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Abstract—Nonparametric regression estimation with Gaussian measurement errors in predictors
is a classical statistical problem. It is well known that the errors dramatically slow down the rate of
regression estimation, and this paper complement that result by presenting a sharp constant. Then
an interesting example of using this sharp constant to discover a new curse of dimensionality in
functional nonparametric regression is presented, and analysis of real data complements the theory.
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1. INTRODUCTION

Consider the following classical nonparametric regression problem with measurement errors in
predictors. We are interested in estimation of regression function g(x) := E{Y |X} over an interval [a, b],
a < b under the mean integrated squared error (MISE) criterion when the predictor X is not observed
directly due to measurement errors. Namely, estimation of the regression g(x) is based on a sample of
size n from pair (Z, Y ) and

Z = X + ση. (1)

Here η is independent from X standard normal random variable and σ > 0. There is a vast literature
devoted to this problem, see [3, 4, 6, 7, 11, 24, 31, 35–37] where further references may be found.

The pathbreaking result in the theory of the nonparametric regression is the optimal rate of MISE
convergence established by Fan and Truong in [10]. Let us formulate that result. Consider a
positive integer α, set f (α)(x) := dαf(x)/dαx, introduce a function class of design densities fX of the
predictor X,

F(α,Q0) := {f : |f (α)(x)| < Q0 < ∞, f(x) > Q−1
0 , x ∈ [a, b]}, (2)

and the Sobolev class of regression functions

S(α,Q) :=

{
g :

b∫
a

[g(α)(x)]2dx ≤ Q

}
. (3)

Consider an oracle who knows a sample of sizen from (Z, Y ) as well as parameter σ in (1), design density
fX and the two function classes. Then the following lower bound holds for the oracle’s estimators g̃,

lim inf
n→∞

[ln(n)]α inf
g̃

sup
fX∈F(α,Q0),g∈S(α,Q)

E

{ b∫
a

(g̃(x)− g(x))2dx

}
> 0. (4)

Further, the rate [ln(n)]−α of the MISE convergence is attainable and accordingly it is called optimal.
This is a remarkable result because it shows that the gaussian measurement error, which frequently
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occurs in applications, slows down the rate of MISE convergence to logarithmic while for the case of no
measurement errors the rate is n−2α/(2α+1). Accordingly, the problem of regression with measurement
errors in predictors is called ill-posed.

The aim of this paper is to complement the rate-optimal lower bound (4) by a sharp bound that reveals
a minimal constant of the MISE convergence and how it depends on variance σ2 of the measurement
error in (1) and parameters of the two function classes considered in (4). The sharp lower bound will be
also complemented by an interesting example of its application in nonparametric functional regression.

The content of the article is as follows. The second section is devoted to the new sharp lower bound,
the example of its application to analysis of functional regression is presented in Section 3, and proofs
can be found in Section 4. Conclusions are in Section 5. While the article is pure theoretical in its
nature, the interested reader can find a practical example of nonparametric functional regression in the
online Supplementary Materials.

2. SHARP LOWER BOUND

We are considering the problem of estimating a regression function g(x) := E{Y |X = x} over
interval [a, b], a < b under the MISE criterion when available data is a sample of size n for a pair of
random variables (Z, Y ) and Z = X + ση is defined in (1). Our aim is to complement the rate-optimal
lower bound (4) by a sharp one.

In addition to function classes F(α,Q0) and S(α,Q), defined in (2) and (3) and used in the
rate-optimal lower bound, let us introduce a sequence of increasing intervals for underlying standard
deviations σ of the measurement errors. Let γn be a positive sequence such that γn ≤ 1 and γn → 0 as
n → ∞, and σ0 is a positive constant. Then we set

Tn := T (n, σ0, γn) := {σ : σ0 ≤ σ ≤ [ln(n)γn]
1/2}. (5)

In what follows on(1) denotes vanishing sequences in n.

Theorem 1. Consider the problem of estimation of regression function g(x) = E{Y |X = x}
based on a sample of size n from (Z, Y ) where Z is defined in (1). Then the following minimax
lower bound holds for the MISE of oracle-estimators,

inf
σ∈T

inf
g̃

sup
fX∈F(α,Q0),g∈S(α,Q)

E

{ b∫
a

[σ−α(g̃(x)− g(x))]2dx

}
≥ Q[ln(n)]−α(1 + on(1)). (6)

Here the infimum in g̃ is over all oracle-estimators g̃ that know data, σ, fX , Tn and the function
classes F(α,Q) and S(α,Q).

