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Abstract—The marginalized zero-inflated poisson (MZIP) regression model quantifies the effects of
an explanatory variable in the mixture population. Also, in practice the variables are usually partially
observed. Thus, we first propose to study the maximum likelihood estimator when all variables
are observed. Then, assuming that the probability of selection is modeled using mixed covariates
(continuous, discrete and categorical), we propose a semiparametric inverse-probability weighted
(SIPW) method for estimating the parameters of the MZIP model with covariates missing at random
(MAR). The asymptotic properties (consistency, asymptotic normality) of the proposed estimators
are established under certain regularity conditions. Through numerical studies, the performance
of the proposed estimators was evaluated. Then the results of the SIPW are compared to the
results obtained by semiparametric inverse-probability weighted kermel-based (SIPWK) estimator
method. Finally, we apply our methodology to a dataset on health care demand in the United States.
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1. INTRODUCTION

Although Poisson models (or binomial models) are the most widely used tools for modeling count
data, we are seeing more and more count data with zero inflation in several fields such as economics,
biomedical studies, criminology, insurance, sociology and political science. When the number of
observed zeros is greater than that predicted by standard counting distributions, zero inflation (ZI)
regression models are an alternative for modeling such data. For more information on ZI regression
models, see Lambert [1], Diallo et al. [4, 7], Kouakou et al. [27], Ali et al. [28]. The ZIP distribution
proposed by Lambert has gained popularity. ZIP regression models have been used successfully in a
variety of important applications, see for example Dietz et al. [2], Yau et al. [3], and Cheung et al. [5].

However, the ZIP distribution has two group regression parameters, one for the probability of being
an zero-inflation and the other for the Poisson mean. The parameters have latent class interpretations,
these latent classes are often thought to classify some not-at-risk group and the at-risk group indicating
a difference in susceptibility between the two populations. Because entire population parameters inter-
pretations are desired, Long et al. [16] introduced the marginalized zero-inflation Poisson regression
(MZIP).

In practice, the data are most often partially observed. In this context, the basic method used is called
the complete cases method which consists in removing the individuals who have at least one missing
data. This method is simple to implement. However, when the proportion of individuals who have a
missing data is higher than 5% this method gives bad results. Two other alternatives to the complete case
for the treatment of missing data are the Monte Carlo EM algorithm (MCEM) and multiple imputation
(MI). The MCEM and MI methods are efficient but require quite high computational loads. Finally, the
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IPW method that is often used requires that we find the right model for the selection probability. see
for example Diallo et al. [7] and Benecha et al. [18]. To circumvent these modeling difficulties while
proposing a non-numerical method, Lukusa et al. [8, 9] proposed weighted semiparametric estimators
that are suitable when the selection probabilities are expressed in terms of covariates of the same nature.
However, there is little work on the estimation of the MZIP model in the context of missing data.
This work aims to fill this gap. In this article, we propose a semiparametric approach in which the
probability of selection that is a function of continuous, discrete and categorical covariates is estimated
nonparametrically. This alternative consists in discretizing the continuous covariates using Jenks’s
method to have categorical covariates.

The rest of the paper is organized as follows. In the Section 2, We present the MZIP regression model
and its maximum likelihood estimator. We present the SIPWK and SIPW estimation methods of MZIP
model when the covariates are missing at random (MAR) and the consistency and asymptotic normality
of the SIPW estimators are established in Section 3. The performance of the presented estimators are
evaluated in Section 4. As an illustration, we apply these methods to real data in Section 5. A discussion
and some perspectives are presented in Section 6. The technical proofs are reported in an Appendix.

2. MARGINALIZED ZIP MODELS

The ZIP distribution is used to model the counting variable of interest, namely Yi, i = 1 . . . n. Yi

takes the value of from a Poisson distribution, with a mean of μi, with a probability of 1− ψi, or is drawn
to zero from a Bernoulli distribution, with a probability of ψi. For example in dental caries research, the
marginal mean νi caries count is often of more interest than the mean caries count μi of a susceptible
latent group of individuals see Preisser [17].

Because entire population parameter interpretations are desired, the marginal mean νi can be
modeled directly to give overall exposure effect estimates. Given that μi = νi/(1−ψi) the representation
of the MZIP distribution is

P(Yi = k) =

⎧
⎨

⎩

ψi + (1− ψi) exp(−νi/(1− ψi)), k = 0

(1− ψi)
exp(−νi/(1− ψi))[νi/(1− ψi)]

k

k!
, k > 0.

(2.1)

In the MZIP model, Long et al. [16] links regression parameters directly to the marginal mean νi,
while employing another set of parameters to model the probability of being an excess zero (i.e., ψi). The
parameters νi and ψi of MZIP model are modeling by

logit(ψi) = ZT
i γ and log(νi) = XT

i α, (2.2)

where γ = (γ1, γ2, . . . , γq)
T is a (q × 1) column have the same interpretation as in ZIP model, α =

(α1, α2, . . . , αp)
T is a (p × 1) vector of regression parameters for νi having interpretations as the log-

incidence density ratio (IDR) for the entire sample population and Xi(p×1)
and Zi(q×1)

denote the vectors

of covariates for the ith individual. Let θ = (γT , αT )T . Consider that we observe a sample of n
independent copies (Y1,X1,Z1), (Y2,X2,Z2), . . . , (Yn,Xn,Zn) of (Z,X,Z). Then, the log-likelihood
of θ is

ln(θ) =

n∑

i=1

−log(1 + eZ
T
i γ) + Jilog

(
eZ

T
i γ + e−(1+exp(ZT

i γ))exp(XT
i α)

)

+
n∑

i=1

(1− Ji)
(
−(1 + eZ

T
i γ)eX

T
i α + Yilog(1 + eZ

T
i γ) +XT

i αYi − log(Yi!)
)
,

where Ji = 1{Yi=0}. The maximum likelihood estimator θ̂F,n = (γ̂Tn , α̂
T
n )

T of θ is the solution of the
equation UF,n(θ) = 0, with

UF,n(θ) =
1√
n

∂ln(θ)

∂θ
=

1√
n

n∑

i=1

∂li(θ)

∂θ
=

1√
n

n∑

i=1

l̇i(θ) =
1√
n

n∑

i=1

(ZiBi(θ),XiAi(θ))
T , (2.3)
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where

Ai(θ) = (Yi − eX
T
i α(1 + eZ

T
i γ))(1 − Ji)−

eX
T
i α(1 + eZ

T
i γ)Ji

eZ
T
i γ+hi(θ) + 1

,

Bi(θ) =
Jie

ZT
i γ

(
ehi(θ) − eX

T
i α
)

eZ
T
i γ+hi(θ) + 1

+
eZ

T
i γ(Yi − 1)

1 + eZ
T
i γ

− (1− Ji)e
XT

i α+ZT
i γ ,

and

hi(θ) = (1 + exp(ZT
i γ))exp(XT

i α).

3. ESTIMATING PARAMETERS WITH MISSING COVARIATES

Let X and Z be the vectors covariates with missing data and Y always observed. Let Δi be
a dummy variable that is 1 when {Zi,Xi} is completely observed, 0 otherwise, see Rubin [12] for
details. We consider covariates mixed (continuous, discrete, and categorial). Let V = (Y,SD,SC)T ,
where SD = (XD(obs),T ,ZD(obs),T ) denote the vector of discretes variables that are always observed on
each individual, SC = (XC(obs),T ,ZC(obs),T ) denote the vector of continuous variables that are always
observed on each individual and {X(miss),T ,Z(miss),T } the missing components of {X,Z}. Under the
MAR mechanism, define the selection probability

π(Vi) = P(Δi = 1|Yi,Xi,Zi) = P(Δi = 1|Vi).

