l, �) ∈ L ×H0

}
satisfies a large deviation principle with the speed (nφ(γh)/w2

n) and the good rate function Iγ1,x(·), there
exists a constant c1 > 0 such that

lim sup
n→∞

wn

nφ(γh)
log P

(
√
wn sup

(l,�)∈L×H0

|Bn(x, l, �h)| >
√
η

)
< −c1.

Moreover, an application of Theorem 3.2 guarantees the existence of a real c2 > 0 such that

lim sup
n→∞

wn

nφ(γh)
log P

(
√
wn sup

�∈H0

|r̂ln,1(x, �h) − 1| > √
η/2

)
< −c2.

We then deduce that

lim sup
n→∞

w2
n

nφ(γh)
log P

(
wn sup

(l,�)∈L×H0

∣∣∣∣r̂ln(x, �h)− rl(x, �h) −Bn(x, l, �h)

∣∣∣∣ > η

)
= −∞,
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which means that the process{
wn(r̂

l
n(x, �h)− rl(x, �h)) : (l, �) ∈ L ×H0

}
and {

wnBn(x, l, �h) : (l, �) ∈ L ×H0

}
are exponentially contiguous. Thus, Corollary 4.1 follows by making use of Lemma 7.8. �

Proof of Corollary 4.2

To see how Corollary 4.2 follows from Theorem 3.2, take in this case

L =

{
1l{y≤t} : t ∈ R

}
, D =

{
− F (t|·) : t ∈ R

}
and cl(x) = 1,

for each x ∈ J . Under the Condition (C2), it becomes evident that the set of functions D constitutes
a collection of uniformly equicontinuous functions in (J , d). Consequently, D forms a set of uniformly
bounded functions. Applying the Arzéla–Ascoli theorem (refer to, for instance, Theorem IV.6.7 in [56]),
it follows that D is a compact set within l∞(J ). It is worth noting that we can employ this theorem even
when (J , d) is a totally bounded pseudo-metric space, not necessarily a compact one. Now, employing
the same line of reasoning as in the proof of Corollary 4.1, the proof is successfully established. �

Proof of Corollary 4.3

By Lemma 3.9.23 of [131], it follows that the inverse map Φ : G �→ G−1 as a map D1[F
−1(p|x)−

ε, F−1(q|x) + ε] �→ l∞[p, q] is Hadamard differentiable at F ( ·|x) tangentially to C[F−1(p|x)−
ε, F−1(q|x) + ε], and the derivative is the map

ψ �→ −ψ
(
F−1(·|x)

)
/f
(
F−1(·|x)

)
.

Therefore, by Theorem 3.1 of [67] and Corollary 4.2, we conclude that

{wn (q̂n,α(x, �) − qα(x)) , (α, �) ∈ l∞([p, q]×H0)}

satisfies the LDP in l∞([p, q]×H0) with speed nφ(γh)/w2
n and the rate function IEQ

γ,x (·). �

8. PROOF OF THE TECHNICAL LEMMAS

Proof of Lemma 7.1

Note that, the condition (A1) and (A2)(i) implies the equality (7.1), and this last equality with
Mx,l(v) = M0(v) gives that for any (x, �) ∈ J ×H0,

E[M0(Y1)Δ1(x, �h)]

φ(�h)
=

∫
Lx,�(v, h)M0(v)g(v) dv,

where

Lx,�(v, h) = K(1)
(
fv(x) +

gx,v(�h)

φ(�h)

)
−

1∫
0

K ′(u)
φ(u�h)

φ(�h)

(
fv(x) +

gx,v(u�h)

φ(u�h)

)
du.

Now, observe that, for any (x, �) ∈ J ×H0,∣∣∣∣ ∫ Lx,�(v, h)M0(v)g(v) dv − α0

∫
M0(v)fv(x)g(v) dv

∣∣∣∣
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≤ K(1)

∫
gx,v(�h)

φ(�h)
M0(v)g(v) dv

+

(∫
M0(v)fv(x)g(v) dv

) 1∫
0

|K ′(u)|
∣∣∣φ(u�h)
φ(�h)

− τ0(u)
∣∣∣ du

+

∫ 1∫
0

|K ′(u)|gx,v(u�h)
φ(u�h)

M0(v)g(v) du dv.