Now let us show that the oracle’s lower bound (6) is sharp. To show that we will solve a problem
formulated by Hall and Qui in [18]. The problem and its solution are presented in the following
proposition.

Theorem 2. Consider estimation of a regression function g(x) := E{Y |X = x} over interval
[0, 1]. Predictor X is uniformly distributed on [0, 1], regression function g ∈ S(α,Q) and periodic
with period 1. Available sample of size n is from (Z, Y ) where Z is defined in (1) with known
parameter σ. Set ϕ0(x) = 1, ϕs(x) = 21/2 cos(πsx), s = 1, 2, . . ., θ̂s := n−1

∑n
l=1 Ylϕs(Zl)e

(πσs)2/2

and

ĝ(x) =

Sn∑
s=0

θ̂sϕs(x). (7)

Here Sn is the smallest integer larger than (1/(πσ)[ln(n+ 3)− (ln(ln(n+ 3)))2]1/2. Then

sup
g∈S(α,Q)

Eg

{ 1∫
0

[σ−α(ĝ(x)− g(x))]2

}
≤ Q[ln(n)]−α(1 + on(1). (8)
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Theorem 2 verifies that the lower bound in Theorem 1 is sharp and its constant cannot be increased.
Furthermore, let us stress that the estimator (7) does not depend on smoothness of an estimated
regression function g because it is constructed without using parameters (α,Q). This is an important
conclusion because adaptation to smoothness of regression function is the most complicated problem
in regression analysis. As we see, at least in this matter the measurement errors simplify regression
estimation, and this is a welcome relief.

3. APPLICATION TO NONPARAMETRIC FUNCTIONAL REGRESSION

There is an interesting example of application of the sharp lower bound in nonparametric functional
regression. Let us explain the connection, and the reader interested in functional regression can find
comprehensive reviews in [1, 2, 5, 14, 16, 25, 37]. Consider a pair (X , Y ) where X := {X(t), 0 ≤ t ≤ 1}
is a random function (process, trajectory). The problem is to estimate the nonparametric functional
regression E{Y |X}, but similarly to the classical regression with measurement errors in predictors, the
available sample of size n is from (Z ′, Y ) where

Z ′ :=

{
Z ′(t) =

t∫
0

X(τ)dτ + νB(t), 0 ≤ t ≤ 1

}
, (9)

B(t) is a standard Brownian motion and ν is a positive constant.
A traditional functional regression methodology uses a two-stage procedure when on the first stage

an underlying process X is approximated by a Fourier series of order p := pn → ∞ as n → ∞. Let
us denote the corresponding Fourier coefficients as (U1, U2, . . . , Up). Then the second stage solves a
multivariate regression problem of estimating E{Y |U1 = u1, U2 = u2, Up = up}, which in its turn, to
remedy the curse of multidimensionality, is approximated by an additive regression

q(u1, u2, . . . , up) := q1(u1) + q2(u2) + . . .+ qp(up). (10)

Now we can see a connection between functional regression and classical regression with measure-
ment errors in predictors. Using an orthogonal basis on [0, 1], say the cosine basis, we get from (9) that
in place of Uj we observe

Z ′
j = Uj + νηj, j = 1, 2, . . . , p, (11)

and ηj , j = 1, 2, . . . , p are independent standard normal variables, see [34]. Accordingly, in (10) each
additive component qj is a univariate regression with measurement errors in predictors.

Now we are in a position to explain why the sharp constant is needed for analysis of the additive
regression. On first glance, the additive components look alike and the problem is similar to those
considered in the classical regression theory of additive models. But there is a dramatic difference. Only
to be specific, assume that an underlying trajectory (functional predictor) X(t) is β-fold differentiable
and its Fourier coefficients Uj decrease with the rate j−β , see [7]. Fast decreasing covariates are
highly sought-after in functional regression, but then we are dealing with atypical nonparametric
regression setting where support of Uj vanishes as j → ∞. This is not a setting considered in classical
approximation analysis and nonparametric regression theory where supports for individual variables
are assumed to be comparable and this allows us to introduce a feasible notion of smoothness of a
multivariate function in each direction, see [19, 25, 38]. To remedy the issue, let us rescale each Uj

by multiplying it by jβ and set Xj := jβUj , Zj := jβZ ′
j . Then (11) becomes

Zj = Xj + νjβηj, j = 1, 2, . . . , pn, (12)

and we may approximate E{Y |X1 = x1,X2 = x2,Xpn = xpn} by an additive model

g(x1, x2, . . . , xp) = g1(x1) + g2(x2) + . . .+ gpn(xpn). (13)

The model (12)–(13) allows us to use the same measure of smoothness for all pn functions regardless
of how large pn is. For instance, we can make a traditional assumption that all functions gj are α-fold
continuously differentiable. Further, because pn → ∞ we need to understand how the variance (νjβ)
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affects estimation of gj . The latter makes the functional regression a perfect example for using the sharp
lower bound.