3.1. Kernel-Based Weighting Estimator of a MZIP Model

Let D = (X(obs),T ,Z(obs),T ) and d ∈ {d1, d2, . . . , dm} denote the distinct values of the D. We
consider π̂(y, d) a Nadaraya–Watston (N-W) [22, 24] type estimator of π(y, d) defined by

π̂(y, d) =

∑n
k=1ΔkKh(Yk = y,Dk − d)
∑n

i=1 Kh(Yi = y,Di − d)
,

where Kh is a kernel function and h is a bandwidth satisfying some conditions stated in Wang [23]. The
resulting semiparametric kernel-assisted weighting (SIPWK) estimator θ̂wsk

n of θ in models 2.1 and 2.2
is the solution of the equation

Uw,n(θ, π̂) =
1√
n

n∑

i=1

Δi

π̂(Yi,Di)
l̇i(θ) = 0. (3.1)

In the following section, we present another weighted semiparametric estimation of a MZIP regression
model.

3.2. Semiparametric IPW (SIPW) Estimator of a MZIP Model

We recall that SC = (XC(obs),T ,ZC(obs),T ) is the set of observed continuous covariates. Inspired
by Jenks’ method [26], we discretize this set. Using Herbert’s method [25], we obtain the number of
optimal classes. Jenk’s method is based on the similarity principle. The method minimizes the intraclass
variance. This method allows to have new categorical covariates S′,D.

Let sD1 , s
D
2 , . . . , s

D
m denote the distinct values of the SD

i s, s′,D1 , s′,D2 , . . . , s′,Dm denote the distinct values
of the S′,Ds. The nonparametric estimator of π(y, sD, s′,D) is given by the following expression:

π̂(y, sD, s′,D) =

∑n
k=1ΔkI(Yk = y,SD

k = sD,S′,D
k = s′,D)

∑n
i=1 I(Yi = y,SD

i = sD,S′,D
i = s′,D)

,

where y = 0, 1, 2, . . ., sD ∈ {sD1 , sD2 , . . . , sDm} and s′,D ∈ {s′,D1 , s′,D2 , . . . , s′,Dm }.
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Thus, in this context, the SIPW estimator θ̂ws
n of θ in models 2.1 and 2.2 is the solution of the equation

1√
n

n∑

i=1

Δi

π̂(Yi,SD
i ,S

′,D
i )

l̇i(θ) = 0. (3.2)

We study the asymptotic properties of θ̂Fn and θ̂ws
n in the following section.

3.3. Asymptotic Results

To establish the asymptotic properties of θ̂Fn and θ̂ws
n we give conditions of regularity.

H1. The true parameter value θ0 := (γT0 , α
T
0 )

T lies in the interior of some known compact set of
R
p × R

q.

H2. Let supp(SD) denote’s the support of SD and supp(S′,D) denote’s the support of S′,D. Assume
supp(SD) and supp(S′,D) does not depend on θ. Furthermore, for any y = 0, 1, . . . , for sD ∈
supp(SD) and for s′,D ∈ supp(S′,D), the selection probability π(y, sD, s′,D) > 0.

H3. E
[
l̇i(θ)l̇i(θ)T

π(Vi)

]
is finite and positive definite in neighborhood of the true θ.

H4. In a neighborhood of the true θ, the first and second derivatives of UF,n(θ) with respect to θ exist
almost surely and are uniformly bounded above by a fonction of (Y,X,Z), whose expectations
exist.

H5. The first derivatives of Uw,n(θ, π) with respect to θ exist almost surely in a neighborhood of θ0.
Additionally, in such a neighborhood, these first derivatives are uniformly bounded above by a
function of (Y,X,Z), whose expectations exist.

The asymptotic properties of θ̂Fn and θ̂ws
n are stated in Theorems 1 and 2, respectively. The detailed of

proofs of Theorem 1 in the Appendix A and Theorem 2 in the Appendix B.

Before studying the asymptotic properties of the estimators, we define by

Σn(θ) = −n−1/2 ∂UF,n

∂θT
= − 1

n

n∑

i=1

{
∂2li(θ)

∂θ∂θT

}

and QF (θ0) = E

[
l̇1(θ0)l̇1(θ0)

T
]
.

Because each component of Σn(θ) is a mean of independent and identically distributed random variables,

we have E [Σn(θ)] = E

[
−∂2l1(θ)

∂θ∂θT

]
= Σ(θ).

Theorem 1. Assume that conditions (H1), (H2), and (H4) hold. Then θ̂Fn converges in probabil-
ity to θ0, as n → ∞ and

√
n(θ̂Fn − θ0) has an asymptotic normal distribution with mean zero and

covariance matrix ΔF , with ΔF := Σ(θ0)
−1QF (θ0)[Σ(θ0)

−1]T , where QF (θ) = E

[
l̇1(θ)l̇1(θ)

T
]

.

Since the inverse of the Fisher information matrix is the variance of the score function, we can have
Σ(θ0) = QF (θ0). Finally ΔF = Σ(θ0)

−1.

Theorem 2. Assume that conditions (H1), (H2), and (H4) hold. Then θ̂ws
n converges in proba-

bility to θ0, as n → ∞ and
√
n(θ̂ws

n − θ0) has an asymptotic normal distribution with mean zero
and covariance matrix Δws, with Δws := Σ(θ0)

−1{Ω3(θ0, π)− [Ω4(θ0, π)− Ω5(θ0, π)]}[Σ(θ0)−1]T ,

where Ω3(θ0, π) = E

[
l̇i(θ0)l̇i(θ0)

T

π(Yi,SD
i ,S′,D

i )

]

, Ω4(θ0, π) = E

[
l̇∗i (θ0)l̇

∗
i (θ0)

T

π(Yi,SD
i ,S′,D

i )

]

, Ω5(θ0, π) = E

[
l̇∗i (θ0)l̇

∗
i (θ0)

T
]

, and

l̇∗i (θ0) = E

[
l̇i(θ0)|Yi,S

D
i ,S

′,D
i

]
.
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4. SIMULATIONS STUDY

In this section, we study the performances under various conditions of the following estimators:

• θ̂Fn the maximum likelihood estimator obtained by solving the equation UF,n(θ) = 0where UF,n(θ)
is defined in 2.3.

• θ̂wsk
n the SIPWK estimator obtained by solving the Eq. (3.1).

• θ̂ws
n the SIPW estimator obtained by solving the Eq. (3.2).

In this numerical study, we consider samples of size n = 2000 and 1000.

logit(ψi) = γ1Zi1 + γ2Zi2 + γ3Zi3 + γ4Zi4,

log(νi) = α1Xi1 + α2Xi2 + α3Xi3, (4.1)

where Xi1 = Zi1 = 1, Zi2 = Xi2, and Zi2, Zi3, Zi4, Xi3, follows, respectively, the Gaussian distribu-
tion N(0, 1.7), Poisson distribution P (0.5), exponential distribution E(1), and binomial distribution
B(1, 0.5). The regression parameter α is chosen as follows α = (1.2, 0.2,−0.7)T . The regression
parameter γ is chosen as follows

• case 1: γ = (−1, 0.4, 0.3, 0.45)T ,

• case 2: γ = (−1, 0.62, 0.3, 0.8)T .