Making use of the conditions (A1)–(A2) and (B3), we derive

lim
n→∞

sup
(x,�)∈J×H0

∣∣∣∣E[M0(Y1)Δ1(x, �h)]

φ(�h)
− α0

∫
M0(v)fv(x)g(v) dv

∣∣∣∣ = 0.

This completes the proof of Lemma 7.1. �

Proof of Lemma 7.2
Making use of the conditions (A1)–(A2) and (B3)–(B4)(i), and applying Lemma 7.1, there exists a

positive constant C1 such that, for every pair l, l′ ∈ L, every x in J , every � in H0, and for sufficiently
large n, the following holds:

E

[{
(cl(x)l(Y )− cl′(x)l

′(Y ))1l{L(Y )≤Minv(n)} + (dl(x)− dl′(x))

}2
(
Δ1(x, �h)

)2
(E[Δ1(x, �h)])2/φ(γh)

]

≤ C1
φ(γh)

φ(�h)

∫ {
(cl(x)l(v)− cl′(x)l

′(v))1l{L(v)≤Minv(n)} + (dl(x)− dl′(x))

}2

g(v)dv.

According to (A2)(ii), we obtain, uniformly for � in H0,

φ(�h)

φ(γh)
= τ(�, γ) + o(1).

By combining the last equation with the observation that 0 < τ0

(
ϑ1

ϑ2

)
≤ τ0

(
�

γ

)
, we can deduce the

existence of a positive constant C2 such that, for sufficiently large n,

C2φ(γh) ≤ inf
�∈H0

φ(�h).

Henceforth, there exists a positive constant C > 0 such that, for every pair l, l′ ∈ L, every � in H0, and
for sufficiently large n,

E

[{
(cl(x)l(Y )− cl′(x)l

′(Y ))1l{L(Y )≤Minv(n)} + (dl(x)− dl′(x))

}2
(
Δ1(x, �h)

)2
(E[Δ1(x, �h)])2/φ(γh)

]

≤ C

∫ {
(cl(x)l(v) − cl′(x)l

′(v))1l{L(v)≤Minv(n)} + (dl(x)− dl′(x))

}2

g(v)dv. (8.1)

Given the Condition (B1) on the class L, which states that it is totally bounded with respect to the
distance dQ(·, ·), where Q(·) is a distribution with density g(·), it follows that for any δ > 0, there exists
a finite subclass L1 ⊂ L such that

sup
l∈L

min
l′∈L1

∫
(l(v)− l′(v))2g(v)dv < δ.

Furthermore, due to the compactness of the function classes C and D, we can identify finite subclasses
L2 ⊂ L and L3 ⊂ L such that

sup
l∈L

min
l′∈L2

||cl − cl′ ||J ∨ sup
l∈L

min
l′∈L3

||dl − dl′ ||J < δ.
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Therefore, employing the observation that both

sup
l∈L

||cl||J < ∞ and sup
l∈L

∫
(l(v))2g(v)dv < ∞.

After a brief arithmetic manipulation and selecting a sufficiently small δ > 0, we obtain

sup
l∈L

min
l′1,l

′
2,l

′
3

sup
x∈J

∫ {
(cl(x)l(v) − cl′2(x)l

′
1(v))1l{L(v)≤Minv(n)} + (dl(x)− dl′3(x))

}2

g(v)dv ≤ ε/2C,

where the minimum is taken over L1 × L2 ×L3. Now, consider any triple (l′1, l
′
2, l

′
3) ∈ L1 ×L2 × L3 for

which there exists l′ ∈ L such that

sup
x∈J

∫ {
(cl′(x)l

′(v) − cl′2(x)l
′
1(v))1l{L(v)≤Minv(n)} + (dl′(x)− dl′3(x))

}2

g(v)dv ≤ ε/2C,

select one of them to form the desired subclass Lε. To conclude the proof, it is enough to apply the
triangle inequality. �

Proof of Lemma 7.5

Set, for z = (x, l, �) ∈ J × L ×H0,

W′′
n(z) =

1

nE[Δ1(x, �h)]

n∑
i=1

cl(x)l(Yi)1l{L(Yi)>Minv(n)}Δi(x, �h).

Observe first that s/M(s) is a decreasing function. In turn, this implies, for any v such that L(v) ≥
Minv(n), that

|l(v)| = |l(v)|
L(v)

L(v)

M(L(v))
M(L(v)) ≤

{
Minv(n)

n

}
M(L(v)).

