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Abstract—In this paper, we study the information-generating (IG) measure of k-record values
and examine some of its main properties. We establish some bounds for the IG measure of k-
record values. In addition, we present some results related to the characterization of an exponential
distribution by maximization (minimization) of the IG measure of record values under certain
conditions. We also examine the relative information generating (RIG) measure between the
distribution of record values and the corresponding underlying distribution and present some results
in this regard. Several examples have been provided throughout the study to illustrate the results. We
also consider the problem of estimation of the IG measure for a two-parameter Weibull distribution
based on the upper k-record values.
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1. INTRODUCTION

The record values was formulated by [13] as successive extremes occurring in a sequence of
independent and identically distributed (iid) random variables. Records are of great importance in several
real life problems involving destructive stress testing, sporting and athletic events, meteorological
analysis, oil, and mining, surveys, hydrology, seismology, etc. Prediction of the next record value is
an interesting problem in many real-life situations. For a detailed survey on the theory and application
of record values, see, [2, 4, 29], and the references therein.

Let {Xi, i ≥ 1} be a sequence of iid random variables having a common cumulative distribution
function (cdf) F (x) which is absolutely continuous. An observation Xj is called an upper record if its
value exceeds that of all preceding observations. Thus, Xj is an upper record if Xj > Xi for every i < j.
In an analogous way, one can also define lower record values.

The characteristic features of the parent distribution can also be studied by looking at the record
statistics that arise from a distribution. But we can see that after the first observation, the expected
waiting time for the occurance of each record after the first may be infinite. Additionally, the presence
of an outlier in a sequence of random variables prevents the realisation of record values from occurring
later. One may overcome this difficulty by considering the k-record statistics introduced by [17].

Now, for a positive integer k, the sequence of upper k-records, or simply k-records is defined as
follows: For a positive integer k, the upper k-record times Tn(k), for n > 1 are defined by

T1(k) = k, with probability 1

and, for n > 1,

Tn(k) = min{j : j > Tn−1(k),Xj > XTn−1(k)−k+1:Tn−1(k)
}, (1)
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where Xi:m is the ith order statistic in a random sample of size m. The sequence of the upper k-record
values Un(k) are then defined by

Un(k) = XTn(k)−k+1:Tn(k)
for n ≥ 1. (2)

In an analogous way, one can also define lower record values.

If the parent distribution is absolutely continuous with survival function FX(x) and probability
density function(pdf) fX(x), then, the pdf of nth upper k-record value Un(k) is given by (see, [4]).

fn(k)(x) =
kn

Γn
[−log (1− F (x))]n−1[1− F (x)]k−1f(x), −∞ < x < ∞. (3)

The pdf of nth lower k-record value Ln(k) is given by (see, [2])

gn(k)(x) =
kn

Γn
[−log F (x)]n−1[F (x)]k−1f(x), −∞ < x < ∞. (4)

Since the ordinary record values are contained in the k-records, by putting k = 1, the results for the
usual records can be obtained as special cases. Several applications of k-records are available in the
literature. For some recent applications of k-record values see, [6, 11, 12].

Information theory is one of the most important branches of science introduced by [18, 31]. The
Shannon entropy of a continuous random variable X, having pdf on support χ, is defined as

H(X) = −
∫

χ

f(x)log f(x)dx. (5)

Shannon entropy measure and its extentions have been considered by several researchers. The study of
the entropy measures for order statistics and record values has received considerable attention recently.
For more details, one may refer to [1, 5, 7, 24, 27].

In information theory, generating functions have also been defined for probability densities to deter-
mine information quantities such as Shannon information and Kullback–Leibler divergence Golomb.
[19] proposed information generating (IG) function (measure) to generate some well-known information
measures. Suppose the variable X has a density function f(x). Then, the IG function of density f(x),
for any α > 0, is defined as

Gα(X) =

∫

χ

fα(X)dx = E[e(α−1)logf(x)], (6)

provided the integral exists. To simplify notation, we suppress χ for integration with respect to x
throughout the paper, unless a distinction is needed.

Clearly G1(X) = 1 and
∂

∂α
Gα(X)|α=1 = −H(X), where H(X) is the Shannon entropy given in

(5). In particular, when α = 2, the IG measure is reduced to
∫
χ f

2(x)dx = −2J(X), where J(X) is
the extropy given by [28], which is also known as the informational energy (IE) measure. In physics
and chemistry, the IG measure is known as the entropic moment, and it is closely related to the Renyi
and Tsallis entropies. The IG measure plays a significant role in information theory and physics since
it generates the most popular information measures, including Shannon entropy, Renyi entropy, Tsallis
entropy, and extropy measures.

Recently, [32] has studied the IG function of record values and examine some properties of it. Clark
[16] has used IG function for stochastic processes to assist in the derivation of information measures for
point processes. Kharazmi and Balakrishnan [25] have studied the IG measure for order statistics and
its applications in the study of mixed systems. Also Kharazmi and Balakrishnan [26] introduced Jensen
IG measure and its connections to some well-known information measures such as Jensen-Shannon,
Jensen–Taneja, and Jensen-extropy information measures.
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Guiasu and Reischer [20] proposed relative information generating (RIG) measure between two
density functions. Let X and Y be two random variables with density functions f and g, respectively.
Then, the relative information generating measure, for any α > 0, is defined as

Rα(f, g) =

∫
fα(x)g1−α(x)dx, (7)

provided the integral exists. It is obvious that R1(f, g) = 1 and

∂

∂α
Rα(f, g)|α=1 =

∫
f(x)

(
log

f(x)

g(x)

)
dx = K(f, g), (8)

the Kullback–Leibler divergence, originally defined by [23].
In this paper, we consider the IG measure of k-record values and examine some of its main properties.

We also examine the relative information generating (RIG) measure between the distribution of record
values and the corresponding underlying distribution. So far estimation of IG measure based on k-
record values has not been considered in the available literature. Hence in this paper, we also consider
the maximum likelihood estimation and Bayesian estimation of IG measure based on k-record values
for Weibull distribution.

In the present work, our goal is to study IG measure for k-record values and then establish some
results associated with it. The rest of this paper is orgnized as follows: In Section 2, we first examine the
IG measure for nth upper and lower k-record values. Section 3 deals with some stochastic comparisons
based on IG measure of k-record values and we examine the lower and upper bounds for the IG measure
of k-record values. In Section 4, some results associated with the characterization of exponential
distribution based on the IG measure of k-record values is given. Section 5 is devoted to the relative
information generating divergence of k-record values. In Section 6, we consider the estimation of the IG
measure for the Weibull distribution based on upper k-record values. We obtain the maximum likelihood
estimators (MLEs) for IG measure and the Bayes estimators of IG measure. Finally, some concluding
remarks are made in Section 7.