In case 1 (respectively case 2), the average percentage of zero inflation in this simulation is 41%
(respectively 65%). In the variable Zi4, we assume that the data are missing. The average fraction of
missing data (AFMD) in the simulated samples is equal to 15 and 30%. We used a multiplicative kermel
(the Dirac discrete kermel for discrete variables and the Gaussian kernel for the continuous variable)
for the kernel-based weighting estimator of an MZIP model. Finally, for each configuration (sample
size, proportions of zero inflation and missing data), we simulate N = 1000 samples and calculate θ̂ws

n

and θ̂wsk
n . We use the statistical software R.3.5.2 to perform our simulations and the maxlik package

(see Henningsen et al. [19]) to solve Eqs. (2.3), (3.1). We compute the bias of the estimates γ̂j,n
and α̂k,n. We obtain the bias, the standard deviation (SD) and the mean square error (RMSE) for
each estimator γ̂j,n(j = 1, ..., 4) and α̂k,n(k = 1, ..., 3). For comparison purposes, we also provide the
results that would be obtained if there were no missing covariates. In this case, the MLE is obtained
by solving the score equation (2.2) (FD estimator). In Table 1, we present the results for n = 500,
41% (top) and 65% (bottom) zero inflation and mean missing data 15 and 30%. Table 2, we present
the results for n = 1000, 41% (top) and 65% (bottom) zero inflation and mean missing data 15 and
30%. Table 3 provides the results for n = 2000, 41% (top) and 65% (bottom) zero inflation and the
average missing data 15 and 30%. The Tables 1–3 show that both methods perform well, as the results
obtained with both methods are close to the base case. The results also show that the bias and RMSE
of the proposed method are generally better than the bias and RMSE of the SIPWK method. Let us
now examine the performance of the proposed estimator. The results in Tables 1–3 show that the bias,
standard deviation, and RMSE decrease as the sample size increases and the proportion of individuals
with missing covariates decreases. Furthermore, the bias remains reasonable even with 30% missing
data. The estimator θ̂Fn is obviously better than θ̂wsk

n and θ̂wsk
n , but FD is only possible in the absence of

missing data.

MATHEMATICAL METHODS OF STATISTICS Vol. 32 No. 4 2023



246 AMANI et al.

Table 1. Simulation results for n = 500, zero inflation: 41% (top) and 65% (bottom)

AFMD
γ̂n α̂n

γ̂1,n γ̂2,n γ̂3,n γ̂4,n α̂1,n α̂2,n α̂3,n

FD

Bias –0.0133 0.0038 0.0019 0.0068 –0.0026 –0.0005 –0.0003

SD 0.1379 0.0925 0.0747 0.0524 0.0527 0.0479 0.0657

RMSE 0.1385 0.0926 0.0747 0.0528 0.0527 0.0479 0.0657

SIPWK 0.15

Bias –0.0029 0.0120 0.0057 0.0058 –0.0109 –0.0082 –0.0031

SD 0.1422 0.1008 0.0803 0.0576 0.0555 0.0525 0.0710

RMSE 0.1422 0.1015 0.0805 0.0578 0.0565 0.0531 0.0711

SIPW 0.15

Bias –0.0142 0.0046 0.0011 0.0075 –0.0026 –0.0007 –0.0017

SD 0.1502 0.1012 0.0817 0.0573 0.0577 0.0524 0.0730

RMSE 0.1508 0.1013 0.0817 0.0577 0.0577 0.0524 0.0730

SIPWK 0.30

Bias 0.0097 0.0207 0.0110 0.0057 –0.0226 –0.0157 –0.0061

SD 0.1521 0.1080 0.0860 0.0657 0.0581 0.0567 0.0754

RMSE 0.1523 0.1099 0.0867 0.0659 0.0623 0.0588 0.0756

SIPW 0.30

Bias –0.0149 0.0062 0.0008 0.0087 –0.0048 –0.0004 –0.0005

SD 0.1702 0.1107 0.0898 0.0645 0.0635 0.0572 0.0787

RMSE 0.1707 0.1108 0.0897 0.0651 0.0636 0.0572 0.0787

FD

Bias –0.0202 0.0020 0.0054 0.0083 0.0008 0.0021 0.0009

SD 0.1362 0.0898 0.0675 0.0530 0.0568 0.0544 0.0656

RMSE 0.1376 0.0898 0.0677 0.0536 0.0567 0.0544 0.0656

SIPWK 0.15

Bias -0.0040 0.0144 0.0104 0.0079 –0.0123 –0.0085 –0.0034

SD 0.1433 0.0972 0.0747 0.0583 0.0594 0.0582 0.0704

RMSE 0.1433 0.0983 0.0754 0.0588 0.0606 0.0588 0.0704

SIPW 0.15

Bias –0.0194 0.0030 0.0061 0.0092 0.0003 0.0015 –0.0019

SD 0.1503 0.0974 0.0751 0.0586 0.0623 0.0583 0.0716

RMSE 0.1515 0.0974 0.0753 0.059 0.0623 0.0583 0.0716
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Table 1. (Contd.)

AFMD
γ̂n α̂n

γ̂1,n γ̂2,n γ̂3,n γ̂4,n α̂1,n α̂2,n α̂3,n

SIPWK 0.30

Bias 0.0179 0.0289 0.0154 0.0086 –0.0294 –0.0213 –0.0068

SD 0.1523 0.1077 0.0833 0.0662 0.0636 0.0646 0.0776

RMSE 0.1532 0.1115 0.0847 0.0667 0.0700 0.0680 0.0779

SIPW 0.30

Bias –0.0204 0.0034 0.0059 0.0111 0.0003 0.0015 –0.0024

SD 0.1664 0.1084 0.0851 0.0665 0.0694 0.0645 0.0794

RMSE 0.1675 0.1084 0.0853 0.0674 0.0693 0.0645 0.0794

5. APPLICATION

In this section, we describe an application of the MZIP model to NMES1988 data obtained from
the National Medical Expenditure Survey (NMES) conducted in 1987–1988. We analyze the variable
ofnp (number of consultations with a non-physician health professional in a practice) by the MZIP.
The proportion of zero in the observations of this variable is equal to 0.6818. This very high proportion
suggest a situation of inflation of zeros. For each of the individuals i (i = 1 . . . n = 4406) of the sample,
let Yi denote the number of consultations a non-physician health professional in a practice.

• ψi represents the probability that patient i will give up in such a way systematic to consult a
non-physician professional.

• νi represents the average number of consultations with a health professional not doctor, for a
patient i.

