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What Intraclass Covariance Structures
Can Symmetric Bernoulli Random Variables Have?

Iosif Pinelis*

Michigan Technological University, Houghton, Michigan, USA
Received June 16, 2022; revised September 24, 2022; accepted October 3, 2022

Abstract—The covariance matrix of random variables X1, . . . , Xn is said to have an intraclass
covariance structure if the variances of all the Xi’s are the same and all the pairwise covariances of
the Xi’s are the same. We provide a possibly surprising characterization of such covariance matrices
in the case when the Xi’s are symmetric Bernoulli random variables.
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For natural n ≥ 2, let Σ = [Σi,j]i,j∈[n] be the covariance matrix of random variables (r.v.’s)
X1, . . . ,Xn with finite second moments, so that Σi,j = Cov(Xi,Xj) for all i and j in the set [n] :=
{1, . . . , n}. We are assuming that the matrix Σ is nonzero.

The covariance matrix Σ is said to have an intraclass covariance structure if (i) Σi,i = VarXi =
Cov(Xi,Xi) is the same for all i ∈ [n] and (ii) Σi,j = Cov(Xi,Xj) is the same for all distinct i and j
in [n]. Let ICCSn denote the set of all n× n covariance matrices that have an intraclass covariance
structure.

In particular, if the r.v.’s X1, . . . ,Xn are exchangeabl—that is, if the joint distribution of the Xi’s
is invariant with respect to all permutations of the indices 1, . . . , n (see e.g., [4] for much more on
exchangeability of r.v.’s), then the covariance matrix Σ will be in the set ICCSn. So, one may say that
the covariance matrix Σ has an intraclass covariance structure if the r.v.’s X1, . . . ,Xn pertain to items
that belong to one class and thus are exchangeable in a certain weak sense; this explains the use of the
term “intraclass”. The notion of an intraclass covariance structure was introduced by Fisher [3] and has
been studied in many subsequent papers, including e.g., [7, 9, 10].

Obviously, the covariance matrix Σ is in the set ICCSn if and only if

Σ = (a− b)In + b 1n1
�
n (1)

for some real numbers a and b, where In is the n× n identity matrix and 1n := [1, . . . , 1]�, the n× 1
matrix of 1’s.

Recall that a real n× n matrix is a covariance matrix if and only if it is positive semidefinite; cf. e.g.,
[2, Sect. III.6, Theorem 4]. Note that (i) 1n is an eigenvector of the matrix 1n1

�
n belonging to the

eigenvalue n and (ii) any nonzero vector orthogonal to 1n is an eigenvector of the matrix 1n1
�
n belonging

to the eigenvalue 0. So, the only eigenvalues of the matrix Σ of the form (1) are a− b+ bn and a− b.
It follows that the matrix Σ of the form (1) is in ICCSn if and only if − a

n−1 ≤ b ≤ a, that is, if and only
if the pairwise correlation, ρ = b/a, between r.v.’s whose covariance matrix has an intraclass covariance
structure is no less that −1/(n − 1):

ρ ≥ ρn,min := − 1

n− 1
. (2)

This is in contrast with the general lower bound −1 on the correlation between arbitrary r.v.’s. Let us
refer to the values of ρ satisfying condition (2) as good.
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In the rest of this note, we shall consider the special case when the r.v.’s X1, . . . ,Xn are symmetric
Bernoulli, so that

P(Xi = 1) = 1
2 = P(Xi = 0) (3)

for all i ∈ [n]. This important case has been extensively studied in computer science in general and
in machine learning in particular (see e.g., [1, 5, 8, 11]), as well as in other applications of probability
theory—though mainly when the Xi’s are independent.

The question now is the following:

For what values of pairwise correlation ρ do there exist symmetric Bernoulli r.v.’s X1, . . . ,Xn

whose covariance matrix Σ is in ICCSn?

Let us refer to such values of ρ as symmetric-binary-good. Clearly, any symmetric-binary-good
value of ρ must be good. One then may wonder whether every good value of ρ is symmetric-binary-
good.

The answer to this question may seem surprising:

• if n is even, then yes, every good value of ρ is symmetric-binary-good;

• if n is odd, then “nearly every” good value of ρ is symmetric-binary-good.