2. IG MEASURE OF k-RECORD VALUES

In this section, we first examine the IG measure of lower and upper k-record values and then establish
some results for this measure.

Theorem 2.1. Let {Xi, i ≥ 1} be a sequence of iid continuous random variables from a
distribution with common distribution function F (x), pdf f(x) and quantile function F−1(.). Let
Un(k) denote the nth upper k-records. Then the IG measure of Un(k) is given by,

Gα(Un(k)) = Gα(Un,k)
(αk)α(n−1)+1

(α(k − 1) + 1)α(n−1)+1
E[fα−1(F−1(1− e−Vn,k))], (9)

where Un,k ∼ Γ(n, k) and Vn,k ∼ Γ(α(n − 1) + 1, α(k − 1) + 1) with Γ(λ, β) denotes a gamma
distribution with pdf given by

g(x) =
βλ

Γ(λ)
xλ−1e−βx, x > 0.

Proof. From the definition of IG measure given in (6), we have the IG measure of nth upper k-re-
cords as,

Gα(Un(k)) =
kαn

[Γn]α

∫
[−log (1− F (x))]α(n−1)[1− F (x)]α(k−1)fα(x)dx.

On putting v = −log (1− F (x)), we get

Gα(Un(k)) =
kαn

[Γn]α

∞∫

0

vα(n−1)e−v(α(k−1)+1)fα−1(F−1(1− e−v))dv
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=
kαnΓ(α(n − 1) + 1)

[Γn]α(α(k − 1) + 1)α(n−1)+1
E[fα−1(F−1(1− e−Vn,k))]. (10)

Since

Gα(Un,k) =
Γ(α(n − 1) + 1)kαn

[Γn]α(αk)α(n−1)+1
, (11)

we have

Gα(Un(k)) = Gα(Un,k)
(αk)α(n−1)+1

(α(k − 1) + 1)α(n−1)+1
E[fα−1(F−1(1− e−Vn,k))]. (12)

Hence the result.
Example 2.1. Let {Xi, i ≥ 1} be a sequence of iid random variables having a common two-parameter

Weibull distribution with pdf given by

f(x) = βλxβ−1e−λxβ
, x > 0.

Here,

F−1(x) =

[
−log (1− x)

λ

] 1
β

.

Therefore,

fα−1(F−1(1− e−u)) = λ
α−1
β βα−1u(1−

1
β
)(α−1)e−u(α−1),

and hence

E[fα−1(F−1(1− e−Vn,k))] = λ
α−1
β βα−1 (α(k − 1) + 1)α(n−1)+1

Γ(α(n − 1) + 1)

Γ(α(n− 1
β )) +

1
β

(αk)α(n−
1
β
)+ 1

β

.

Thus, we have

Gα(Un(k)) =
kαnλ

α−1
β βα−1

(Γn)α

Γ(α(n − 1
β ) +

1
β )

(αk)α(n−
1
β
)+ 1

β

.

We have drawn the graphs of IG measure of nth upper k-records for Weibull distribution for different
values of α and are given in Fig. 1. It can be observed from Fig. 1 that, Gα(Un(k)) is increasing in
n for 0 < α < 1 and decreasing in n for α > 1. Also, it can be observed from Fig. 1 that, Gα(Un(k))
is decreasing in k for 0 < α < 1 and increasing in k for α > 1. Also, when k = 1, the IG measure of
classical records is obtained.

Example 2.2. Let {Xi, i ≥ 1} be a sequence of iid random variables having a common Pareto
distribution with pdf given by

f(x) =
λ

σ

(x
σ

)−λ−1
, x ≥ σ > 0, λ > 0.

Here,

F−1(x) = σ (1− x)−
1
λ .

Therefore,

fα−1(F−1(1− e−u)) =

(
λ

σ

)α−1

e−
u
λ
(α−1)(λ+1),

and hence

E[fα−1(F−1(1− e−Vn,k))] =

(
λ

σ

)α−1
(
(α(k − 1) + 1)α(n−1)+1

α(1 + λk)− 1

)
.
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Fig. 1. IG measure of nth upper k-records for Weibull distribution for different values of α and k.

Thus, we have

Gα(Un(k)) =
kαn

(Γn)α

(
λ

σ

)α−1 Γ(α(n − 1) + 1)

(α(1 + λk)− 1)α(n−1)+1
.

Example 2.3. Let {Xi, i ≥ 1} be a sequence of iid random variables having a common Rayleigh
distribution with pdf given by

f(x) =
x

σ2
e−

x2

2σ2 , x > 0, σ > 0.

Here,

F−1(x) = σ
√

−2log (1− x).

Therefore,

fα−1(F−1(1− e−u)) =

(
1

σ

)α−1

e−u(α−1)

and hence

E[fα−1(F−1(1− e−Vn,k))] =

(
1

σ

)α−1 (α(k − 1) + 1

αk

)α(n−1)+1

.

Thus, we have

Gα(Un(k)) =
kαn

(Γn)α

(
1

σ

)α−1 Γ(α(n − 1) + 1)

(αk)α(n−1)+1
.

Theorem 2.2. Let {Xi, i ≥ 1} be a sequence of iid continuous random variables from a
distribution with common distribution function F (x), pdf f(x) and quantile function F−1(.). Let
Ln(k) denote the nth lower k-records. Then the IG measure of Ln(k) is given by,

Gα(Ln(k)) = Gα(Un,k)
(αk)α(n−1)+1

(α(k − 1) + 1)α(n−1)+1
E[fα−1(F−1(e−Vn,k ))], (13)
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where Un,k ∼ Γ(n, k) and Vn,k ∼ Γ(α(n − 1) + 1, α(k − 1) + 1).
Proof. From the definition of IG measure given in (6), we have the IG measure of nth upper k-re-

cord as,

Gα(Ln(k)) =
kαn

[Γn]α

∫
[−log F (x)]α(n−1)[F (x)]α(k−1)fα(x)dx. (14)

On putting v = −log F (x),we get

Gα(Ln(k)) =
kαn

[Γn]α

∞∫

0

vα(n−1)e−v(α(k−1)+1)fα−1(F−1(e−v))dv

=
kαnΓ(α(n − 1) + 1)

[Γn]α(α(k − 1) + 1)α(n−1)+1
E[fα−1(F−1(e−Vn,k ))]

= Gα(Un,k)
(αk)α(n−1)+1

(α(k − 1) + 1)α(n−1)+1
E[fα−1(F−1(e−Vn,k))]. (15)

where Gα(Un,k) is defined in (11). Hence the result.
Example 2.4. Let {Xi, i ≥ 1} be a sequence of iid random variables having a common generalized

exponential distribution with pdf given by

f(x) = βe−x(1− e−x)β−1, x > 0, β > 0.