Thus, for n large enough, uniformly in (x, l, �) ∈ J × L ×H0, we have

E
[∣∣W′′

n(z)
∣∣] ≤ {Minv(n)

n

}
CLE

{
M(L(Y ))

Δ1(x, �h)

E[Δ1(x, �h)]

}
.

Thus, by conditions (A1)–(A2) and (B3)–(B4)(i) and using Lemma 7.1, there exists two strictly positive
constants C1, C2 such that, for any x ∈ J and � ∈ H0, we have

C1φ(�h) ≤ E[Δ1(x, �h)] (8.2)

and

E[M(L(Y ))Δ1(x, �h)] ≤ C2φ(�h). (8.3)

Hence, we readily infer

sup
z∈J×L×H0

wnE
[∣∣W′′

n(z)
∣∣] ≤ wnMinv(n)

n

C2CL
C1

,

which by (A3) converges to 0 as n → ∞. Considering now the inequality (8.2) and the boundedness of
the kernel K(·) in (A1), for any for z ∈ J × L ×H0, we have∣∣W′′

n(z)
∣∣ ≤ CL

C1

1

nφ(�h)

n∑
i=1

L(Yi)1l{L(Yi)>Minv(n)}.

By (A2)(ii), we have, uniformly in � ∈ H0,

φ(�h)

φ(γh)
= τ(�, γ) + o(1).
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Combining this with the fact that 0 < τ0(
ϑ1

ϑ2
) ≤ τ0(

�

γ
) implies that there exists a constant C2 > 0 such

that, for n large enough,

C2φ(γh) ≤ inf
�∈H0

φ(�h).

Therefore, for any η > 0 and n large enough, we have

P

(
sup

z∈J×L×H0

wn|Wn(z)− W̃n(z)| ≥ η

)
≤ P

(
sup

z∈J×L×H0

wn|W′′
n(z)| ≥ η/2

)

≤ P

(
CL
C1

wn

nC2φ(γh)

n∑
i=1

L(Yi)1l{L(Yi)>Minv(n)} ≥ η/2

)
≤ P

(
max
1≤i≤n

L(Yi) > Minv(n)
)

≤ nP
(
L(Y ) > Minv(n)

)
.

The application of the exponential Tchebychev inequality with t chosen as in the condition (B4)(i)
yields to

lim
n→∞

w2
n

nφ(γh)
log

(
nP
(
L(Y ) > Minv(n)

))
≤ lim

n→∞

(
w2
n

nφ(γh)
log n− t

w2
n

nφ(γh)
Minv(n) +

w2
n

nφ(γh)
log
(
E
[
etL(Y )

]))
,

≤ lim
n→∞

(
(1− t)

w2
n

nφ(γh)
max

(
Minv(n), log n

)
+

w2
n

nφ(γh)
log
(
E
[
etL(Y )

]))
,

which by Assumptions (A3) and (B4)(ii) converges to −∞ as n → ∞. �

Proof of Lemma 7.6

Similarly as in the proof of Lemma 5 in [58], it follows that the class

M̃1 =

{
(u, v) → 1l{L(v)≤t}K(d(x, u)/�h), � ∈ H0, x ∈ J , t > 0

}
satisfies for any probability measure Q on Borel subsets of J × R the condition

N(εκ, M̃1, dQ) ≤ C̃ε−ν̃ , 0 < ε < 1,

where C̃, ν̃ > 0 are suitable positive constants. Next, consider the function class

M̃2 =

{
(u, v) �→ φ(γh)

cl(x)l(v)

E[Δ1(x, �h)]
: � ∈ H0, l ∈ L, x ∈ J

}
.