For symmetric Bernoulli r.v.’s X1, . . . ,Xn whose covariance matrix Σ is in ICCSn, it is a bit more
convenient to deal with the probability

p := P(X1 = X2)

than with the correlation ρ. It is easy to see that the values of ρ and p are in the simple bijective
correspondence

(−1, 1) � 2p − 1 = ρ ←→ p =
1 + ρ

2
∈ (0, 1), (4)

so that P(Xi = Xj) = p for all distinct i and j in [n].
Let us refer to the values of p corresponding to the good values of ρ as good values of p, and let us

similarly define the symmetric-binary-good values of p. So, in view of (2) and (4), a value p ∈ (0, 1) is
good if and only if

p ≥ pn :=
n− 2

2(n − 1)
. (5)

Thus, we have to determine the symmetric-binary-good values of p.
Suppose for a moment that p ∈ (0, 1) is symmetric-binary-good. Then there exist symmetric

Bernoulli r.v.’s X1, . . . ,Xn such that P(Xi = Xj) = p for all distinct i and j in [n]. Letting g stand
for the joint probability mass function of the r.v.’s X1, . . . ,Xn, we note that g is a nonnegative function
such that

(i)
∑

x∈{0,1}n g(x) = 1,

(ii)
∑

x∈{0,1}n 1(xi = 0)g(x) = 1
2 for all i ∈ [n],

(iii)
∑

x∈{0,1}n 1(xi = xj)g(x) = p for all distinct i and j in [n];

of course, here xi denotes the ith coordinate of the vector x = (x1, . . . , xn) ∈ {0, 1}n. By symmetry,
conditions (i)–(iii) will hold with g̃(x) := 1

n!

∑
π∈Πn

g(π(x)) in place of g(x), where Πn is the set of all
permutations of the set [n]. Note that g̃(x) = f(

∑n
1 xi) for some nonnegative function f : {0, . . . , n} →

R and all x ∈ {0, 1}n. So, conditions (i)–(iii) can be rewritten as
(I)

∑n
k=0

(n
k

)
f(k) = 1,

(II)
∑n

k=0

(
n−1
k

)
f(k) = 1

2 for all i,
(III)

∑n
k=0 an,kf(k) = p,
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where

an,k =

(
n− 2

k

)

+

(
n− 2

k − 2

)

;

of course,
(n−1

n

)
= 0,

(n−2
k

)
= 0 if k ≥ n− 1 and

(n−2
k−2

)
= 0 if k ≤ 1.

Thus, for any given n ≥ 2 and p ∈ (0, 1), we want to see whether there is a nonnegative function
f : {0, . . . , n} → R such that conditions (I)–(III) hold.

Towards this goal, consider the problem of finding the extrema of
∑n

k=0 an,kf(k) over all f ∈ Fn,
where Fn is the set of all nonnegative function f : {0, . . . , n} → R satisfying condition (I). In view of the
symmetries

(n
k

)
=

( n
n−k

)
and an,k = an,n−k, without loss of generality the functions f are symmetric in

the same sense: f(k) = f(n− k) for all k ∈ {0, . . . , n}—otherwise, replacing f(k) by 1
2 (f(k) + f(n−

k)), we will have the sums in (I) and (III) unchanged. Next, consider the ratios

rk := rn,k :=
an,k(n
k

) =
(n− k)(n − k − 1) + k(k − 1)

n(n− 1)
.

Note that rk+1 ≤ rk if 0 ≤ k ≤ n−1
2 and rk+1 ≥ rk if n−1

2 ≤ k ≤ n− 1. Also, rk = rn−k. So, the smallest
among the rk’s is/are the one/ones with index/indices k closest to n

2 .

More specifically, if n = 2m− 1 is odd, then rk ≥ rm = rm−1 for all k ∈ {1, . . . , n− 1}. Letting then

f odd
min(m− 1) :=

1/2
( n
m−1

) =
1/2
(n
m

) , f odd
min(m) :=

1/2
(n
m

) =
1/2

( n
m−1

) ,

f odd
min(k) := 0 for all k ∈ {0, . . . , n} \ {m− 1,m},

we see that f odd
min is a symmetric function in Fn and

(rk − rm)(f odd
min(k)− f(k)) ≤ 0

for all k ∈ {0, . . . , n} and all symmetric functions f ∈ Fn, which implies
n∑

k=0

an,kf
odd
min(k)−

n∑

k=0

an,kf(k) =

n∑

k=0

an,k(f
odd
min(k)− f(k))

=

n∑

k=0

(
n

k

)

rk(f
odd
min(k)− f(k))

=

n∑

k=0

(
n

k

)

(rk − rm)(f odd
min(k)− f(k)) ≤ 0.