To model the marginal mean and zero-inflation parameters νi and ψi defined in (2.2), where Zi and Xi are
the set of covariates, we proceeded as follows. First, we fitted an MZIP regression model incorporating
all the covariates available in (2.2), i.e., taking Xi = Zi for each i. Next, Wald tests were used to select
the relevant covariates in the sub-models (2.2). Through this procedure, we identify three significant
predictors included in νi (chronic, gender, school) and six significant predictors included in ψi (chronic,
medicaid, age, income, gender, school). The significant covariates are gender (1 for female, 0 for male),
age (in years, divided by 10), school (number of years of education), income (in 10 000 dollars), chronic
diseases (cancer, arthritis, diabetes...), and medicaid (a binary variable indicating whether the individual
is covered by medicaid or not). The covariate age (in years, divided by 10) was discretized before applying
the proposed method. We therefore model ψi and νi as follows:

logit(ψi) = γ1inter + γ2chronic + γ3medicaid + γ4age + γ5income + γ6gender + γ7school, (5.1)

log(νi) = α1inter + α2chronic + α3gender + α4school. (5.2)

We simulated 15% (moderate) and 30% (high) proportions of missing data in the “income” variable,
respectively. Indeed, among the covariates, the “income” variable is the most likely to have missing
data, as it is more sensitive and confidential information. Respondents are often reluctant to disclose
their income, which can lead to higher rates of missing data for this variable. According to Mishra et
al. [29], National Health and Nutrition Examination Survey, the rate of missing data in the “income”
variable is often high, reaching or exceeding 15%. Tables 4 and 5 show the estimation results for the
case with no missing data (FD) and 15% missing data, followed by the case with no missing data (FD)
and 30% missing data, respectively. We can say that the proposed method is robust because when
the percentage of missing data increases, the covariates remain significant and the coefficients keep
the same signs as in the reference case (FD). We can state that the variables of Medicaid status and
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Table 2. Simulation results for n = 1000, zero inflation: 41% (top) and 65% (bottom)

AFMD
γ̂n α̂n

γ̂1,n γ̂2,n γ̂3,n γ̂4,n α̂1,n α̂2,n α̂3,n

FD

Bias –0.0230 0.0075 0.0066 0.0053 –0.0053 0.0001 –0.0047

SD 0.2479 0.0839 0.1005 0.0754 0.0784 0.0470 0.1025

RMSE 0.2488 0.0842 0.1006 0.075 0.0785 0.0470 0.1025

SIPWK 0.15

Bias –0.0421 0.0307 0.0123 0.0066 –0.0101 –0.0131 –0.0059

SD 0.2646 0.0877 0.1130 0.0828 0.0800 0.0492 0.1110

RMSE 0.2678 0.0928 0.1137 0.0830 0.0806 0.0509 0.1111

SIPW 0.15

Bias –0.0355 0.0137 0.0091 0.0067 –0.0047 –0.0023 –0.0055

SD 0.2685 0.0894 0.1109 0.0822 0.0842 0.0498 0.1098

RMSE 0.2707 0.0904 0.1112 0.0824 0.0843 0.0499 0.1099

SIPWK 0.30

Bias –0.0661 0.0587 0.0165 0.0090 –0.0195 –0.0263 –0.0075

SD 0.2963 0.0965 0.1292 0.0978 0.0847 0.0519 0.1224

RMSE 0.3034 0.1129 0.1302 0.0982 0.0869 0.0582 0.1226

SIPW 0.30

Bias –0.0407 0.0166 0.0094 0.0075 –0.0083 –0.0015 –0.0053

SD 0.3148 0.1042 0.1262 0.0963 0.0941 0.0540 0.1221

RMSE 0.3173 0.1055 0.1265 0.0966 0.0945 0.0540 0.1221

FD

Bias –0.0143 0.0057 0.0058 0.0097 –0.0089 0.0025 –0.0036

SD 0.1836 0.0904 0.0845 0.0748 0.0974 0.0664 0.1072

RMSE 0.1840 0.0905 0.0847 0.0754 0.0978 0.0664 0.1072

SIPWK 0.15

Bias –0.0126 0.0352 0.0121 0.0163 –.0309 –0.0178 –0.0068

SD 0.1986 0.0974 0.0981 0.0869 0.1018 0.0711 0.1186

RMSE 0.1989 0.1035 0.0988 0.0884 0.1063 0.0733 0.1187

SIPW 0.15

Bias –0.0207 0.0074 0.0076 0.0135 –0.0098 0.0034 –0.0041

SD 0.2033 0.1007 0.0972 0.084 0.1048 0.0731 0.1177

RMSE 0.2043 0.1009 0.0974 0.0855 0.1052 0.0731 0.1177

gender are identified as the most influential factors in the decision to never use consultations with a
non-physician health care professional. Medicaid recipients are more likely to forego a non-physician
health care professional during an office visit. One explanation is that patients covered by Medicaid can
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Table 2. (Contd.)

AFMD
γ̂n α̂n

γ̂1,n γ̂2,n γ̂3,n γ̂4,n α̂1,n α̂2,n α̂3,n

SIPWK 0.30

Bias –0.0082 0.0696 0.0224 0.0217 –0.0618 –0.0401 –0.0077

SD 0.2219 0.1088 0.1147 0.1010 0.1112 0.0777 0.1366

RMSE 0.2219 0.1291 0.1168 0.1032 0.1272 0.0875 0.1368

SIPW 0.30

Bias –0.0266 0.0089 0.0110 0.0163 –0.0127 0.0045 –0.0012

SD 0.2314 0.1143 0.1110 0.0973 0.1209 0.0818 0.1337

RMSE 0.2328 0.1145 0.1115 0.0986 0.1215 0.0819 0.1337

limit their consultations to those that are necessary, i.e., not see a doctor, given that Medicaid is health
insurance for the less well-off.

The probability of never using a doctor decreases with chronic, income, school, and age. The
probability of never using a non-physician health care professional in a medical office decreases with
the level of education because better-informed patients may tend to diversify their use of care. This
probability decreases as health status worsens (in part because patients with worsening health status
tend to favor visits to health professionals). This probability decreases with income because patients
with higher incomes prefer to visit a health care professional.

The number of chronic illnesses and the level of education are the variables that most influence
the average number consultations with non-physician healthcare professionals because patients with
chronic conditions and those with higher levels of education visit regularly.

6. CONCLUSIONS

In this article, we have proposed a method for estimating the parameters of the MZIP model with
MAR covariates. We compare the performance of this estimator with that of the kernel-assisted
weighted estimator. The analysis of the numerical results concludes that the proposed θ̂ws

n estimator and
the θ̂wsk

n estimator has a good performance. However, the simulation results suggest that the proposed
method is more efficient than the kernel-assisted weighting method. The proposed SIPW estimator was
used to analyze data from the U.S. public health economics NMES1988. The results of this analysis
confirm the robustness of the proposed SIPW estimator.

In this paper, we assume that our data are MAR. But the missing data model is not monotonic in
many practical situations. Adapting this approach to non-monotonic missing data in MZIP regression
deserves further research.

Appendix A

PROOFS OF ASYMPTOTIC RESULTS

6.1. Proof of Theorem 1

We prove consistency of θ̂Fn by checking the conditions of the inverse function theorem of Foutz [13].
These conditions are proved in a series of technical lemmas.

Lemma 1. As n → ∞, n−1/2UF,n(θ0) converges in probability to 0.
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Table 3. Simulation results for n = 2000, zero inflation: 41% (top) and 65% (bottom)