Applying the same reasoning as presented in the proof of Lemma 5 in [58] and leveraging the Vapnik–
Červonenkis property of L, along with the inequality (8.2) and the bounded nature of the classes C,
it follows that the class M̃2 possesses a polynomial covering number. Consequently, by referring to
Lemma A.1 in [58], it can be deduced that the product class M̃1 · M̃2 exhibits a polynomial covering
number. Now, let’s consider the class

M̃3 =

{
(u, v) �→ φ(γh)

dl(x)

E[Δ1(x, �h)]
: � ∈ H0, l ∈ L, x ∈ J

}
.
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Utilizing inequality (8.2), the bounded nature of the classes D, and invoking Lemma A.1 from [58], it can
be established that the product classK · M̃3 possesses a polynomial covering number. Consequently, the
class resulting from the summation of M̃1 · M̃2 and K · M̃3 also exhibits a polynomial covering number.
Finally, it can be concluded that the class M satisfies this covering property as well. The measurability
is straightforwardly derived from the kernel function’s continuity, the separability of (J , d), and the fact
that the functions belong to the classes C and D. �

Proof of Lemma 7.7

Recall the Eq. (7.21). Note that, for any (x1, x2) ∈ J 2 and any (z1, z2) ∈
(
L ×H0

)2,

Var(Bn,x1,z1(X,Y )−Bn,x2,z2(X,Y ))

≤ 2E

[
φ(γh)

{
M̄x1,l1(Y )− M̄x1,l2(Y )

} Δ1(x1, �1h)

E[Δ1(x1, �1h)]

]2

+ 2E

[
φ(γh)

{M̄x1,l2(Y )Δ1(x1, �1h)

E[Δ1(x1, �1h)]
− M̄x2,l2(Y )Δ1(x2, �2h)

E[Δ1(x2, �2h)]

}]2
:= I + II.

According to Lemma 7.2, for sufficiently large n, there exists a constant C > 0 such that

I ≤ 2CdL(l1, l2)φ(γh).

Now, observe that

II ≤ 4φ(γh)2E

[(
[cl2(x1)− cl2(x2])l2(Y )1l{L(Y )≤Minv(n)} + [dl2(x1)− dl2(x2)]

)
Δ1(x1, �1h)

E[Δ1(x1, �1h)]

]2

+ 4φ(γh)2E

[(
cl2(x2)l2(Y )1l{L(Y )≤Minv(n)} + dl2(x2)

)[
Δ1(x2, �2h)

E[Δ1(x2, �2h)]
− Δ1(x1, �1h)

E[Δ1(x1, �1h)]

]]2
:= III + IV.

Using the fact that the classes C and D are uniformly equicontinuous, it follows, for any ε > 0, that there
exists δ > 0 such that for any x1, x2 ∈ J , with d(x1, x2) ≤ δ, and

sup
l∈L

|cl(x1)− cl(x2)| ∨ sup
l∈L

|dl(x1)− dl(x2)| ≤ ε.

Hence, we have

III ≤ 4(εφ(γh))2E

[(
L(Y ) + 1

)
Δ1(x1, �1h)

E[Δ1(x1, �1h)]

]2
.

Using the same arguments as in (8.1), by the Conditions (A1)–(A2) and (B3)–(B4)(i), and applying

Lemma 7.1 with the observation that 0 < τ0

(
ϑ1

ϑ2

)
≤ τ0

(
�1
γ

)
, there exists a positive constant C1 such

that
III ≤ C1ε

2φ(γh).

Similarly, and using the fact that the classes C and D are uniformly bounded, for suitable finite constants
C1 and C2, we have

IV ≤ 8φ(γh)2E

[(
cl2(x2)l2(Y )1l{L(Y )≤Minv(n)} + dl2(x2)

)[
Δ1(x2, �2h))

E[Δ1(x2, �2h)]
− Δ1(x1, �1h)

E[Δ1(x2, �2h)]

]]2

+ 8φ(γh)2E

[(
cl2(x2)l2(Y )1l{L(Y )≤Minv(n)} + dl2(x2)

)[
Δ1(x1, �1h))

E[Δ1(x2, �2h)]
− Δ1(x1, �1h)

E[Δ1(x1, �1h)]

]]2
.
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By (7.17) and (B4)(i), and by using the fact that the classes C and D are uniformly bounded, for suitable
finite constants C1 and C2, we have

IV

≤ C1E

[(
L(Y ) + 1

)[
Δ1(x2, �2h)−Δ1(x1, �1h)

]]2
+

C2

φ(γh)

[
E
[
Δ1(x2, �2h)−Δ1(x1, �1h)

]]2

≤ 2C1

⎧⎨⎩E

[(
L(Y ) + 1

)[
Δ1(x2, �2h)−Δ1(x2, �1h)

]]2
+E

[(
L(Y ) + 1

)[
Δ1(x2, �1h)−Δ1(x1, �1h)

]]2⎫⎬⎭
+ 2

C2

φ(γh)

⎧⎨⎩
[
E
[
Δ1(x2, �2h)−Δ1(x2, �1h)

]]2
+

[
E
[
Δ1(x2, �1h)−Δ1(x1, �1h)

]]2⎫⎬⎭ .

