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Abstract—In a variety of applicative fields the level of information in random quantities is commonly
measured by means of the Shannon Entropy. In particular, in reliability theory and survival
analysis, time-dependent generalizations of this measure of uncertainty have been considered to
dynamically describe changes in the degree of information over time. The Residual Entropy and
the Residual Varentropy, for example, have been considered in the specialized literature to measure
the information and its variability in residual lifetimes. In a similar way, one can consider dynamic
measures of information for past lifetimes, i.e., for random lifetimes of items when one assumes that
their failures occur before a fixed inspection time. This paper provides a study of the Past Varentropy,
defined as the dynamic measure of variability of information for past lifetimes. From this study
emerges the interest on a particular family of lifetimes distributions, whose members satisfy the
property to be the only ones having constant Past Varentropy.
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1. INTRODUCTION

Let X be an absolutely continuous non-negative random variable representing the lifetime of an item,
or of an individual. If fX denotes its density, one can define the well-known Shannon information
measure (or Entropy) as

He(X) = E[IC(X)] = E[− log fX(X)] = −
+∞∫

0

fX(x) log fX(x)dx, (1.1)

where

IC(X) = − log fX(X)

denotes the Information Content of X, which can be understood as the self-information or “surprisal”
associated with the possible outcomes of X [34]. Actually, He(X) measures the expected uncertainty
contained in fX related to the predictability of an outcome of X. We refer [17, 35] two recent
comprehensive monographs on information measures and their applications in a variety of fields (see also
[29]). Note that, in statistics, one may think of the information content as the log likelihood function,
that is of great interest in parameters estimation.

As already mentioned, it follows from (1.1) that the Shannon entropy represents the expectation of
the (random) information content IC(X). But for different purposes (see, e.g., [6]), one can also consider
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its variance, in order to evaluate the concentration of the information content around the entropy He(X).
Thus, one can also be interested in the Varentropy of X (sometimes called Minimal Coding Variance
of X, whenever X is discrete), defined as

Ve(X) = Var[IC(X)] = Var[− log fX(X)]

= Var[log fX(X)] = E
[
(log fX(X))2

]
− [He(X)]2

=

+∞∫

0

fX(x)[log fX(x)]2dx−

⎡
⎣

+∞∫

0

fX(x) log fX(x)dx

⎤
⎦
2

. (1.2)

In recent literature several papers deal with the varentropy and its properties and applications, such as
[26, 2] and references therein. For example, approximations of minimal rates for data compression in
terms of entropy and varentropy are given in Kontoyiannis and Verdú (2014). Also, knowing the entropy
and the varentropy one can define reference intervals for the information content IC(X) of the form

E[IC(X)]± k
√

Var[IC(X)] = He(X)± k
√

Ve(X) (1.3)

for suitable choices of k. In the statistics field, this interval can be used to evaluate the uncertainty about
likelihood estimates.

It must be pointed out that the Shannon entropy, as well as the varentropy, provides a measure of
information for the random lifetime of an item which is new, whenever X represents its lifetime. For such
reason, different time dependent versions of this measure have been proposed in the context of reliability
and survival analysis, where the behavior of residual lifetimes along time, or past lifetimes, are the main
objects of the studies. The most well-known version of such dynamic ones is the Residual Entropy
defined and studied in [28, 12], whose definition is recalled here. Given the absolutely continuous random
lifetimeX, having supportS ⊆ R

+, survival functionFX and density fX , letXt = (X − t|X > t) denote
the corresponding Residual Lifetime at time t ∈ S, i.e., the variable whose density is given by

fXt(x) =
fX(x+ t)

FX(t)
, x : x+ t ∈ S.

The Residual Entropy of X is the function of time t ∈ S defined as

He(Xt) = E[IC(Xt)] = E[− log fXt(Xt)] = −
+∞∫

t

fX(x)

FX(t)
log

fX(x)

FX(t)
dx.

It must be pointed out that the entropy (and the varentropy) of a random lifetime Y is actually a functional
of its density fY , depending only on the distribution of Y and not on the value assumed by Y . But the
residual entropy (such as the residual varentropy defined below) can be considered as a function of the
inspection time t: to every time t it corresponds a real value He(Xt) (defined as a functional of the density
fXt), and this is the reason why we treat them here as if they were functions of t.

In a similar manner it can be defined a dynamic version of the varentropy, useful to evaluate the
concentration of the information content in residual lifetimes when the time increases. This is the
Residual Varentropy, studied in details in [11, 32] defined as

Ve(Xt) = Var[IC(Xt)] = Var[− log fXt(Xt)]

= Var[log fXt(Xt)] = E
[
(log fXt(Xt))

2
]
− [He(Xt)]

2

=

+∞∫

t

fX(x)

FX(t)

[
log

fX(x)

FX(t)

]2
dx−

⎡
⎣

+∞∫

t

fX(x)

FX(t)
log

fX(x)

FX(t)
dx

⎤
⎦
2

, t ∈ S.