Let us apply results of the previous section to the nonparametric functional model (12)–(13). Recall
that sequence γn is defined above line (5). Our first result is the following sharp lower bound.

Theorem 3. Consider a functional model (12)–(13) and estimation of a particular additive
component gj with j ≤ [ln(n)γn/ν]

1/2β . Then

inf
ǧj

sup
fX∈F(α,Q0),gj∈S(α,Q)

E

{ b∫
a

(ǧj(x)− gj(x))
2dx

}
≥ Q

(νjβ)2α

[ln(n)]α
(1 + o∗n(1)). (14)

Here the infimum is over oracle-estimators ǧj based on data, distribution of X and parameters
(α,Q, β, ν), and o∗n(1) → 0 as n → ∞ uniformly over the considered indexes j. Further, the lower
bound is sharp.

The rate [ln(n)]−α in (14) is well known in the functional regression literature thanks to the above-
mentioned lower bound of [10]. The new here is the factor (traditionally referred to as the “constant")
Q(νjβ)2α which is sharp and quantifies the effect of: (i) Particular additive component in terms of its
index j; (ii) Smoothness of the function-predictor X in terms of the parameter β; (iii) Smoothness of
the univariate regression function gj(x) in terms of the parameter α; (iv) Standard deviation ν of the
Brownian measurement error-process.

The important corollary from Theorem 3 is that even if all additive components gj in (13) have the
same smoothness, for each gj decrease of the MISE slows down by factor j2βα. This phenomenon
defines the new curse of dimensionality in ill-posedness of nonparametric functional regression. To
the best of my knowledge, there is no other example of such a curse in statistical literature. Another
surprising outcome is that the smoother an underlying function-predictor X is (β is larger), the larger
increase in the MISE due to adding an extra covariate. This outcome is in contrary to known results in
nonparametric curve estimation where smoother curves imply faster estimation.

Now let us present an insightful assertion which sheds light on the number p = pn of feasible
additive components in (13). We are considering two possible “extreme" scenarios about the underlying
functions. The first one is when all additive components, regardless of p, are from the same Sobolev
class S(α,Q), that is they all may have the same Sobolev’s power. The second one is when the
p-variate function g(x), x := (x1, . . . , xp) belongs to a p-variate Sobolev class Sp(α,Q) := {g :

g(x) =
∑

j∈Np
θjϕj(x),

∑
j∈Np

[1 +
∑p

i=1(πji)
2α]θ2j ≤ Q, j := (j1, . . . , jp),Np := {0, 1, . . .}p, ϕj(x) :=∏p

i=1 ϕji(xi)} whose discussion can be found in Nikolskii (1975) and Hoffmann and Lepski (2002).
Note that in the second case the total Sobolev’s power of an estimated functional regression g(x) is
bounded and parameters (α,Q) do not change with p = pn. Accordingly, the additive components gj
share the total power. These two cases are the extremes, and this is why it is of interest to explore them.

Theorem 4. Consider functional regression (8)–(9) where either each additive component
gj ∈ S(α,Q) or the additive regression g ∈ Sp(α,Q). Then for consistent estimation of the
functional regression the number p of additive components should not exceed

p∗n = on(1)[ln(n)]
α

2αβ+1 or p′n = on(1)[ln(n)]
1
2β (15)

for the two considered cases, respectively.
Let us make several comments about assertion of Theorem 4. First, keeping in mind that typical

function-predictors are smooth (β is large), the two extreme cases imply surprisingly similar and
extremely small bounds (15) for a feasible dimensionality of functional regression. Second, consider
the case when it is known that the functions are differentiable, that is min(α, β) ≥ 1. Then we get

that that [ln(n)]
α

2αβ+1 = [ln(n)]
1

2β+1/α = on(1)[ln(n)]
1/2β = on(1)[ln(n)]