AFMD
γ̂n α̂n

γ̂1,n γ̂2,n γ̂3,n γ̂4,n α̂1,n α̂2,n α̂3,n

FD

Bias –0.0039 0.0006 0.0009 0.0005 0.0001 –0.0002 4e-04

SD 0.0688 0.0259 0.0343 0.0231 0.0270 0.0154 0.0311

RMSE 0.0689 0.0259 0.0343 0.0231 0.0269 0.0153 0.0311

SIPWK 0.15

Bias 0.0031 0.0046 0.0014 –0.0002 –0.0047 –0.0039 4e-04

SD 0.0712 0.0275 0.0373 0.0255 0.0280 0.0162 0.0342

RMSE 0.0712 0.0279 0.0373 0.0255 0.0283 0.0167 0.0342

SIPW 0.15

Bias –0.0054 0.0009 0.0009 0.0009 0.0004 –0.0005 9e-04

SD 0.0751 0.0279 0.0378 0.0254 0.0294 0.0165 0.0343

RMSE 0.0752 0.0279 0.0378 0.0254 0.0294 0.0165 0.0343

SIPWK 0.30

Bias –0.0434 0.0357 0.0090 0.0069 –0.0070 –0.0189 –0.0038

SD 0.1963 0.0674 0.0829 0.0605 0.0633 0.0369 0.0850

RMSE 0.2010 0.0762 0.0833 0.0608 0.0637 0.0415 0.0850

SIPW 0.30

Bias –0.0238 0.0040 0.0058 0.0066 –0.0034 0.0014 0.0003

SD 0.2082 0.0722 0.0833 0.0591 0.0686 0.0383 0.0848

RMSE 0.2095 0.0723 0.0834 0.0594 0.0687 0.0383 0.0847

FD

Bias –0.0120 0.0051 0.0006 0.0049 –0.0024 –0.0011 –0.0024

SD 0.1316 0.0639 0.0584 0.0465 0.0699 0.0474 0.0735

RMSE 0.1321 0.0640 0.0584 0.0468 0.0699 0.0474 0.0735

SIPWK 0.15

Bias –0.0089 0.0269 0.0047 0.0072 –0.0166 –0.0184 –0.0050

SD 0.1404 0.0677 0.0666 0.0532 0.0727 0.0503 0.0825

RMSE 0.1406 0.0728 0.0667 0.0537 0.0746 0.0535 0.0826

SIPW 0.15

Bias –0.0175 0.0064 0.0024 0.0065 –0.0011 –0.0017 –0.0027

SD 0.1461 0.0708 0.0653 0.0526 0.0756 0.0525 0.0818

RMSE 0.1470 0.0711 0.0653 0.0530 0.0756 0.0525 0.0818
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Table 3. (Contd.)

AFMD
γ̂n α̂n

γ̂1,n γ̂2,n γ̂3,n γ̂4,n α̂1,n α̂2,n α̂3,n

SIPWK 0.30

Bias –0.0063 0.0539 0.0080 0.0115 –0.0366 –0.0377 –0.0098

SD 0.1548 0.0727 0.0781 0.0626 0.0781 0.0534 0.0934

RMSE 0.1549 0.0905 0.0784 0.0636 0.0862 0.0654 0.0939

SIPW 0.30

Bias –0.0223 0.0082 0.0026 0.0086 –0.0018 –0.0013 –0.0043

SD 0.1619 0.0774 0.0747 0.0613 0.0825 0.0571 0.0922

RMSE 0.1633 0.0778 0.0747 0.0619 0.0825 0.0571 0.0922

Table 4. Analysis of health care data with 15% missing data

Variable
FD SIPW

θ̂F,n S.E. P-value θ̂Ws S.E. P-value

Intercept γ̂1 2.3063 0.2732 2e-16 2.2755 0.2543 2e-16

Chronic γ̂2 –0.1018 0.0224 5.58e-06 –0.0967 0.0237 4.44e-05

Medicaid γ̂3 0.2980 0.0598 6.41e-07 0.3473 0.0623 2.49e-08

Age γ̂4 –0.1650 0.0279 3.58e-09 –.1692 0.0286 3.35e-09

Income γ̂5 –.0221 0.0066 0.000949 –0.0240 0.0075 0.0015

Gender γ̂6 0.2836 0.0683 3.34e-05 0.2957 0.0709 3.08e-05

School γ̂7 –0.0787 0.0089 2e-16 –0.0730 0.0090 5.59e-16

Intercept α̂1 –0.3475 0.1154 0.002602 –0.4896 0.1195 4.22e-05

Chronic α̂2 0.1043 0.0166 3.54e-10 0.1036 0.0180 8.91e-09

Gender α̂3 –0.1426 0.0513 0.005459 –0.1387 0.0546 0.0111

School α̂4 0.0782 0.0067 2e-16 0.0823 0.0070 2e-16

Proof of Lemma 1. Decompose n−1/2UF,n(θ0) as, for every i = 1, . . . , n, we have

n−1/2UF,n(θ0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

n

n∑

i=1

Zi1Bi(θ0)

...

1

n

n∑

i=1

ZiqBi(θ0)

1

n

n∑

i=1

Xi1Ai(θ0)

...

1

n

n∑

i=1

XipAi(θ0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Table 5. Analysis of health care data with 30% missing data

Variable
FD SIPW

θ̂F,n S.E. P-value θ̂Ws S.E. P-value

Intercept γ̂1 2.3063 0.2732 2e-16 2.5796 0.3164 3.60e-16

Chronic γ̂2 –0.1018 0.0224 5.58e-06 –0.1158 0.0261 9.75e-06

Medicaid γ̂3 0.2980 0.0598 6.41e-07 0.3153 0.0717 1.10e-05

Age γ̂4 –0.1650 0.0279 3.58e-09 –0.1755 0.0326 7.57e-08

Income γ̂5 –0.0221 0.0066 0.000949 –0.0140 0.0073 0.05381

Gender γ̂6 0.2836 0.0683 3.34e-05 0.2647 0.0745 0.00038

School γ̂7 –0.0787 0.0089 2e-16 –0.0817 0.0103 2.52e-15

Intercept α̂1 –0.3475 0.1154 0.002602 –0.6187 0.1356 5.12e-06

Chronic α̂2 0.1043 0.0166 3.54e-10 0.1113 0.0200 2.70e-08

Gender α̂3 –0.1426 0.0513 0.005459 –0.1387 0.0586 0.01790

School α̂4 0.0782 0.0067 2e-16 0.0832 0.0081 2e-16

For i = 1, . . . , n and l = 1, . . . , q;

E [ZilBi(θ0)] = E [E [ZilBi(θ0)|Xi,Zi]] = E [ZilE [Bi(θ0)|Xi,Zi]] .

We have

E[Bi(θ0)|Xi,Zi] =
E(Ji|Xi,Zi)e

ZT
i γ0

(
ehi(θ0) − eX

T
i α0

)

eZ
T
i γ0+hi(θ0) + 1

+
eZ

T
i γ0(E(Yi|Xi,Zi)− 1)

1 + eZ
T
i γ0

− [1− E(Ji|Xi,Zi)] e
XT

i α0+ZT
i γ0 .

Now, we have
E(Ji|Xi,Zi) = P(Yi = 0|Xi,Zi), E(Yi|Xi,Zi) = νi and E(1− Ji|Xi,Zi) = P(Yi > 0|Xi,Zi). It fol-

lows that E[ZilBi(θ0)] = 0.
Using similarly arguments we prove that, for every i = 1, . . . , n and j = 1, . . . , p, E[XijAi(θ0)] = 0.
Now, for every i = 1, . . . , n and l = 1, . . . , q, we have

var (ZilBi(θ0)) ≤ E
(
Z2
ilB

2
i (θ0)

)
.

By H3, we have E
(
Z2
ilB

2
i (θ0)

)
< ∞.

Using similar arguments, we prove var (XijAi(θ0)) < ∞ for every i = 1, . . . , n and j = 1, . . . , p.

Thus, by the weak law of large numbers, n−1/2UF,n(θ0) converges in probability to 0, which
concludes the proof.

Lemma 2. As n → ∞, n−1/2 ∂UF,n(θ)

∂θT
converges in probability to a fixed function −Σ(θ),

uniformly in an open neighbourhood of θ0.

Proof of Lemma 2: Let ŨF,n(θ) := n−1/2 ∂UF,n(θ)

∂θT
, and νθ0 be an open neighbourhood of θ0. Let

θ ∈ νθ0 .