Here,

F−1(x) = −log(1− x
1
β ).

Therefore,

fα−1(F−1(e−u)) = βα−1(1− e−u/β)α−1e
−u(α−1)(1− 1

β
)

and hence

E[fα−1(F−1(e−Vn,k))] =

∞∑
p=0

(
α− 1

p

)
(−1)pβα−1

(
α(k − 1) + 1

αk − α
β + p+1

β

)α(n−1)+1

.

Thus, we have

Gα(Ln(k)) =
kαn

(Γn)α
βα−1

∞∑
p=0

(
α− 1

p

)
(−1)p

Γ(α(n − 1) + 1)(
αk − α

β + p+1
β

)α(n−1)+1
.

We have drawn the graphs of IG measure of nth lower k-records for generalized exponential distribution
for different values of α and are given in Fig. 2. It can be observed from Fig. 2 that, for n > k, Gα(Ln(k))
is decreasing in n for 0 < α < 1 and increasing in n for α > 1.

Example 2.5. Let {Xi, i ≥ 1} be a sequence of iid random variables having a common inverse
exponential distribution with pdf given by

f(x) =
λ

x2
e−

λ
x , x > 0, λ > 0.

Here,

F−1(x) = −λ(log x)−1.

Therefore,

fα−1(F−1(e−u)) =

(
u2

λ

)λ−1

e−u(α−1),
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Fig. 2. IG measure of nth lower k-records for generalized exponential distribution for different values of α and k.

and hence

E[fα−1(F−1(e−Vn,k))] =
(α(k − 1) + 1)α(n−1)+1

(αk)α(n+1)−1

Γ(α(n + 1)− 1)

Γ(α(n − 1) + 1)
.

Thus, we have

Gα(Ln(k)) =
kαn

(Γn)α
Γ(α(n+ 1)− 1)

(αk)α(n+1)−1
.

3. PROPERTIES OF IG MEASURE OF k-RECORD VALUES

In this section, we derive some properties of IG measure of nth upper and lower k-record values. The
following theorem shows the monotone behavior of IG measure of nth upper k-record value in terms of
n. In order to prove this theorem, we need the following definitions and lemmas.

Definition 3.1 [30]. Let X and Y be two non-negative random variables such that P (X > x) ≤
P (Y > y) for all x ≥ 0. Then we say that X is said to be smaller than Y in the usual stochastic
order (denoted by X ≤st Y ).

Definition 3.2 [30]. Let X and Y be two non-negative random variables with densities f and
g, respectively. The random variable X is said to be smaller than Y in likelihood ratio order
(denoted by X ≤lr Y ) if f(x)g(y) ≥ g(x)f(y) for all x ≤ y.

Lemma 3.1 [8]. If X and Y are two continuous or discrete random variables such that Y ≤lr X,
then Y ≤st X.

Theorem 3.1. Let {Xi, i ≥ 1} be a sequence of iid continuous random variables from a
distribution with common distribution function F (x), pdf f(x) and quantile function F−1(.). Let
Un(k) denote the nth upper k-record. If f(x) is non-decreasing in x. Then,

1. Gα(Un(k)) is non-decreasing in n for α > 1.

2. Gα(Un(k)) is non-increasing in n for 0 < α < 1.
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Proof. From Theorem 2.1, we have

Gα(Un(k)) =
kαnΓ(α(n − 1) + 1)

[Γn]α(α(k − 1) + 1)α(n−1)+1
E[fα−1(F−1(1− e−Vn,k))], (16)

where Vn,k ∼ Γ(α(n− 1) + 1, α(k − 1) + 1). Then,

G∗
α(Un(k)) = log Gα(Un(k)) = Dn + log E[fα−1(F−1(1 − e−Vn,k))], (17)

where Dn = αnlog k+ log (Γ(α(n− 1)+ 1))−αlog Γn− (α(n− 1)+1)log (α(k− 1)+ 1). Therefore,

G∗
α(Un+1(k))−G∗

α(Un(k)) = Dn+1 −Dn + log
E[fα−1(F−1(1− e−Vn+1,k))]

E[fα−1(F−1(1− e−Vn,k))]
. (18)

Without loss of generality, assume that n is continuous and then taking derivative with respect to n, we
obtain,

dDn

dn
= α

[
ψ(α(n − 1) + 1)− ψ(n)− log

k

α(k − 1) + 1

]
,

where ψ(x) =
d

dx
(log Γx) is the digamma function.

Since ψ(x) is an increasing function of x and α(n− 1) + 1 > n and α(k − 1) + 1 > k for α > 1,
we conclude that Dn is an increasing function of n. It is easy to show that Vn,k ≤lr Vn+1,k and so
Vn,k ≤st Vn+1,k. Moreover, fα−1(F−1(1− e−x)) is non-decreasing in x for all α > 1, because f(x) is
non-decreasing in x. Thus we have,

E[fα−1(F−1(1− e−Vn+1,k))] ≥ E[fα−1(F−1(1− e−Vn,k))] (19)

and hence

log
E[fα−1(F−1(1− e−Vn+1,k))]

E[fα−1(F−1(1− e−Vn,k))]
≥ 0. (20)

Therefore, G∗
α(Un+1(k))−G∗

α(Un(k)) ≥ 0 and which implies Gα(Un(k)) is non-decreasing in n forα > 1.

Now, for 0 < α < 1, we have α(n− 1) + 1 < n and α(k − 1) + 1 < k, then Dn is a decreasing
function of n. Moreover, fα−1(F−1(1− e−x)) is non-increasing in x for all 0 < α < 1, because f(x)
is non-decreasing in x. Thus,

E[fα−1(F−1(1− e−Vn+1,k))] ≤ E[fα−1(F−1(1− e−Vn,k))], (21)

and hence

log
E[fα−1(F−1(1− e−Vn+1,k))]

E[fα−1(F−1(1− e−Vn,k))]
≤ 0. (22)

Therefore, G∗
α(Un+1(k))−G∗

α(Un(k)) ≤ 0 and which implies Gα(Un(k)) is non-increasing in n for 0 <
α < 1. This completes the theorem.

Now, we present two bounds for the IG measure of the nth upper k-record value.
Theorem 3.2. Let X be a random variable with IG measure Gα(X) < ∞. Then the IG measure

of the nth upper k-records Un(k) is bounded above as

Gα(Un(k)) ≤ Gα(Un,k)

[
αk

α(k − 1) + 1

]α(n−1)+1

Bn(k)

∞∫

−∞

r(x)fα−1(x)dx, (23)

where
(i) Un,k ∼ Γ(n, k) and

(ii) Bn(k) =
(α(k − 1) + 1)(α(n − 1)α(n−1))

Γ(α(n − 1) + 1)
e−α(n−1), provided the integral exists.
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(iii) r(x) =
f(x)

1− F (x)
is the hazard rate function.