1/2. Accordingly, even with
respect to other classical ill-posed problems, the maximal number of components is small. Third,
considered sets of j in Theorems 1–3 are sufficiently large for analysis of consistent functional regression
estimators. Fourth, note that the smoother X , the smaller the number of additive components regardless
of smoothness of an underlying functional regression.
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We finish this section with the following remark. The lower bound (14) is obtained for the model (9)
of continuous in time observation of process Z(t), t ∈ [0, 1] which is a classical one in the functional
regression literature. In some practical examples observations of Z(t) are made at discrete points in
time, and then instead of a stochastic process we observe a time series {Z(ti), 0 ≤ t1 ≤ . . . ≤ tm ≤ 1}.
Apparently, the above-presented lower bounds still hold for a time series of observations with any m.
On first glance, this conclusion contradicts [26] where it is asserted that ill-posedness disappears as
m → ∞. But the contradiction is due to different underlying models. In [26] it is assumed that available
observations are Z(ti) = X(ti) + νξi, i = 1, . . . ,mn where errors ξi are iid and mn → ∞ sufficiently fast
as n → ∞. In other words, observations of the function-predictor follow a classical regression model
with independent errors, and the observations may be made as frequently in time as desired. This is
a nice model to study because you can restore an underlying X(t) as well as you wish and accordingly
vanish measurement errors in predictors. Unfortunately, there is no such remedy for stochastic processes
considered in this paper.

4. PROOFS

Proof of Theorem 1. An interesting aspect of the proof is the used technique of two hypotheses.
Traditionally more complicated techniques are used based on using Bayesian approaches, see a discus-
sion in [7, 8, 10, 34]. Accordingly, let us begin with formally introducing the two hypotheses that the
oracle uses in the proof.

To verify the lower bound, the oracle chooses the following parametric class of joint densities
fX,Y (x, y), (x, y) ∈ (−∞,∞)2 of predictor X and response Y .

(i) Marginal density fX of the predictor is fixed (not changing with n or σ) and known. It is α-fold
continuously differentiable on [a, b], belongs to class (2),

b∫
a

fX(x)dx = 1− α1, 0 < α1 < 1, (16)

and for x ∈ (−∞,∞)

fX(x) ≥ cα0(1 + x2)−α0 , α0 > 1/2, cα0 > 0. (17)

(ii) Regression function g(x) := E{Y |X = x} has domain (−∞,∞) and for x ∈ [a, b] it belongs to
the Sobolev class (3). Further, it is known that regression function is

g(x) = gθ(x) := u(n, σ,Q)[c∗ + θv(n, σ, x)],

where the absolute constant c∗ and functions u and v are chosen by the oracle and θ is an unknown
parameter taking on values –1 and 1. Accordingly, for the oracle the regression is parametric in
θ ∈ {−1, 1}. The absolute constant and the two functions will be defined shortly, and their choice implies
that the range of gθ(x) is [0, 1] and this property is used below in (19).

(iii) Let p0 and p1 be two known densities on (−∞,∞) that have zero and unit means, respectively,
and

∞∫
−∞

[p0(y)− p1(y)]
2

min(p0(y), p1(y))
dy < ∞. (18)

Then the conditional density fY |X of Y given X is defined as a mixture of the above-introduced densities
p0 and p1 with the weight being the regression function gθ(x), namely

fY |X(y|x) := f
Y |X
θ (y|x) = p0(y)[1 − gθ(x)] + gθ(x)p1(y), (x, y) ∈ (−∞,∞)2. (19)

Accordingly, the conditional density f
Y |X
θ (y|x) and the joint density fX,Y (x, y) := fX,Y

θ (x, y) :=

fX(x)f
Y |X
θ (y|x) are known up to the parameter θ ∈ {−1, 1}. This defines the two hypotheses used

to verify the sharp lower bound for the MISE.
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We need several more notations and auxiliary results. Consider a nonnegative and symmetric about
zero mollifier φ(t) which is infinitely differentiable on the real line, equal to zero beyond {(−2,−1) ∪
(1, 2)} and

∫∞
−∞ φ2(t)dt = 1, see Section 7.1 in [7]. Using this mollifier, introduce two infinitely

differentiable on the real line functions

G1(x) :=
1

π

2∫
1

cos(tx)φ(t)dt, G2(x) := − 1

π

2∫
1

sin(tx)φ(t)dt. (20)

For a positive integer J introduce an infinitely differentiable on the real line function

HJ(x) := cos(Jx)G1(x) + sin(Jx)G2(x). (21)

Let us comment on properties of function HJ(x) that will be used shortly. We have |HJ(x)| < 2/π
and

1/2∫
−1/2

H2
J(x)dx =

1/2∫
−1/2

[cos2(Jx)G2
1(x) + sin2(Jx)G2

2(x) + sin(2Jx)G1(x)G2(x)]dx. (22)

Using differentiability of HJ(x), trigonometric formulae cos2(Jx) = 1/2 + (1/2) cos(2Jx) and
sin2(Jx) = 1/2 − (1/2) cos(2Jx), results of Section 2.2 in [7] on how fast Fourier transforms of
differentiable functions decrease, and the Plancherel identity we conclude that

b∫
a

H2
J(x)dx = (1/2)

b∫
a

[G2
1(x) +G2

2(x)]dx(1 + oJ(1))

≤ (1/2)[2

∞∫
−∞

[φ(t)]2dt](1 + oJ(1)) = 1 + oJ(1). (23)

Here and in what follows oJ(1)s are generic sequences such that oJ(1) → 0 as J → ∞.