Now, by (A1)(i), we obtain, for some constant C,

E

[(
L(Y ) + 1

)[
Δ1(x2, �2h)−Δ1(x2, �1h)

]]2

=

1∫
0

∫
(L(v) + 1)2

(
K

(
u

�2

)
−K

(
u

�1

))2

dP

(
d(x2,X1)

h
≤ u, Y ≤ v

)

≤ C
(�2 − �1)

2

ϑ2
1

1∫
0

∫
(L(v) + 1)2 u2 dP

(
d(x2,X1)

h
≤ u|Y = v

)
g(v) dv.

Using the same arguments as in (7.1), we get

E

[(
L(Y ) + 1

)[
Δ1(x2, �2h)−Δ1(x2, �1h)

]]2
≤ C (�2 − �1)

2φ(h)

1∫
0

Γx2(v, h) (L(v) + 1)2 g(v) dv,

where

Γx(v, h) = fv(x) +
gx,v(h)

φ(h)
− 2

1∫
0

u
φ(uh)

φ(h)

(
fv(x) +

gx,v(uh)

φ(uh)

)
du.

By the Conditions (A1)–(A2) and (B4)(i), It follows that

E

[(
L(Y ) + 1

)[
Δ1(x2, �2h)−Δ1(x2, �1h)

]]2
≤ C |�2 − �1|φ(γh). (8.4)

By using the same arguments as above, it follows that

E

[(
L(Y ) + 1

)[
Δ1(x2, �1h)−Δ1(x1, �1h)

]]2
≤ C

(
d(x1, x2)

h

)2

φ(γh),

which implies, by using the fact that d(x1, x2) ≤ δφ(γh) and φ(γh)/h = O(1),

E

[(
L(Y ) + 1

)[
Δ1(x2, �1h)−Δ1(x1, �1h)

]]2
≤ C δφ(γh). (8.5)

Similarly

E
∣∣∣Δ1(x, �2h)−Δ1(x, �1h)

∣∣∣ ≤ C |�2 − �1|φ(γh) (8.6)
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and

E
∣∣∣Δ1(x2, �1h)−Δ1(x, �1h)

∣∣∣ ≤ C δφ(γh). (8.7)

Finally, from (8.4)–(8.7), we deduce

IV ≤ C φ(γh) (δ + |�2 − �1|) ,
which completes the proof of the Lemma 7.7. �

Proof of Lemma 7.8

Observe, for any (x, z) ∈ J × L ×H0, that

Bn(x, l, �h) = Wn(x, z) + cl(x)(E[r̂ln,2(x, �h)] − rl(x))

=: Wn(x, z) + Vn(x, z),

where z = (l, �). To prove Lemma 7.8, we have to show that

lim
n→∞

wn sup
z∈L×Hn

Vn(x, z) = 0.

Now, for any (x, l, �) ∈ J × L ×H0, observe that

E[r̂ln,2(x, �h) − rl(x)]

=

n∑
i=1

E[l(Yi)Δi(x, �h)]

nE[Δ1(x, �h)]
− rl(x) =

E[l(Y1)Δ1(x, �h)]

E[Δ1(x, �h)]
− rl(x)

=
E[E[l(Y1)Δ1(x, �h)|X1]]

E[Δ1(x, �h)]
− rl(x) =

E[rl(X1)Δ1(x, �h)]

E[Δ1(x, �h)]
− rl(x)

=

E

[(
rl(X1)− rl(x)

)
Δ1(x, �h)

]
E[Δ1(x, �h)]

.

Since the kernel function K(·) is [0, 1]-supported by condition (A1), it follows that∣∣∣rl(X1)− rl(x)
∣∣∣Δ1(x, �h)) ≤ sup

{x′:d(x′,x)≤�h}

∣∣∣rl(x′)− rl(x)
∣∣∣Δ1(x, �h).