Proof. The mode mn,k of Γ(α(n − 1) + 1, α(k − 1) + 1) with density function gn,k is known to be
α(n − 1)

α(k − 1) + 1
. Then we have,

gn,k(v) ≤ gn,k(mn,k) =
(α(k − 1) + 1)(α(n − 1)α(n−1))

Γ(α(n − 1) + 1)
e−α(n−1) = Bn(k).

Now, we get

E[fα−1(F−1(1− e−Vn,k))]

=

∞∫

0

gn,k(v)f
α−1(F−1(1− e−v))dv

≤ Bn(k)

∞∫

0

fα−1(F−1(1− e−v))dv = Bn(k)

∞∫

−∞

r(x)fα−1(x)dx, (24)

where the last equality is obtained by using the transformation x = F−1(1− e−Vn,k). Now, substituting
the inequality (24) in (9) gives the required result.

Example 3.1. Let {Xi, i ≥ 1} be a sequence of iid random variables having Pareto II distribution
with pdf given by

f(x) =
cαc

(x+ α)c+1
, α, c > 0, x > 0.

Then r(x) =
c

x+ α
and

∞∫

0

r(x)fα−1(x)dx =
cα

(α− 1)(c + 1)αα−1
,∀α > 1.

So, for α > 1, we have

Gα(Un(k)) ≤ Gα(Un,k)Bn(k)
cαααn−2(α−1)

(c+ 1)(α − 1)

(
k

α(k − 1) + 1

)α(n−1)+1

.

Theorem 3.3. Under the assumptions of Theorem 3.2, we have

Gα(Un(k)) ≤ (≥)Gα(Un,k)
(αk)α(n−1)+1

(α(k − 1) + 1)α(n−1)+1
Mα−1 (25)

for α > 1 (0 < α < 1), where M = f(m) < ∞ and m = sup{x : f(x) ≤ M} is the mode of the
density f .

Proof. Since M = f(m), where m is the mode of X, we have

f(F−1(y)) ≤ M.

By putting y = 1− e−Vn,k , we get,

f(F−1(1− e−Vn,k)) ≤ M.

Now, for α > 1,

fα−1(F−1(1− e−Vn,k)) ≤ Mα−1.

Taking expectation on both sides, we have

E[fα−1(F−1(1− e−Vn,k))] ≤ Mα−1.
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Then by using (9), we get

Gα(Un(k))

Gα(Un,k)

[
(α(k − 1) + 1)

αk

]α(n−1)+1

≤ Mα−1.

Therefore,

Gα(Un(k)) ≤ Gα(Un,k)
(αk)α(n−1)+1

(α(k − 1) + 1)α(n−1)+1
Mα−1.

For 0 < α < 1, we have

fα−1(F−1(1− e−Vn,k)) ≥ Mα−1.

Therefore similarly, we can prove that for 0 < α < 1

Gα(Un(k)) ≥ Gα(Un,k)
(αk)α(n−1)+1

(α(k − 1) + 1)α(n−1)+1
Mα−1.

This completes the proof.
Example 3.2. Let {Xi, i ≥ 1} be a sequence of iid random variables having a common Gompertz

distribution with pdf given by

f(x) = λβeλx+β(1−eλx), x > 0, λ, β > 0.

Since the mode m of the distribution is
1

λ
log

1

β
, we have

Gα(Un(k)) ≤ (≥)Gα(Un,k)
(αk)α(n−1)+1

(α(k − 1) + 1)α(n−1)+1
λα−1e(α−1)(β−1) ∀α > 1 (0 < α < 1).

Example 3.3. Let {Xi, i ≥ 1} be a sequence of iid random variables having a standard half Cauchy
distribution with pdf given by

f(x) =
2

π(1 + x2)
, x ≥ 0.

Since the mode m of the distribution is 0, we have

Gα(Un(k)) ≤ (≥)Gα(Un,k)
(αk)α(n−1)+1

(α(k − 1) + 1)α(n−1)+1

(
2

π

)α−1

∀α > 1 (0 < α < 1).

Theorem 3.4. Let {Xi, i ≥ 1} be a sequence of iid continuous random variables from a dis-
tribution with common distribution function F (x), density function f(x), and quantile function
F−1(.). Let Ln(k) denote the nth lower k-records. If f(x) is non-increasing in x. Then,

1. Gα(Ln(k)) is non-decreasing in n for α > 1.

2. Gα(Ln(k)) is non-increasing in n for 0 < α < 1.

Proof. From Theorem 2.2, we have

Gα(Ln(k)) =
kαnΓ(α(n − 1) + 1)

[Γn]α(α(k − 1) + 1)α(n−1)+1
E[fα−1(F−1(e−Vn,k))], (26)

where Vn,k ∼ Γ(α(n− 1) + 1, α(k − 1) + 1). Then,

G∗
α(Ln(k)) = log Gα(Ln(k)) = Dn + log E[fα−1(F−1(e−Vn,k))], (27)

where Dn = αnlog k+ log (Γ(α(n− 1) + 1))−αlog Γn− (α(n− 1) + 1)log (α(k− 1) + 1) Therefore,

G∗
α(Ln+1(k))−G∗

α(Ln(k)) = Dn+1 −Dn + log
E[fα−1(F−1(e−Vn+1,k))]

E[fα−1(F−1(e−Vn,k))]
. (28)
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Without loss of generality, assume that n is continuous and then taking derivative with respect to n, we
obtain

dDn

dn
= α

[
ψ(α(n − 1) + 1)− ψ(n)− log

k

α(k − 1) + 1

]
,

where ψ(x) =
d

dx
(log Γx) is the digamma function.

Since ψ(x) is an increasing function of x and α(n− 1) + 1 > n and α(k − 1) + 1 > k for α > 1,
we conclude that Dn is an increasing function of n. It is easy to show that Vn,k ≤lr Vn+1,k and so
Vn,k ≤st Vn+1,k. Moreover, fα−1(F−1(e−x)) is non-decreasing in x for all α > 1, because f(x) is non-
increasing in x. We obtain,

E[fα−1(F−1(e−Vn+1,k ))] ≥ E[fα−1(F−1(e−Vn,k))], (29)

thus

log
E[fα−1(F−1(e−Vn+1,k))]

E[fα−1(F−1(e−Vn,k))]
≥ 0. (30)

Therefore, G∗
α(Ln+1(k))−G∗

α(Ln(k)) ≥ 0 and which implies Gα(Ln(k)) is non-decreasing in n forα > 1.