Now let us explore derivatives of HJ(x). Denote by q(s)(x) the sth derivative of a function q(x), and
write

H
(1)
J (x) = J [− sin(Jx)G1(x) + cos(Jx)G2(x)]

+ [cos(Jx)G
(1)
1 (x) + sin(Jx)G

1)
2 (x)]. (24)

Similarly to (23)–(24), we can conclude that
b∫

a

[H
(1)
J (x)]2dx = J2(1/2)

b∫
a

[G2
1(x) +G2

2(x)]dx(1 + oJ(1))

= J2

b∫
a

H2
J(x)dx(1 + oJ(1)). (25)

For α > 1, we may repeat (24)–(25) and get that the αth derivative of HJ(x) satisfies
b∫

a

[H
(α)
J (x)]2dx = J2α

b∫
a

H2
J(x)dx(1 + oJ(1)). (26)

Now recall that the probability density of X is fX(x). In what follows we may use notation
f0(x) := fX(x) to simplify formulas. Using functions HJ and f0 we introduce a new function

mJ(x) := HJ(x)/f0(x). (27)
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Note that the function is continuously differentiable at least α times and

m
(1)
J (x) =

H
(1)
J (x)

f0(x)
− HJ(x)f

(1)
0 (x)

f2
0 (x)

. (28)

Using (24) and following (25), we conclude that
b∫

a

[m
(1)
J (x)]2dx = J2

b∫
a

[HJ(x)/f0(x)]
2dx(1 + oJ(1)). (29)

The reader may compare this result with (25) and also note that the relation (29) becomes plain if f0(x)
is constant on [a, b]. Repeating (28) and (29) we get a relation mimicking (26), namely

b∫
a

[m
(α)
J (x)]2dx = J2α

b∫
a

[HJ(x)/f0(x)]
2dx(1 + γ∗J), γ∗J = oJ(1). (30)

We need to establish one more property of function HJ that will allow us to study ratio HJ(x)/f0(x)
on the real line. Using integration by parts and the boundary property of mollifier φ(t) we get for x �= 0,

G1(x) = (1/π)

2∫
1

cos(tx)φ(t)dt = (1/πx) sin(tx)φ(t)|t=2
t=1 − (1/πx)

2∫
1

sin(tx)φ(1)(t)dt

= −(1/πx)

2∫
1

sin(tx)φ(1)(t)dt. (31)

We can continue the integration by parts and get (recall that α0 was introduced in the definition of density
fX and Cs denote generic positive constants)

|G1(x)| ≤
C

(1 + x2)α0+1
. (32)

Similarly we establish that |G2(x)| ≤ C/(1 + x2)α0+1, and combining the results yields that for some
constant CH not depending on J we have

|HJ(x)| ≤
CH

(1 + x2)α0+1
. (33)

In its turn, (33) and (17) yield that uniformly over all J and x ∈ (−∞,∞)

|HJ(x)|
f0(x)

≤ CH/cα0 =: c∗ < ∞. (34)

Our next step is to define the specific parametric regression function gθ(x) used in (19), that is we are
going to define the constant c∗ and functions u and v. Set

gθ(x) := aJ [c
∗ + θHJ(x)/f0(x)], θ ∈ {−1, 1}. (35)

Here aJ is a positive sequence in J such that

a2J := min

(
Q

J2α
∫ b
a (HJ(x)/f0(x))2dx(1 + γ∗J)

1

[2c∗]2

)
. (36)

The used in (36) sequence γ∗J is defined in (30), and positive constant c∗ is defined in (34).
Note that we are dealing with just two underlying regression functions known up to a parameter θ

that takes either value –1 or value 1, recall (19). It is plain to see that 0 ≤ gθ(x) ≤ 1, and using (30) we
verify that the two regression functions belong to the Sobolev class S(α,Q). Indeed, (30) and (36) yield

b∫
a

[g
(α)
θ (x)]2dx =

b∫
a

[θaJHJ(x)/f0(x)]
2J2αdx ≤ Q. (37)
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Recall that the joint density of pair (X,Y ) is

fX,Y
θ (x, y) = fX(x)[p0(y)(1 − gθ(x)) + p1(y)gθ(x)]. (38)