The use of the Condition (C1) allows us to obtain the claimed result. �

APPENDIX A

This appendix contains supplementary information that is essential to providing a more comprehen-
sive understanding of the paper.

Theorem A.1 (Theorem 3.1 [6]). Let {Un(t) : t ∈ T} be a sequence of stochastic processes,
where T is an index set. Let {εn} be a sequence of positive numbers that converge to zero. Let
I : l∞(T ) → [0,∞] and let It1,...,tm : Rm → [0,∞] be a function for each t1, . . . , tm ∈ T . Let d(·, ·) be
a pseudometric in T . Consider the following conditions:

(a.1) (T, d) is totally bounded;

(a.2) for each t1, . . . , tm ∈ T, (Un (t1) , . . . , Un (tm)) satisfies the LDP with the rate ε−1
n and good

rate function It1,...,tm ;

(a.3) for each τ > 0,

lim
η→0

lim sup
n→∞

εn log

(
P
∗
{

sup
d(s,t)≤η

|Un(t)− Un(s)| ≥ τ

})
= −∞;

MATHEMATICAL METHODS OF STATISTICS Vol. 33 No. 1 2024



FUNCTIONAL UNIFORM-IN-BANDWIDTH MODERATE 63

(b.1) for each 0 ≤ c < ∞,

{
z ∈ l∞(T ) : I(z) ≤ c

}
is a compact set of l∞(T );

(b.2) for each A ⊂ l∞(T ),

− inf
z∈A◦

I(z) ≤ lim inf
n→∞

εn log (P∗ {Un ∈ A})

≤ lim sup
n→∞

εn log (P
∗ {Un ∈ A}) ≤ − inf

z∈Ā
I(z).

If the set of conditions (a) is satisfied, then the set of conditions (b) holds with I(·) given by

I(z) = sup

{
It1,...,tm (z (t1) , . . . , z (tm)) : t1, . . . , tm ∈ T,m ≥ 1

}
.

If the set of conditions (b) is satisfied, then the set of conditions (a) holds with

It1,...,tm (u1, . . . , um) = inf

{
I(z) : z ∈ l∞(T ), (z (t1) , . . . , z (tm)) = (u1, . . . , um)

}
and the pseudometric d(·, ·) is defined

d(s, t) =
∞∑
k=1

k−2 min (dk(s, t), 1) ,

where
dk(s, t) = sup {|u2 − u1| : Is,t (u1, u2) � k} .
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Cham, 2019), pp. 201–239.

48. P. Deheuvels and D. M. Mason, “General asymptotic confidence bands based on kernel-type function
estimators,” Stat. Inference Stoch. Process. 7 (3), 225–277 (2004).

49. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Vol. 38: Applications of
Mathematics, 2nd ed. (Springer-Verlag, New York, 1998).

50. J.-D. Deuschel and D. W. Stroock, Large Deviations, Vol. 137: Pure and Applied Mathematics (Academic
Press, Inc., Boston, MA, 1989).

51. L. Devroye and L. Györfi, Nonparametric Density Estimation. Wiley Series in Probability and Mathe-
matical Statistics: Tracts on Probability and Statistics (John Wiley and Sons, Inc., New York, The L1 View,
1985).

52. L. Devroye and G. Lugosi, Combinatorial Methods in Density Estimation, Springer Series in Statistics
(Springer-Verlag, New York, 2001).

53. J. Dony and U. Einmahl, “Uniform in bandwidth consistency of kernel regression estimators at a fixed
point,” in: High dimensional probability V: The Luminy volume, Vol. 5: Inst. Math. Stat. (IMS) Collect.
Inst. Math. Statist (Beachwood, OH, 2009), p. 308–325.

MATHEMATICAL METHODS OF STATISTICS Vol. 33 No. 1 2024



66 BERRAHOU et al.
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[Applied Statistics and Econometrics] (Vandenhoeck and Ruprecht, Göttingen, With German and French
Summaries, 1978).

139. C.Wu, N. Ling, P. Vieu, and W. Liang, “Partially functional linear quantile regression model and variable
selection with censoring indicators MAR,” J. Multivariate Anal. 197, Paper No. 105189 (2023).

Publisher’s Note. Allerton Press remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

MATHEMATICAL METHODS OF STATISTICS Vol. 33 No. 1 2024



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


		2024-04-18T19:19:17+0300
	Preflight Ticket Signature