Now, for 0 < α < 1, we have α(n− 1) + 1 < n and α(k − 1) + 1 < k, then Dn is a decreasing
function of n. Moreover, fα−1(F−1(e−x)) is non-increasing in x for all 0 < α < 1, because f(x) is
non-increasing in x. Thus,

E[fα−1(F−1(e−Vn+1,k ))] ≤ E[fα−1(F−1(e−Vn,k))], (31)

thus

log
E[fα−1(F−1(e−Vn+1,k))]

E[fα−1(F−1(e−Vn,k))]
≤ 0. (32)

Therefore, G∗
α(Ln+1(k))−G∗

α(Ln(k)) ≤ 0 and which implies Gα(Ln(k)) is non-increasing in n for 0 <
α < 1. Hence the theorem.

Now, we present two bounds for the IG measure of the nth lower k-record value.
Theorem 3.5. Let X be a random variable with IG measure Gα(X) < ∞. Then the IG measure

of the nth lower k-records Ln(k) is bounded as

Gα(Ln(k)) ≤ Gα(Un,k)

[
αk

α(k − 1) + 1

]α(n−1)+1

Bn(k)

∞∫

−∞

s(x)fα−1(x)dx, (33)

where
(i) Un,k ∼ Γ(n, k) and

(ii) Bn(k) =
(α(k − 1) + 1)(α(n − 1)α(n−1))

Γ(α(n − 1) + 1)
e−α(n−1), provided the integral exists.

(iii) s(x) =
f(x)

F (x)
.

Proof. The proof is omitted since it is similar to that of Theorem 3.2.
Theorem 3.6. Under the assumptions of Theorem 3.5, we have

Gα(Ln(k)) ≤ (≥)Gα(Un,k)
(αk)α(n−1)+1

(α(k − 1) + 1)α(n−1)+1
Mα−1 (34)

for α > 1 (0 < α < 1), where M = f(m) < ∞ and m = sup{x : f(x) ≤ M} is the mode of the
density f.

Proof. Since M = f(m), where m is the mode of X, we have

f(F−1(y)) ≤ M.
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By putting y = e−Vn,k , we get

f(F−1(e−Vn,k)) ≤ M.

Now, for α > 1,

fα−1(F−1(e−Vn,k)) ≤ Mα−1.

Taking expectation on both sides, we have

E[fα−1(F−1(e−Vn,k))] ≤ Mα−1.

Then by using (13), we get

Gα(Ln(k))

Gα(Un,k)

[
α(k − 1) + 1

αk

]α(n−1)+1

≤ Mα−1.

Therefore,

Gα(Ln(k)) ≤ Gα(Un,k)
(αk)α(n−1)+1

(α(k − 1) + 1)α(n−1)+1
Mα−1.

For 0 < α < 1, we have

fα−1(F−1(e−Vn,k)) ≥ Mα−1.

Therefore similarly, we can prove that for 0 < α < 1,

Gα(Ln(k)) ≥ Gα(Un,k)
(αk)α(n−1)+1

(α(k − 1) + 1)α(n−1)+1
Mα−1.

This completes the proof.

Example 3.4. Let {Xi, i ≥ 1} be a sequence of iid random variables having a common Frechet
distribution with pdf given by

f(x) =
λ

β

(
x

β

)−(λ+1)

e
( x
β
)−λ

, x > 0, λ, β > 0.

Here f(x) is non-increasing.

Since the mode m of the distribution is β
(

λ

1 + λ

) 1
λ

, we have for α > 1 (0 < α < 1),

Gα(Un(k)) ≤ (≥)Gα(Un,k)
(αk)α(n−1)+1

(α(k − 1) + 1)α(n−1)+1

(
λ

β

)α−1 (1 + λ

λ

) (1+λ)(α−1)
λ

e−
(1+λ)(α−1)

λ .

4. CHARACTERIZATION OF EXPONENTIAL DISTRIBUTION
BY IG MEASURE OF k-RECORDS

In this section, we show that exponential distribution maximizes (minimizes) IG measure of k-record
values under some information constraints. Consider a class of distributions F associated with a non-
negative random variable X with F (0) = 0 and failure rate function r that satisfies the conditions:

• r(x) = a(θ)b(x)

• b(x) ≥ M, M > 0,

where a(θ) and b(x) = B′(x) are non-negative functions of θ and x, respectively. We denote this class
of distributions by C . We then provide a characterization result for the class C in terms of IG measure of
the nth upper k-record value Un(k).
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Theorem 4.1. The nth upper k-record value of the distribution F has maximum (minimum) IG
measure in C, for 0 < α < 1(α > 1), if and only if

F (x : θ) = 1− e−Ma(θ)x. (35)

Proof. Let F (x : θ) be a class C and Un(k) denote the corresponding nth upper k-record value. Then,
we have,

Gα(Un(k)) = Gα(Un,k)
(αk)α

α(k − 1) + 1α(n−1)+1

∞∫

0

xα(n−1)e−x(α(k−1)+1)

[
a(θ)e−xb

[
B−1

(
x

a(θ)

)]]α−1 (α(k − 1) + 1)α(n−1)+1

Γ(α(n− 1) + 1)
dx

= Gα(Un,k)(αk)
α(n−1)+1[a(θ)]α−1

∞∫

0

xα(n−1)e−αkx

Γ(α(n − 1) + 1)
bα−1

[
B−1

(
x

a(θ)

)]
dx. (36)

Noting that b(x) ≥ M , then for any 0 < α < 1(α > 1), we have bα−1 ≤ (≥)Mα−1. Therefore,

Gα(Un(k)) ≤ (≥)Gα(Un,k)(αk)
α(n−1)+1 [Ma(θ)]α−1

∞∫

0

xα(n−1)e−αkx

Γ(α(n − 1) + 1)

= Gα(Un,k)[Ma(θ)]α−1, (37)

which is the IG measure of the nth upper k-record of F (x : θ) = 1− e−Ma(θ)x. From this, it is clear that
for any 0 < α < 1(α > 1), the nth upper k-record of exponential distribution has maximum (minimum)
IG measure in class C.

To prove the converse, suppose the nth upper k-record of F (x : θ) has maximum (minimum) IG
measure in class C. Then from (36), we have

Gα(Un(k)) = Gα(Un,k)
(αk)α(n−1)+1

Γ(α(n − 1) + 1)
[a(θ)]α−1

∞∫

0

xα(n−1)e−αkx bα−1

[
B−1

(
x

a(θ)

)]
dx

= Gα(Un,k)M
α−1[a(θ)]α−1

∞∫

0

⎡
⎢⎢⎣
b

[
B−1

(
x

a(θ)

)]

M

⎤
⎥⎥⎦

α−1

xα(n−1)e−αkx(αk)α(n−1)+1

Γ(α(n− 1) + 1)
dx.