Now we are in a position to consider a corresponding minimax MISE for oracles that know everything
apart of the value of parameter θ ∈ {−1, 1}. Write,

R := inf
g̃

sup
g∈S(α,Q)

Eg

{ b∫
a

[σ−α(g̃(x)− g(x)]2dx

}

≥ inf
θ̃

sup
θ∈{−1,1}

Eθ{(θ̃ − θ)2}a2Jσ−2α

b∫
a

[H2
J(x)/f

2
0 (x)]dx. (39)

Here θ̃ is an oracle-estimator of parameter θ. Set

J = Jn,σ := 	σ−1[ln(n) + (ln(ln(n)))2]1/2
, (40)

where 	c
 denotes the smallest integer larger than c. Note that due to (17), the assumed σ ∈ Tn and (23)
we get

inf
σ∈Tn

min(Jn,σ , 1/aJ ) → ∞ as n → ∞. (41)

Accordingly, there exists a positive integer J∗ such that aJ ≤ 1/2c∗ for all J ≥ J∗. In other words, for
J ≥ J∗ the sequence a2J is equal to the first term on the right side of (36).

We continue (39) for J ≥ J∗,

R ≥ J−2ασ−2αQ(1 + γ∗J)
−1 inf

θ̃
sup

θ∈{−1,1}
Eθ{(θ̃ − θ)2}

≥ J−2ασ−2αQ(1 + γ∗J)
−1 inf

θ̃
sup

θ∈{−1,1}
[Eθ{|θ̃ − θ|}]2. (42)

Consider the expectation on the right side of (42). Introduce a minimax parametric risk with absolute
loss function

R∗ := inf
θ̃

sup
θ∈{−1,1}

Eθ{|θ̃ − θ|}. (43)

Let us show that
R∗ ≥ (1 + on(1)), (44)

and note that if (44) holds, then

inf
θ̃

sup
θ∈{−1,1}

[Eθ{|θ̃ − θ|}]2 ≥ 1 + on(1). (45)

To find a lower bound for R∗ we bound it from below by a Bayes risk. Introduce a random variable
Θ taking two values −1 and 1 with the equal probability 0.5. The corresponding Bayes estimate is a
sample median taking two values −1 and 1, see Section 2.4 in [23]. Write,

R∗ ≥ E{|Θ̃ −Θ|} = (1/2)2P(Θ̃ = 1|Θ = 1) + (1/2)2P(Θ̃ = −1|Θ = 1)

≥ inf
τ
[E{τ |θ = −1}+ E{1− τ |θ = 1}]. (46)

Here the infimum is over all possible critical functions τ for testing two simple hypothesis θ = 1 versus
θ = −1 based on a sample (Z1, Y1, ), . . . , (Zn, Yn) from (Z, Y ) where Z := X + ση, η is a standard
normal random variable, and the parametric joint density of (X,Y ) is defined in (38). Denote by fZ,Y

θ

the joint density of (Z, Y ) corresponding to the joint density fX,Y
θ , that is the convolution joint density.

Using [21] we can continue (46),

R∗ ≥ 1− (1/2)

([ ∞∫
−∞

∞∫
−∞

[fZ,Y
1 (z, y)]2

fZ,Y
−1 (z, y)

dzdy

]n

− 1

)
. (47)

MATHEMATICAL METHODS OF STATISTICS Vol. 32 No. 3 2023



SHARP LOWER BOUND 217

Suppose that

D := sup
σ∈Tn

[ ∞∫
−∞

∞∫
−∞

[fZ,Y
1 (z, y)]2

fZ,Y
−1 (z, y)

dzdy

]n

≤ 1 + on(1). (48)

Then combining (39)–(47), we establish that

R ≥ J−2ασ−2α(1 + γ∗J)
−1Q(1 + on(1)). (49)

Now plug J = Jn,σ, defined in (40), and this verifies the lower bound of Theorem 1.