By the weak law of large numbers and H3, ŨF,n(θ) =
1
n

∑n
i=1

{
∂2li(θ)
∂θ∂θT

}
converges in probability to

the matrix −Σ(θ) as n → ∞, where Σ(θ) = E

[
−∂2l1(θ)

∂θ∂θT

]
.

By conditions H4, we prove that the convergence of ŨF,n(θ) to −Σ(θ) is uniform on νθ0 .
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The conditions inverse function theorem of Foutz [13] are verified. Finally θ̂n converges in probability
to θ0.

Now, we prove that θ̂Fn is asymptotically Gaussian. To do this, it follows by a Taylor’s expansion of
UF,n(θ̂F,n) at θ0 yields

0 = UF,n(θ0) + ŨF,n(θ0)
√
n(θ̂Fn − θ0) + op(1)

.

By calculations var(UF,n(θ0)) =
1
n

∑n
i=1 E

(
l̇i(θ0)l̇i(θ0)

T
)
= QF (θ0).

Finally, by Lemma 2 and Slusky’s theorem,
√
n(θ̂Fn − θ0) converges in distribution to the Gaussian

vector of mean zero and variance ΔF , where ΔF is defined in Theorem 1.

Appendix B

6.2. Proof of Theorem 2

We prove consistency of θ̂ws
n by checking the conditions of the inverse function theorem of Foutz [13].

These conditions are proved in a series of technical lemmas.

Lemma 3. As n → ∞, n−1/2Uw,n(θ0, π̂) converges in probability to 0.

Proof of Lemma 3. We decompose n−1/2Uw,n(θ0, π̂) as

n−1/2Uws,n(θ0, π̂) = (n−1/2Uws,n(θ0, π̂)− n−1/2Uws,n(θ0, π)) + n−1/2Uws,n(θ0, π). (6.1)

Considering the first term of this decomposition.

Let S′
i = (SD

i ,S
′,D
i ) and Gn(θ0, π) = n−1/2Uws,n(θ0, π̂)− n−1/2Uws,n(θ0, π), we have

Gn(θ0, π) =
1

n

n∑

i=1

Δi

(
1

π̂(Yi,S′
i)

− 1

π(Yi,S′
i)

)

l̇i(θ0),

=
1

n

n∑

i=1

Δi

[
π̂(Yi,S

′
i)− π(Yi,S

′
i)

π2(Yi,S′
i)

+OP

(
(π̂(Yi,S

′
i)− π(Yi,S

′
i))

2
)
]

l̇i(θ0),

=
1

n

n∑

i=1

Δi

⎡

⎣

∑n
k=1 ΔkI(Yk=y,S′

k=s′)
∑n

i=1 I(Yi=y,S′
i=s′) − π(Yi,S

′
i)

π2(Yi,S
′
i)

⎤

⎦ l̇i(θ0) + o∗p

(
1√
n

)

,

=
1

n

n∑

i=1

Δi

[
1
n

∑n
i=1 [Δk − π(Yi,S

′
i] I(Yk = Yi,S

′
k = S′

i)

π2(Yi,S′
i)P (Y = Yi,S′ = S′

i)
+Op

(
1

n

)]

× l̇i(θ0) + o∗p

(
1√
n

)

,

=
1

n2

n∑

i=1

n∑

k=1

[
[Δi − π(Yi,S

′
i)] [Δk − π(Yi,S

′
i)] I(Yk = Yi,S

′
k = S

′
i)

π2(Yi,S
′
i)P (Y = Yi,S′ = S′

i)

]

l̇i(θ0)

+
1

n2

n∑

i=1

n∑

k=1

[
[Δk − π(Yi,S

′
i)] I(Yk = Yi,S

′
k = S′

i)

π(Yi,S′
i)P (Y = Yi,S′ = S′

i)

]

l̇i(θ0) + o∗p

(
1√
n

)

,

were o∗p(an) denotes a matrix whose components are uniformly op(an). By the weak law of large numbers
we have

1

n

n∑

k=1

[
[Δk − π(Yi,S

′
i)] I(Yk = Yi,S

′
k = S′

i)

π(Yi,S
′
i)P (Y = Yi,S′ = S′

i)

]
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converges in probability to 0 as n → ∞.
Using conditions H3, we prove that l̇i(θ0) is finite a.s. Finally, by Slutsky’s theorem

Gn(θ0, π) =
1

n2

n∑

i=1

n∑

k=1

[
[Δi − π(Yi,S

′
i)] [Δk − π(Yi,S

′
i)] I(Yk = Yi,S

′
k = S′

i)

π2
i (Yi,S

′
i)P (Y = Yi,S′ = S′

i)

]

× l̇i(θ0) +
1

n2

n∑

i=1

n∑

k=1

[
[Δk − π(Yi,S

′
i)] I(Yk = Yi,S

′
k = S′

i)

π(Yi,S′
i)P (Y = Yi,S′ = S′

i)

]

l̇i(θ0)

converges in probability to 0 as n → ∞.
Next, consider the term n−1/2Uws,n(θ0, π(Yi,S

′
i)) in decomposition (6.1).

We show that n−1/2Uws,n(θ0, π(Yi,S
′
i)) converges in probability to 0 as n → ∞.

For every i = 1, . . . , n, we have

n−1/2Uws,n(θ0, π(Yi,S
′
i)) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

n

n∑

i=1

Δi

π(Yi,S′
i)
Zi1Bi(θ0)

...

1

n

n∑

i=1

Δi

π(Yi,S
′
i)
ZiqBi(θ0)

1

n

n∑

i=1

Δi

π(Yi,S′
i)
Xi1Ai(θ0)

...

1

n

n∑

i=1

Δi

π(Yi,S
′
i)
XipAi(θ0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For i = 1, . . . , n and l = 1, . . . , q;

E

[
Δi

π(Yi,S′
i)
ZilBi(θ0)

]

= E

[

E

[
Δi

π(Yi,S′
i)
Zi1Bi(θ0)|Yi,S

′
i

]]

.

Two cases should be considered, namely: (i) Zil is a component of Zobs and (ii) Zil is a component of
Zmiss. In case (i), we have

E

[

E

[
Δi

π(Yi,S′
i)
ZilBi(θ0)|Yi,S

′
i

]]

= E

[
1

πi(Yi,S′
i)
ZilE[ΔiBi(θ0)|Yi,S

′
i]

]

.

Given Vi = (Yi,S
′
i), ZilBi(θ0) is a function of (Xmiss,Zmiss) only. Thus, by the MAR assumption,

Bi(θ0) and Δi are independent

E

[
1

πi(Yi,S
′
i)
ZilE[ΔiBi(θ0)|Vi]

]

= E

[
1

πi(Yi,S
′
i)
ZilE[Δi|Vi]E[Bi(θ0)|Vi]

]

,

= E [ZilE[Bi(θ0)|Vi]] ,

= E [ZilBi(θ0)] ,

= 0.

In case (ii),

E

[

E

[
Δi

πi(Yi,S′
i)
Zi1Bi(θ0)|Vi

]]

= E

[
1

πi(Yi,S′
i)
E[ΔiZilBi(θ0)|Vi]

]

.

Given Vi, ZilBi(θ0) is a function of (Xmiss,Zmiss) only. Thus, by the MAR assumption, Bi(θ0) and
Δi are independent

E

[
1

πi(Yi,S
′
i)
E[ΔiZilBi(θ0)|Vi]

]

= E

[
1

πi(Yi,S
′
i)
E[Δi|Vi]E[ZilBi(θ0)|Vi]

]

,
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= E[ZilBi(θ0)],

= 0.