Since Gα(Un(k)) is maximum (minimum) for 0 < α < 1(α > 1), we have

Gα(Un(k)) = Gα(Un,k)M
α−1[a(θ)]α−1 (38)

and so

∞∫

0

⎡
⎢⎢⎣
b

[
B−1

(
x

a(θ)

)]

M

⎤
⎥⎥⎦

α−1

xα(n−1)e−αkx(αk)α(n−1)+1

Γ(α(n − 1) + 1)
dx = 1.

Hence,

∞∫

0

⎡
⎢⎢⎢⎣

⎡
⎢⎢⎣
b

[
B−1

(
x

a(θ)

)]

M

⎤
⎥⎥⎦

α−1

− 1

⎤
⎥⎥⎥⎦
xα(n−1)e−αkx(αk)α(n−1)+1

Γ(α(n − 1) + 1)
dx = 0.
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The function inside the integral is a non-negative function of x ≥ 0, because b(x) ≥ M . So,

b

[
B−1

(
x

a(θ)

)]

M
= 1, ∀x > 0,

d

dx

[
B−1

(
x

a(θ)

)]
=

1

Ma(θ)
,

B−1

(
x

a(θ)

)
=

1

Ma(θ)
x+ h(θ). (39)

As X is a non-negative random variable, we have B−1(0) = 0 and so h(θ) = 0. Now, making

the transformation y =
x

a(θ)
in (39), we can conclude that B(x) = Mx, that is, X has exponential

distribution, is required.

5. RELATIVE INFORMATION GENERATING DIVERGENCE OF k-RECORDS

In this section, we study the RIG divergence between a given parent density and corresponding
density of the nth upper and lower k-record values.

Theorem 5.1. The RIG divergence between the densities of nth upper k-record and the parent
distribution is given by the following representation,

Rα(fUn(k)
, f) = Gα(Un,k)

(αk)α(n−1)+1

(α(k − 1) + 1)α(n−1)+1
. (40)

Moreover, Rα(fUn(k)
, f) is an increasing (decreasing) function of n for α > 1(0 < α < 1).

Proof. The RIG divergence between the densities nth upper k-record and the parent distribution is
given by

Rα(fUn(k)
, f) =

knα

[Γn]α

∞∫

−∞

f(x)[−log (1− F (x))]α(n−1)[1− F (x)]α(k−1)dx. (41)

On putting v = −log (1− F (x)), we get

Rα(fUn(k)
, f) =

knα

[Γn]α

∞∫

0

vα(n−1)e−v(α(k−1)+1)dv

=
knα

[Γn]α
α(n − 1) + 1

(α(k − 1) + 1)α(n−1)+1
= Gα(Un,k)

(αk)α(n−1)+1

(α(k − 1) + 1)α(n−1)+1
, (42)

where Gα(Un,k) is defined in (11).

In order to examine the monotonicity behaviour of Rα(fUn(k)
, f), we have

log Rα(fUn(k)
, f) = nαlog k + log Γ(α(n − 1) + 1)− αlog (Γn)

− (α(n − 1) + 1)log (α(k − 1) + 1). (43)

Now differentiating with respect to n, we obtain,

d

dn
log Rα(fUn(k)

, f) = α

[
ψ(α(n − 1) + 1)− ψ(n)− log

k

α(k − 1) + 1

]
. (44)

Because ψ is an increasing(decreasing) function and forα > 1(0 < α < 1), we haveα(n − 1) + 1 > (<)n
and α(k − 1) + 1 > (<)k, the inequality gets satisfied.
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Theorem 5.2. The RIG divergence between the densities nth lower k-record and the parent
distribution is given by the following representation,

Rα(fLn(k)
, f) = Gα(Un,k)

(αk)α(n−1)+1

(α(k − 1) + 1)α(n−1)+1
. (45)

Moreover, Rα(fLn(k)
, f) is an increasing (decreasing) function of n for α > 1 (0 < α < 1).

Proof. The proof is omitted since it is similar to that of Theorem 5.1.

6. ESTIMATION OF IG MEASURE FOR WEIBULL DISTRIBUTION
BASED ON k-RECORD VALUES

In this section, we consider the estimation of IG measure for Weibull distribution based on nth upper
k-record values. We obtain the maximum likelihood estimators (MLEs) and Bayes estimation of IG
measure using MCMC method.

A two-parameter Weibull distribution has cdf given by

F (x|β, λ) = 1− e−λxβ
. (46)

The pdf corresponding to the above cdf is given by

f(x|β, λ) = βλxβ−1e−λxβ
. (47)

The Weibull distribution is widely used in many fields, including reliability engineering, survival analysis,
hydrology, meteorology, and insurance. Furthermore, parametric inference of the Weibull distribution
based on record data is of special interest because the Weibull distribution naturally arises from the
extreme value theorem and has a significant physical interpretation in numerous practical contexts.
[15] considered the estimation of entropy of Weibull distribution under generalized progressive hybrid
censoring.

The IG measure for the Weibull distribution with cdf given in (46) is given by

Gα(λ, β) =
kαn

Γ(n)α
λ

α−1
β βα−1

Γ(α(n− 1
β ) +

1
β )

(kα)α(n−
1
β
)+ 1

β

. (48)

6.1. Maximum Likelihood Estimation

In this subsection, we obtain the MLEs of IG measure for the two-parameter Weibull distribution
based on nth upper k-record values. Let Ri, i = 1, 2, ..., n be the first nth upper k-record values arising
from Weibull distribution with cdf given in (46). LetDn = (R1, R2, ..., Rn). Then from (47) the likelihood
function is given by

L(λ, β|dn) = (kλβ)ne−kλrβn

n∏
i=1

rβ−1
i ,

where dn = (r1, r2, ..., rn). The natural logarithm of the likelihood function is given by

log L(λ, β|dn) = nlog kλβ − kλrβn +
n∑

i=1

log rβ−1
i .

When we differentiate log L(λ, β|dn) with respect to β and λ and equates to zero,

∂logL
∂β

=
n

β
− kλrβn log rn +

n∑
i=1

log ri = 0 (49)

and
∂logL
∂λ

=
n

λ
− krβn = 0. (50)
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From (50), we get

λ̂ =
n

krβn
.

By putting the value of λ̂ in (49), we get

n

β
− nlog rn +

n∑
i=1

log ri = 0. (51)

Therefore the MLE of β is given by

β̂ =
n

nlog rn −
∑n

i=1 log ri
.

Thus the MLE of λ is obtained as

λ̂ =
n

krβn
.