We are left with proving (48). Introduce notation q1 ∗ q2(z) :=
∫∞
−∞ q1(z − t)q2(t)dt for the convolu-

tion of two functions. Our next step is to establish several properties of the convolutions fX ∗ fση and
HJ ∗ fση. Note that this is the first time when we are dealing with the measurement error in predictor
and its density fση. We are analyzing these two convolutions in turn. Due to (17) the density fX(x) is
not smaller than cα0(1 + x2)−α0 , α0 > 1/2. Write,

fX ∗ fση(z) =

∞∫
−∞

fX(z − t)fση(t)dt ≥
1∫

−1

fση(t)fX(z − t)dt ≥ C

σ(1 + z2)α0
. (50)

Now we are considering the convolution HJ ∗ fση. Introduce a symmetric about zero function φJ (t)
such that φJ(t) = φ(t− J)I(t ≥ J) for t ≥ 0, here I(·) is the indicator. Then we can write that

HJ(x) = (1/π) cos(Jx)

2∫
1

cos(tx)φ(t)dt− (1/π) sin(Jx)

2∫
1

sin(tx)φ(t)dt

= (1/π)

2∫
1

cos(x(J + t))φ(t)dt = (1/π)

2+J∫
1+J

cos(xt)φ(t− J)dt

= (1/π)

∞∫
0

cos(xt)φJ(t)dt = (1/2π)

∞∫
−∞

e−itxφJ(t)dt. (51)

Accordingly, we get

HJ ∗ fση(z) = (1/2π)

∞∫
−∞

e−itzφJ(t)e
−σ2t2/2dt = (1/π)

2+J∫
1+J

cos(tz)φJ (t)e
−σ2t2/2dt. (52)

For z = 0 the right side of (52) is bounded from above by Ce−σ2J2/2. Using integration by parts and the
boundary property of φJ(t) we continue the analysis for z �= 0,

HJ ∗ fση(z) = (1/πz) sin(tz)φJ (t)e
−σ2t2/2|t=2+J

t=1+J − (1/πz)

2+J∫
1+J

sin(tz)(d[φJ (t)e
−σ2t2/2]/dt)dt

= −(1/πz)

2+J∫
1+J

sin(tz)(d[φJ (t)e
−σ2t2/2]/dt)dt. (53)

Let k be a minimal integer larger than α0 + 1/2 where α0 was introduced in (17). Repeating k− 1 times
integration by parts of the integral on the right side of (53) we get that for all z ∈ (−∞,∞)

|HJ ∗ fση(z)| ≤ C(Jσ2)ke−σ2J2/2

(1 + z2)k/2
. (54)
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We need two more technical results. To simplify formulas in what follows the integrals are over
(−∞,∞)2. The first one is a familiar and directly verified relation for two densities q1 and q2 such that
the support of q1 is the subset of the support of q2,∫

q21(z, y)

q2(z, y)
dzdy =

∫
[q1(z, y)− q2(z, y)]

2

q2(z, y)
dzdy + 1. (55)

The second technical relation is based on (34), (38), (50), (54), and (55). Write,

d(J, σ) :=

∫
[fZ,Y

1 (z, y)− fZ,Y
−1 (z, y)]2

fZ,Y
1 (z, y)

dzdy

=

∫
4a2J [HJ ∗ fση(z)]2[p1(y)− p2(y)]

2

fZ,Y
1 (z, y)

dzdy. (56)

Let us write down fZ,Y
1 and evaluate it from below

fZ,Y
1 (z, y) = p0(y)[f

X ∗ fση(z)(1 − aJc
∗)− aJHJ ∗ fση(z)] + p1(y)aJ [c

∗fX ∗ fση(z) +HJ ∗ fση(z)]

≥ p0(y)[f
X ∗ fση(z)(1/2) − aJHJ ∗ fση(z)] + p1(y)aJ [c

∗fX ∗ fση(z)− |HJ ∗ fση(z)|]. (57)

For all large J , and accordingly for all large n, we have

c∗fX ∗ fση(z)− |HJ ∗ fση(z)| > (1/2)c∗fX ∗ fση(z). (58)

Using this inequality we continue (57) and get that for all large n

fZ,Y
1 (z, y) ≥ (1/4)[min(p0(y), p1(y))]f

X ∗ fση(z). (59)

Now we use this inequality on the right side of (58) and get for all large J that

d(J, σ) ≤
∫

16a2J [HJ ∗ fση(z)]2[p1(y)− p2(y)]
2

[min(p0(y), p1(y))]fX ∗ fση(z)
dzdy

≤ Ca2Jσ(Jσ
2)2ke−σ2J2 ≤ Cσ4k+1J−2(α−k)e−σ2J2

. (60)

Now recall definition (40) of Jn,σ, plug J = Jn,σ in the right side of (60) and get

sup
σ∈T

d(Jn,σ, σ) = on(1)n
−1. (61)

Using this relation, [1 + on(1)n
−1]n = 1 + on(1) and (56) verify (48). Theorem 1 is proved.

Proof of Theorem 2. First, it is straightforward to check that the mean squared error E{(θ̂s −
θs)

2} ≤ Cn−1e(πσs)
2
. Second, we have supg∈S(α,Q)

∑
s>Sn

θ2s ≤ Q/(πSn)
2α(1 + on(1)), see [34].