It follows that f odd
min is a minimizer of

∑n
k=0 an,kf(k) over all f ∈ Fn, that is, over all nonnegative f

satisfying condition (I). Moreover, condition (II) is satisfied with f odd
min in place of f .

We conclude that, in the case when n = 2m− 1 is odd, f odd
min is a minimizer of

∑n
k=0 an,kf(k)

over all nonnegative f satisfying both conditions (I) and (II). The corresponding minimum value of∑n
k=0 an,kf(k) is

podd
n,min :=

n∑

k=0

an,kf
odd
min(k) =

m− 1

2m− 1
=

n− 1

2n
.

Similarly, in the case when n = 2m is even, a minimizer of
∑n

k=0 an,kf(k) over all nonnegative f
satisfying both conditions (I) and (II) is given by

f even
min (m) :=

1
(n
m

) and f even
min (k) := 0 for all k ∈ {0, . . . , n} \ {m},
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and the corresponding minimum value of
∑n

k=0 an,kf(k) is

pevenn,min :=

n∑

k=0

an,kf
even
min (k) =

m− 1

2m− 1
=

n− 2

2(n − 1)
.

The above minimization can of course be recognized as something similar to, or even a special case
of, the Neyman–Pearson lemma [6, part III].

The just considered cases of odd and even n can be summarized as follows. For

mn := �n/2	,
let fmin be the symmetric function in Fn such that

∑
k∈{mn,n−mn} fmin(k) = 1, so that f(k) = 0 for

k ∈ {0, . . . , n} \ {mn, n−mn}. Then fmin is a minimizer of
∑n

k=0 an,kf(k) over all nonnegative f
satisfying conditions (I) and (II). The corresponding minimum value of

∑n
k=0 an,kf(k) is

pn,min :=

n∑

k=0

an,kfmin(k) =
mn − 1

2mn − 1
.

The extremal joint distribution of the binary r.v.’s X1, . . . ,Xn corresponding to the minimizer fmin
can be described as follows: the random set I := {i ∈ [n] : Xi = 1} is uniformly distributed on the set
Sn :=

( [n]
mn

)
∪
( [n]
n−mn

)
, where

([n]
k

)
denotes the set of all subsets of cardinality k of the set [n]; of course,

Sn :=
( [n]
n/2

)
if n is even.

Next, letting

fmax(0) :=
1
2 , fmax(n) :=

1
2 , fmax(k) := 0 for all k ∈ {1, . . . , n− 1},

we see that the nonnegative function fmax satisfies conditions (I) and (II), and also
∑n

k=0 an,kfmax(k) =
1. On the other hand, for any nonnegative function f satisfying conditions (I) and (II), the sum∑n

k=0 an,kf(k) is a probability and hence does not exceed 1. We conclude that fmax is a maximizer
of
∑n

k=0 an,kf(k) over all nonnegative f satisfying conditions (I) and (II). The corresponding maximum
value of

∑n
k=0 an,kf(k) is

pn,max :=
n∑

k=0

an,kfmax(k) = 1.

The extremal joint distribution of the binary r.v.’s X1, . . . ,Xn corresponding to the maximizer fmax

can be described as follows: the random set I = {i ∈ [n] : Xi = 1} is uniformly distributed on the set
{∅, [n]}; that is, P(I = ∅) = 1

2 = P(I = [n]).
Now note that the set of all values of

∑n
k=0 an,kf(k), where f : {0, . . . , n} → R is a nonnegative

function such that conditions (I) and (II) hold, is convex and therefore coincides with the interval
[pn,min, pn,max] = [pn,min, 1].

Thus, a value p ∈ (0, 1) is symmetric-binary-good if and only if

p ≥ pn,min =
mn − 1

2mn − 1
=

⎧
⎪⎨

⎪⎩

n− 2

2(n − 1)
= pn if n is even

n− 1

2n
= pn+1 > pn if n is odd,

where pn is as in (5).
Because pn+1 is close to pn for large n and in view of the correspondence (4) between ρ and p, we

have now confirmed that

• if n is even then every good value of ρ is symmetric-binary-good;

• if n is odd then, for large n, nearly every good value of ρ is symmetric-binary-good.

One may also note here that for large n the lower bound ρn,min (defined in (2)) is close to (but less
than) 0, whereas the lower bound pn,min is close to (but less than) 1

2 .
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