Then by invariant property of MLE, the MLE of IG measure for Weibull distribution based on nth upper
k-record values is given by

ĜMLE =
kαn

Γ(n)α
λ̂

α−1

β̂ β̂α−1
Γ(α(n − 1

β̂
) + 1

β̂
)

(kα)
α(n− 1

β̂
)+ 1

β̂

. (52)

6.2. Bayesian Estimation

In this subsection, we consider the Bayesian estimation of the IG measure for the two-parameter
Weibull distribution based on upper k-record values. Recently, Hassan and Zaky [22] studied the
Bayesian estimation of entropy function for Lomax distribution based on record values and Al-Labadi
and Berry [3] studied the Bayesian estimation of extropy and goodness of fit tests. Chacko and Asha
[10] obtained estimators for the entropy functions of a Weibull distribution based on record values,
and Chacko and Asha [9] obtained estimators for the entropy function of a generalized exponential
distribution based on record values. Bayesian estimation of a two-parameter Weibull distribution using
extension of Jeffreys’ prior information with three loss functions has been studied by [21].

Here, we consider Bayesian estimation of IG measure for the two-parameter Weibull distribution
under symmetric as well as asymmetric loss functions. For a symmetric loss function we consider the
squared error loss (SEL) function and for assymetric loss functions we consider both LINEX and entropy
loss functions. The Bayes estimate of any parameter μ under SEL is the posterior mean of μ. The Bayes
estimate of μ under LINEX loss function can be obtained as

μ̂LB = −1

h
log{Eμ(e

−hμ|x)}, h �= 0,

provided Eμ(.) exists. The Bayes estimate of μ for the general entropy loss (EL) function is obtained as

μ̂EB = (Eμ(μ
−q|x))−

1
q , q �= 0.

Let Ri, i = 1, 2, ..., n be the first n upper k-record values arising from Weibull distribution with pdf given
in (47). Then the likelihood function is given by

L(λ, β|dn) = (kλβ)ne−λrβnk
n∏

i=1

rβ−1
i ,

where dn = (r1, r2, ..., rn). Assume that the prior distributions of β and λ follow independent gamma
distributions with density functions respectively given by

π1(β|a, b) =
ba

Γa
βa−1e−bβ ; a > 0, b > 0,
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and

π2(λ|c, d) =
dc

Γc
λc−1e−dλ; c > 0, d > 0.

Thus the joint prior distribution of β and λ is given by

π(λ, β) =
badc

ΓaΓc
βa−1λc−1e−bβe−dλ.

Then the joint posterior density of β and λ given Dn = dn can be written as

π∗(λ, β|dn) =
L(λ, β|dn)π(λ, β)∫∫
L(λ, β|dn)π(λ, β)dλdβ

. (53)

Therefore the Bayes estimate of any function g(β, λ) of β and λ under SEL, LL, and EL are respectively
given by

ĝS =

∫∫
g(β, λ)L(λ, β|dn)π(λ, β)dλdβ∫∫

L(λ, β|dn)π(λ, β)dλdβ
, (54)

ĝL = −1

h
log

[∫∫
e−hg(β,λ)L(λ, β|dn)π(λ, β)dλdβ∫∫

L(λ, β|dn)π(λ, β)dλdβ

]
, (55)

and

ĝE =

[∫∫
(g(β, λ))−qL(λ, β|dn)π(λ, β)dλdβ∫∫

L(λ, β|dn)π(λ, β)dλdβ

]−1
q

. (56)

It is not possible to compute (54)–(56) explicitly. Thus we propose MCMC method to find the Bayes
estimates for the IG measure given in (48).

6.3. MCMC Method

In this subsection, we consider the MCMC method to generate samples from the posterior distribu-
tions and then find the Bayes estimates for IG measure. The joint posterior distribution given in (53) can
be written as

π∗(λ, β|dn) ∝ βn+a−1λc+n−1e−λ(d+rβnk)e−bβe−(β−1)
∑n

i=1 log ri . (57)

From (57) the conditional posterior distribution of β given λ and dn is given by

π∗
1(β|λ, dn) ∝ βn+a−1e−λrβnke−β(b+

∑n
i=1 log ri). (58)

Again from (57), the conditional posterior distribution of λ given β and dn is given by

π∗
2(λ|β, dn) ∝ λc+n−1e−λ(d+rβnk). (59)

Thus from (59) we can see that for a given β, the conditional posterior distribution of λ follows a Gamma
distribution with parameters (n+ c) and (d+ rβnk). That is, λ ∼ Gamma(n+ c, d+ rβnk). Therefore one
can easily generate sample from the posterior distribution of λ. But it is not possible to generate random
variables from the posterior distribution of β given in (58) using standard random number generation
methods. Hence we use Metropolis–Hasting (M–H) algorithm to generate sample from (58) (see,
[14]). Since the plot of (58) is similar to a normal plot we take normal proposal density for β for the
M–H algorithm.

By setting initial values β(0) and λ(0), let β(t) and λ(t), t = 1, 2, ..., N be the observations generated
from (58) and (59) respectively. Then the Bayes estimator of IG measure given in (48) under SEL, LL,
and EL, by taking first m iterations as burn-in period, are respectively given by

ĜSEL =
1

N −m

N∑
t=m+1

Gα(λ
(t), β(t)), (60)
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Table 1. The estimate and the corresponding MSE for maximum likelihood estimator and Bayes estimator for IG
measure of Weibull distribution when α = 0.75