Third, a straightforward calculation, based on the Parseval identity and the Dawson formula, shows
that for g ∈ S(α,Q) and σ ∈ Tn the MISE satisfies the following relations,

Eg{
1∫

0

[σ−α(ĝ(x)− g(x))]2} = σ−2α
Sn∑
s=0

Eg{(θ̂s − θs)
2}+ σ−2α

∑
s>Sn

θ2s

≤ Cσ−2αn−1
Sn∑
s=1

e(πσs)
2
+ σ−2αQ/(πSn)

2α(1 + on(1))

≤ Cn−1σ−2αS−1
n e(πσSn)2 + σ−2αQ[σ2/ ln(n)]α(1 + on(1)) = Q[ln(n)]−α(1 + on(1). (62)

Theorem 2 is proved.

Proof of Theorem 3. Set σ := νjβ . For the considered indexes j we have σ2 ≤ ln(n)γn. Then
Theorems 1 and 2 verify the assertion of Theorem 3.
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Proof of Theorem 4. We begin with the case when all gj ∈ S(α,Q). Consider p ≤ [ln(n)γ′n]
1/2

where positive γ′n tends to zero as slow as desired as n → ∞. Then the Bessel inequality and Theorem 3
yield that even for studied oracle-estimators the following lower bound holds,

E

{ ∫
[0,1]p

(g(x) − ĝ(x))2dx

}
≥ C[ln(n)]−α

p∑
j=1

j2αβ ≥ C[ln(n)]−αp2αβ+1. (63)

Here Cs are generic positive constants. Now note that

[ln(n)]α/(2αβ+1) = on(1)[ln(n)]
1/2. (64)

This verifies the first part of the theorem.
Now consider the case g ∈ Sp(α,Q). Due to the additive structure of the p-variate Sobolev class, we

can convert the setting into the former one by considering gj ∈ S(α,Q/p). Then the assertion follows
from p−1

∑p
j=1 j

2αβ ≥ Cp2αβ . Interestingly, it is also possible to consider gj = 0 for j ≤ p− 1 and
gp ∈ S(α,Q), and this choice also yields the verified assertion. In short, there is a large class of least
favorable functions g ∈ Sp(α,Q) that yield the verified bound on dimensionality. Theorem 4 is proved.

5. CONCLUSIONS

Mathematical statistical theory of nonparametric regression with measurement errors in predictors is
about 30 years old, and the seminal paper of Fan and Tryong [10] created its foundation by developing the
theory of rate optimal estimation. Specifically, it was shown that under the MISE criterion a traditional
rate n−2α/(2α+1), for estimating an α-fold differentiable regression function g(x) = E{Y |X = x} based
on a sample of size n from pair (X,Y ), slows down to the logarithmic [ln(n)]−α when we have a sample
of size n from pair (Z, Y ), Z = X + ση and η is independent of X standard normal. Accordingly, it was
established that regression with measurement errors in predictors is severely ill-posed. There is a rich
statistical literature devoted to this important topic, but still that rate is the only mathematical result
known in the literature.

This paper solves a long-standing problem of finding a sharp constant for the MISE convergence
and this result complements the known optimal rate. Namely, it is shown how the standard deviation
σ of the measurement error and Sobolev’s power of the regression function affect the sharp constant of
the MISE convergence. It is of interest to note that sharp constants for the MISE convergence have
been known since 1980s for the classical problems of nonparametric regression, density and spectral
density estimation based on direct observations. But the known techniques are not readily applicable to
regression with measurement errors in predictors. Instead, this paper uses a two hypotheses technique
that previously was successful for analysis of pointwise risks and developing optimal rates.

The paper also presents an interesting example of application of the developed sharp constant for
analysis of nonparametric functional additive regression. A consistent functional regression requires an
increasing number of additive components, and accordingly the problem is converted into an increasing
series of classical regressions with measurement errors in predictors. The important specific of the
problem is that variances of measurement errors are different, and this is why the developed theory of
sharp constant sheds a new light on the theory of functional regression. In particular, a new curse of
dimensionality in ill-posedness is discovered and it states that no longer an additive model is the remedy
for the curse of dimensionality. On a positive side, the developed mathematical theory points upon a
natural order of components in an additive functional regression.

Finally, the developed mathematical methodology of sharp statistical analysis of regression with
measurement errors opens an opportunity for further analysis of classical ill-posed problems where so
far only optimal rates are known. In particular, it will be of interest to consider cases of dependent
observations and models with missing and censored observations discussed in [8].
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