It follows that E[ Δi
πi(Yi,S′

i)
ZilBi(θ0)] = 0.

Using similar arguments, we prove that E[ Δi
πi(Yi,S′

i)
XijAi(θ0)] = 0.

Now, for every i = 1, . . . , n and l = 1, . . . , q , we have

var
(

Δi

πi(Yi,S
′
i)
ZilBi(θ0)

)

≤ E

(
Δi

π2
i (Yi,S′

i)
Z2
ilB

2
i (θ0)

)

.

By H3, we have E
(

Δi

π2
i (Yi,S′

i)
Z2
ilB

2
i (θ0)

)
< ∞ .

Using similar arguments, we prove

var
(

Δi

πi(Yi,S
′
i)
XijAi(θ0)

)

< ∞ for every i = 1, . . . , n and j = 1, . . . , p.

Thus, by the weak law of large numbers, n−1/2Uws,n(θ0, π(Yi,S
′
i)) converges in probability to 0 as

n → ∞.
Finally n−1/2Uw,n(θ0, π̂(Yi,S

′
i)) converges to 0, which concludes the proof.

Lemma 4. As n → ∞, n−1/2 ∂Uws,n(θ,π̂)
∂θT

converges in probability to a fixed function −Σ(θ),
uniformly in a neighbourhood of θ0.

Proof of Lemma 4. Let Ūws,n(θ, π̂) := n−1/2 ∂Uws,n(θ,π)
∂θT

and l̈i(θ) =
∂2li(θ)
∂θ∂θT

. We have

Ūws,n(θ, π̂) =
[
Ūws,n(θ, π̂)− Ūws,n(θ, π)

]
+ Ūws,n(θ, π).

Using similary argument in Lemma 4, we have Ūws,n(θ, π̂)− Ūws,n(θ, π) converges in probability to 0.
By the weak law of large numbers, and H3

Ūws,n(θ, π) =
1

n

n∑

i=1

{
Δi

π(Yi,S
′
i)
l̈i(θ)

}

converges in probability to the matrix −Σ(θ) as n → ∞.

By H5, we prove that the convergence of Ũws,n(θ, π̂) to −Σ(θ) is uniform.

The conditions inverse function theorem Foutz [13] are verified. Finally θ̂ws
n converges in probability

to θ0.
Now, we prove that θws

n is asymptotically Gaussian.

It follows by a Taylor’s expansion of Uws,n(θ̂
ws
n , π̂) at (θ0, π̂) yields

0 = Uws,n(θ̂
ws
n , π̂) = Uws,n(θ0, π̂) + Ūws,n(θ, π̂)

√
n(θ̂ws

n − θ0) + op(1),

therefore
√
n(θ̂ws

n − θ0) = −
[
Ūws,n(θ0, π̂)

]−1
Uws,n(θ0, π̂) + op(1),

thus √
n(θ̂ws

n − θ0) = Σ−1(θ0)Uws,n(θ0, π̂) +
[
−Ū−1

ws,n(θ0, π̂)− Σ−1(θ0)
]
Uws,n(θ0, π̂) + op(1).

By calculations,

Var [Uws,n(θ0, π̂)] = Var {Uws,n(θ0, π) + [Uws,n(θ0, π̂)− Uws,n(θ0, π)]} ,
= Var [Uws,n(θ0, π)] + Var [Uws,n(θ0, π̂)− Uws,n(θ0, π)]

+ 2Cov [Uws,n(θ0, π), Uws,n(θ0, π̂)− Uws,n(θ0, π)] ,

Var [Uws,n(θ0, π)] = E

[
l̇i(θ0, π)l̇i(θ0, π)

T

π(Yi,S
′
i)

]

= Ω3(θ0, π).
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Let H(θ0, π) = Uws,n(θ0, π̂)− Uws,n(θ0, π)

H(θ0, π) =
1√
n

n∑

i=1

Δi

(
1

π̂(Yi,S
′
i)

− 1

π(Yi,S
′
i)

)

l̇i(θ0),

= − 1√
n3

n∑

i=1

n∑

k=1

[
[Δi − π(Yi,S

′
i)] [Δk − π(Yi,S

′
i)] I(Yk = Yi,S

′
k = S′

i)

π2(Yi,SтАв
i )P (Y = Yi,S′ = S′

i)

]

l̇i(θ0)

− 1√
n3

n∑

i=1

n∑

k=1

[
[Δk − π(Yi,S

′
i)] I(Yk = Yi,S

′
k = S′

i)

π(Yi,S
′
i)P (Y = Yi,S′ = S′

i)

]

l̇i(θ0) + op(1),

= −Q1n −Q2n + op(1),

where op(an) denotes a column vector whose components are uniformly op(an).

Q1n =
1√
n3

n∑

i=1

n∑

k=1

[
[Δi − π(Yi,S

′
i)] [Δk − π(Yi,S

′
i)] I(Yk = Yi,S

′
k = S′

i)

π2(Yi,S
′
i)P (Y = Yi,S′ = S′

i)

]

l̇i(θ0).

Q2n =
1√
n3

n∑

i=1

n∑

k=1

[
[Δk − π(Yi,S

′
i)] I(Yk = Yi,S

′
k = S′

i)

π(Yi,S′
i)P (Y = Yi,S′ = S′

i)

]

l̇i(θ0).

Let

Pik =

[
[Δi − π(Yi,S

′
i)] [Δk − π(Yi,S

′
i)] I(Yk = Yi,S

′
k = S′

i)

π2(Yi,S
′
i)P (Y = Yi,S′ = S′

i)

]

l̇i(θ0).

In order to show that Q1n = Op(1/
√
n), E(Q1n) = Op(1/

√
n) and Var(Q1n) = O∗

p(1/n) where O∗(an)
and O(an) denote a matrix and column vector whose components are uniformly O(an). It first can be
shown that

E [Pik] = E
[
E(Pik|Yk = Yi,S

′
k = S′

i)
]
=

⎧
⎨

⎩

0 if i �= k

E

[
[1−π(Yi,S′

i)]l̇i(θ0)
πi(Yi,S′

i)

]

if i = k,

and then

E

[
[1− π(Yi,Si)] l̇i(θ0)

π(Yi,S
′
i)

]

= E

{

E

[
[1− π(Yi,S

′
i)] l̇i(θ0)

π(Yi,S
′
i)

|Yi,S
′
i

]}

,

= E

[
[1− π(Yi,S

′
i)]

π(Yi,S′
i)

l̇∗i (θ0)

]

.

Thus, we have

E(Q1n) =
1

n3/2

n∑

k=1

n∑

i=1

E [Pik] =
1

n3/2

n∑

i=1

E

[
[1− π(Yi,S

′
i)]

π(Yi,S′
i)

l̇∗i (θ0)

]

= O(
1√
n
).