k n λ β IG MLE SEL LL EL

IGMLE MSE IGSEL MSE IGLL MSE IGEL MSE

2 6 2 2 1.02286 1.07592 0.04049 1.12587 0.00841 1.20485 0.02963 1.12020 0.00808

6 2 2.5 0.99473 1.07406 0.04387 1.09751 0.00612 1.12536 0.02033 1.09230 0.00589

6 2.5 2 0.95971 1.07486 0.05079 1.07650 0.00636 1.11656 0.06766 1.07175 0.00615

8 2 2 1.02406 1.06530 0.03974 1.09157 0.00703 1.10270 0.00786 1.08755 0.00685

8 2 2.5 0.99589 1.06989 0.04290 1.08131 0.00598 1.09413 0.01160 1.07717 0.00569

8 2.5 2 0.95341 1.07081 0.05016 1.02521 0.00451 1.03317 0.00487 1.02191 0.00449

10 2 2 1.02475 1.07356 0.03973 1.06500 0.00676 1.07258 0.00727 1.06196 0.00662

10 2 2.5 0.99656 1.07297 0.04224 1.04091 0.00574 1.04801 0.00616 1.03796 0.00562

10 2.5 2 0.94844 1.07483 0.05004 1.00322 0.00454 1.00895 0.00481 1.00070 0.00447

3 6 2 2 0.97231 1.07324 0.04773 1.06559 0.00550 1.07818 0.00645 1.06120 0.00531

6 2 2.5 0.94557 1.07253 0.05364 1.06545 0.00464 1.07835 0.00526 1.06102 0.00566

6 2.5 2 0.92157 1.07582 0.06145 1.03277 0.00392 1.04419 0.00492 1.02890 0.00381

8 2 2 0.97345 1.06888 0.04662 1.04924 0.00523 1.05802 0.00575 1.04577 0.00510

8 2 2.5 0.94667 1.06865 0.05242 1.03591 0.00457 1.04435 0.00507 1.03256 0.00556

8 2.5 2 0.91553 1.06940 0.06114 0.99331 0.00455 0.99985 0.00486 0.99044 0.00446

10 2 2 0.97411 1.07205 0.04677 1.02746 0.00462 1.03542 0.00506 1.02472 0.00453

10 2 2.5 0.94731 1.07110 0.05212 1.01535 0.00427 1.02173 0.00503 1.01261 0.00537

10 2.5 2 0.91075 1.07211 0.06040 0.97036 0.00399 0.97535 0.00418 0.96805 0.00413

ĜLL = −1

h
log

[
1

N −m

N∑
t=m+1

e−hGα(λ(t),β(t))

]
, (61)

and

ĜEL =

[
1

N −m

N∑
t=m+1

(Gα(λ
(t), β(t)))−q

]− 1
q

, (62)

where Gα(λ
(t), β(t)) is given in (48).

6.4. Simulation Study

In this subsection, we carry out a simulation study for illustrating the estimation procedures
developed in previous subsections. First we obtain the MLEs for IG measure using (52). We have
obtained the ML estimators and the corresponding MSE of MLEs for different values of n using 1000
simulated samples for different combinations of β and λ and are given in Tables 1 and 2. For the
simulation studies for Bayes estimators we take the hyper parameters for the prior distributions of β and
λ as a = 2, b = 2, c = 2, and d = 2. We have obtained the Bayes estimators for IG measure of Weibull
distribution using upper k-record values under SEL, LL, and EL functions using MCMC method.

For that we use the following algorithm.

1. Generate upper k-record values from two-parameter Weibull distribution with parameters β
and λ.
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Table 2. The estimate and the corresponding MSE for maximum likelihood estimator and Bayes estimator for IG
measure of Weibull distribution when α = 1.5

k n λ β IG MLE SEL LL EL

IGMLE MSE IGSEL MSE IGLL MSE IGEL MSE

2 6 2 2 1.03794 1.06272 0.03973 0.91194 0.01950 0.93523 0.02528 0.89822 0.01452

6 2 2.5 1.09749 1.06686 0.03917 0.91228 0.01579 0.93583 0.02889 0.89842 0.01512

6 2.5 2 1.17930 1.06301 0.05821 1.01174 0.01513 1.03803 0.02604 0.99797 0.02512

8 2 2 1.03621 1.06715 0.03951 0.99425 0.01771 1.01560 0.02070 0.98287 0.01970

8 2 2.5 1.09566 1.06837 0.03897 1.00611 0.01560 1.02864 0.02716 0.99426 0.01401

8 2.5 2 1.19566 1.06058 0.05779 1.09550 0.01205 1.11957 0.02157 1.08394 0.02051

10 2 2 1.03520 1.06630 0.03916 1.03311 0.01712 1.07659 0.01335 1.01186 0.01463

10 2 2.5 1.09459 1.06906 0.03838 1.08949 0.01157 1.13844 0.02517 1.06683 0.01409

10 2.5 2 1.20866 1.06600 0.05231 1.25328 0.01601 1.31119 0.02362 1.23000 0.20155

3 6 2 2 1.14867 1.07261 0.04415 0.99301 0.02408 1.01679 0.02479 0.98020 0.02402

6 2 2.5 1.21457 1.07963 0.05733 1.00180 0.01515 1.02602 0.01580 0.98881 0.01527

6 2.5 2 1.27891 1.07551 0.08515 1.04270 0.01808 1.06795 0.01907 1.02984 0.01809

8 2 2 1.14675 1.06388 0.04341 1.05458 0.02159 1.07715 0.02267 1.04334 0.02157

8 2 2.5 1.21254 1.07302 0.05695 1.09208 0.01381 1.11568 0.02496 1.08072 0.02381

8 2.5 2 1.29666 1.07136 0.08214 1.12852 0.01720 1.15284 0.01808 1.11725 0.01718

10 2 2 1.14564 1.07783 0.04244 1.09175 0.02040 1.11215 0.02149 1.08195 0.02040

10 2 2.5 1.21137 1.07831 0.05561 1.10537 0.01378 1.12685 0.02495 1.09521 0.02301

10 2.5 2 1.31076 1.07854 0.08185 1.17888 0.01163 1.20159 0.01264 1.16886 0.01598

2. Calculate estimators of IG measure using the generated upper k-record values using MCMC
method as describe below.

(a) Start with initial values β(0) and λ(0).

(b) Set t = 1.

(c) Generate λ(t) from Gamma(n + c, d + rβ
(t−1)

n k).

(d) Using M–H algorithm, generate β(t) from π∗
1(β|λ(t), dn).

(e) Calculate Ĝα(λ
(t), β(t)) using (48).

(f) Set t = t+ 1.

(g) Repeat steps (c) to (f) for N = 50000 times.

(h) Calculate the Bayes estimators for the IG measure Gα(λ, β) using (60) to (62) by taking
burn-in-period m = 5000.

3. Repeat the steps 1 and 2 for 1000 times.

4. Calculate the Bayes estimates and the corresponding MSEs of the estimators.

Repeat the simulation study for n = 6, 8, 10, and for different values of β and λ. The ML estimates,
the Bayes estimators and the corresponding MSE for IG measure under SEL, LL, and EL functions for
α = 0.75 are given in Table 1 and for α = 1.5 are given in Table 2. From Tables 1 and 2 we have the
following inference.
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1. The MSEs of all estimators decrease when n increases.

2. The MSEs corresponding to the Bayes estimates are smaller than that of MLEs.

3. Among the Bayes estimators, estimators under EL function have the least MSE.

7. CONCLUSIONS

In this paper, we considered the IG and RIG measures for the nth upper and lower k-record value.
The monotone behaviour of the IG measure of records has been established, and some bounds for the
nth upper k-record value were obtained. Further, we have established some characterization results
of exponential distribution by maximisation (minimization) of IG measure of its corresponding record
values under some conditions. Then, we provided a discussion on the RIG divergence between the
densities of k-record values and the distribution of the underlying sequence of random variables. Finally,
as an application of IG measure, we obtained the MLEs and the Bayes estimates for the IG measure
of the Weibull distribution based on upper k-record values. Among different estimators, the Bayes
estimator under EL function performs better than MLE and Bayes estimators under SEL and LL in
terms of MSE.
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