We have

Cov(Pij , Pkl) = E

{
⎡

⎣
[Δi − π(Yi,S

′
i)]
[
Δj − π(Yj ,S

′
j)
]
I(Yj = Yi,S

′
j = S′

i)

π2(Yi,S′
i)P (Y = Yi,S′ = S′

i)

⎤

⎦ l̇i(θ0)

×
[
[Δk − π(Yk,S

′
k)] [Δl − π(Yl,S

′
l)] I(Yl = Yk,S

′
l = S′

k)

π2(Yk,S
′
k)P (Y = Yk,S′ = S′

k)

]

l̇k(θ0)
T

}

,

Cov(Pij , Plk) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if k �= i, j and l �= i, j

0 if k �= i, j and l = i or j

E

[
[1−π(Yi,S

′
i)]

2
l̇∗i (θ0)l̇

∗
i (θ0)

T

π2(Yi,S′
i)

]

if i = l and j = k

MATHEMATICAL METHODS OF STATISTICS Vol. 32 No. 4 2023



STATISTICAL INFERENCE IN MARGINALIZED 257

and

Var(Q1n) =
1

n3

{ n∑

i,j

Var(Pij) +

n∑

i,j

[
∑

l=j,k �=j

Cov(Pij , Plk)

+
∑

k=j,l �=j

Cov(Pij , Plk) +
∑

k �=j,l �=j

Cov(Pij , Plk)

]}

,

=
1

n3

{

nE

{
l̇∗i (θ0)l̇

∗
i (θ0)

T

π4(Yi,S′
i)

[

π(Yi,S
′
i)− 4π4(Yi,S

′
i)

+ 6π3(Yi,S
′
i)− 3π4(Yi,S

′
i)

]}

+ n(n− 1)E

{
l̇∗i (θ0)l̇

∗
i (θ0)

T

π4(Yi,S
′
i)

[
1− π(Yi,S

′
i)
]2

}

+ n(n− 1)E

{
l̇∗i (θ0)l̇

∗
i (θ0)

T

π4(Yi,S
′
i)

[
1− π(Yi,S

′
i)
]2

}}

,

= O∗(
1

n2
) +O∗(

1

n
) +O∗(

1

n
)

= O∗(
1

n
).

Therefore, Q1n = Op(
1√
n
), Q2n can be expressed as follows:

Q2n =
1√
n3

n∑

i=1

n∑

k=1

[
[Δk − π(Yi,S

′
i)] I(Yk = Yi,S

′
k = S′

i)

π(Yi,S′
i)P (Y = Yi,S′ = S′

i)

]

l̇i(θ0),

=
1√
n

n∑

k=1

[
Δk − π(Yk,S

′
k)

π(Yk,S
′
k)

][

l̇∗k(θ0) +
1
n

∑n
i=1 I(Yi = Yk,S

′
i = S′

k)l̇i(θ0)

P (Y = Yk,S′ = S′
k)

− l̇∗k(θ0)

]

,

=
1√
n

n∑

k=1

[
Δk − π(Yk,S

′
k)

π(Yk,S
′
k)

]

l̇∗k(θ0) +
1√
n

n∑

k=1

Φk

[
1

n

n∑

i=1

Ψik(θ0)

]

,

where Φk =
Δk−π(Yk,S

′
k)

π(Yk,S
′
k)

and

Ψik(θ0) =
I(Yi = Yk,S

′
i = S′

k)l̇i(θ0)− P (Y = Yk,S
′ = S′

k)l̇
∗
k(θ0)

P (Y = Yk,S′ = S′
k)

.

We have E [Ψik(θ0)|Yi = Yk,S
′
i = S′

k] = 0 and, hence,

E

[

Φk

(
1√
n

n∑

i=1

Ψik(θ0)

)]

=
1√
n

n∑

i=1

E
[
E
(
ΦkΨk(θ0)|Yi = Yk,S

′
i = S′

k

)]
,

= 0.

Let Ψiks(θ0) be the sth element of Ψik(θ0). Then, by Cauchy–Schwarz’s inequality,

E

[

| Φk

(
1√
n

n∑

i=1

Ψiks(θ0)

)

|
]

≤
[
E
(
Φ2
k

)]1/2

⎧
⎨

⎩
E

⎡

⎣
1

n

(
n∑

i=1

Ψiks(θ0)

)2
⎤

⎦

⎫
⎬

⎭

1/2

.

Because for each element of Ψik(θ0)

E

⎡

⎣
1

n

(
n∑

i=1

Ψiks(θ0)

)2
⎤

⎦ =
1

n

⎡

⎣E

(
n∑

i=1

Ψ2
iks(θ0)

)

+

n∑

i=1

n∑

j=1,j �=i

E(Ψiks(θ0)Ψjks(θ0))

⎤

⎦ ,
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= E(Ψ2
iks(θ0)) < ∞,

we can proove E

[
| Φk

(
1√
n

∑n
i=1 Ψik(θ0)

)
|
]
< ∞.

By the weak law of large numbers 1
n

∑n
k=1

{
Φk

[
1√
n

∑n
i=1 Ψik(θ0)

]}
= op(1) . Hence, Q2n can be

expressed as Q2n = 1√
n

∑n
k=1

[
Δk−π(Yk,S

′
k)

π(Yk,S
′
k)

]
l̇∗k(θ0 + op(1).

Var [Uws,n(θ0, π̂)− Uws,n(θ0, π)] = E

⎧
⎨

⎩
E

⎡

⎣
[Δi − π(Yi,S

′
i)]

2
[
l̇∗i (θ0)l̇

∗
i (θ0)

T
]

π2(Yi,S′
i)

|Yi,S
′
i

⎤

⎦

⎫
⎬

⎭

+ o∗(1),

= E

⎡

⎣
[1− π(Yi,S

′
i)]
[
l̇∗i (θ0)l̇

∗
i (θ0)

T
]

π(Yi,S
′
i)

⎤

⎦+ o∗(1)

and let Σ = Cov [Uws,n(θ0, π), Uws,n(θ0, π̂)− Uws,n(θ0, π)], we have

Σ = −E

[
Δi[Δi − π(Yi,S

′
i)]

π2(Yi,S′
i)

l̇∗i (θ0)l̇
∗
i (θ0)

T

]

+ o∗(1),

= −E

[
1− π(Yi,S

′
i)

π(Yi,S′
i)

l̇∗i (θ0)l̇
∗
i (θ0)

T

]

+ o∗(1),

where the notation o∗(an) denotes a matrix whose components are uniformly o∗(an). Finally,

Var [Uws,n(θ0, π̂)] = E

[
l̇i(θ0, π)l̇i(θ0, π)

T

π(Yi,S′
i)

]

+ E

⎡

⎣
[1− π(Yi,S

′
i)]
[
l̇∗i (θ0)l̇

∗
i (θ0)

T
]

π(Yi,S′
i)

⎤

⎦

− 2E

[
1− π(Yi,S

′
i)

π(Yi,S′
i)

l̇∗i (θ0)l̇
∗
i (θ0)

T

]

+ o∗(1),

= Ω3(θ0, π)− [Ω4(θ0, π)− Ω5(θ0, π)] + o∗(1).

Thus, by the central limit theorem, we have Uws,n(θ0, π̂) converges in distribution to the Gaussian vector
of mean zero and variance Ω3(θ0, π)− [Ω4(θ0, π)− Ω5(θ0, π)]. Because

[
−Ū−1

ws,n(θ0, π̂)− Σ−1(θ0)
]

converges in probability to 0, by Slutsky’s theorem
[
−Ū−1

ws,n(θ0, π̂)− Σ−1(θ0)
]
Uws,n(θ0, π̂) converges

in distribution to 0.

Finally, by Lemma 4 and Slutsky’s theorem,
√
n(θ̂ws

n − θ0) converges in distribution to the Gaussian
vector of mean zero and variance

Δws := Σ(θ0)
−1{Ω3(θ0, π)− [Ω4(θ0, π)− Ω5(θ0, π)]}[Σ(θ0)−1]T .
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