A large number of studies in reliability theory deal with past lifetime, that is the random variable
conditioned on the fact that the failure occurs before a specified inspection time t. We refer the reader
[13, 29, and 20], and references therein, for results concerning past lifetime in reliability analysis (see
also [13, 29, and 20], In many situations, uncertainty can refer to the past instead of the future. In fact,
if we consider a system which is failed or down at time t, it could be of interest to study the uncertainty
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about the time in (0, t) in which it has failed. Moreover, past lifetime plays a central role in the analysis
of right-censored data (see, e.g., [1]). For past lifetimes, as well for residual lifetimes, it can be useful
to provide dynamic versions of the entropy and the varentropy, whose definitions are similar to the ones
described above. To this aim, recall that given the absolutely continuous random lifetime X, having
support S ⊆ R

+, cumulative distribution FX and density fX , its Past Lifetime at time t ∈ S is the
variable tX = (X|X ≤ t) whose density is

ftX(x) =
fX(x)

FX(t)
x ∈ (0, t), (1.4)

and whose mean, known as Mean Past Lifetime, is given by

μ̃X(t) =

t∫

0

(
1− FX(x)

FX(t)

)
dx = t− 1

FX(t)

t∫

0

FX(x)dx, t ∈ S. (1.5)

The corresponding Past Entropy and Past Varentropy can be thus defined as

He(tX) = E[IC(tX)] = E[− log ftX(tX)] = −
t∫

0

fX(x)

FX(t)
log

fX(x)

FX(t)
dx (1.6)

and

Ve(tX) = Var[IC(tX)] = Var[− log ftX(tX)]

= Var[log ftX(tX)] = E
[
(log ftX(tX))2

]
− [He(tX)]2

=

t∫

0

f(x)

F (t)

[
log

fX(x)

FX(t)

]2
dx−

⎡
⎣

t∫

0

fX(x)

FX(t)
log

fX(x)

FX(t)
dx

⎤
⎦
2

(1.7)

for all t ∈ S.

The past entropy He(tX) has been studied in details in [10], but there are no detailed studies
describing specific properties of the past varentropy Ve(tX). The purpose of this paper is to fill this
lack, providing a list of useful formulas, properties and examples for the past varentropy. As pointed out
in the following sections, the past varentropy satisfies some properties which are similar to those satisfied
by the residual varentropy (described in [11]), but one can also observe differences. For example, while
there exist at least three families of lifetimes distributions with continuous densities for which the residual
varentropy is constant, on the contrary there exists only one family for which such property is satisfied
by the past varentropy.

2. MAIN RESULTS

First, we provide an alternative simple formula for the past varentropy of a random lifetime X. To this
aim, recall that the reversed hazard rate function of X is defined as

qX(t) = lim
Δt→0+

1

Δt
P(X ≥ t−Δt|X ≤ t) =

fX(t)

FX(t)
(2.1)

for t ∈ S. The reversed hazard rate function is the instantaneous failure rate occurring immediately
before the time point t, i.e., that the failure occurs just before the time point t, given that the unit has
not survived longer than time t (see [5, 13] for more details about the reversed hazard rate function). We
recall also the notion of inverse cumulative reversed hazard rate function, that is defined as

QX(t) =

+∞∫

t

qX(x)dx = − logFX(t), (2.2)
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(see for instance Li and Li, 2008). Also, note that the past entropy can be expressed as

He(tX) = −QX(t)− 1

FX(t)

t∫

0

fX(x) log fX(x)dx

= 1− 1

FX(t)

t∫

0

fX(x) log qX(x)dx (2.3)

as shown in Di Crescenzo and Longobardi (2002). Thus, through (1.7) and (2.3), one obtains

Ve(tX) =

t∫

0

f(x)

F (t)

[
log

fX(x)

FX(t)

]2
dx− [He(tX)]2

=
1

FX(t)

t∫

0

fX(x)(log fX(x))2dx+ (log FX(t))2 − 2 log FX(t)

FX(t)

t∫

0

fX(x) log fX(x)dx

− [He(tX)]2 =
1

FX(t)

t∫

0

fX(x)(log fX(x))2dx+ (QX(t))2 +
2QX(t)

FX(t)

t∫

0

fX(x) log fX(x)dx

− [He(tX)]2 =
1

FX(t)

t∫

0

fX(x)(log fX(x))2dx+ (QX(t))2 − 2QX(t) [QX(t) +He(tX)]− [He(tX)]2

=
1

FX(t)

t∫

0

fX(x)(log fX(x))2dx− (QX(t) +He(tX))2 (2.4)

for t ∈ S.
Remark 2.1. As well as, when t tends to the supremum of the support S, uX , the past entropy tends

to Shannon entropy, also the past varentropy reduces to the varentropy, i.e., limt→uX
Ve(tX) = Ve(X).

Now, consider the case in which t tends to the infimum of the support, lX . If the pdf fX of X is
differentiable and such that

lim
t→l+X

fX(t) �= 0 and lim
t→l+X

f ′
X(t) �= +∞, (2.5)

then limt→l+X
Ve(tX) = 0. In fact, from (2.4) the past varentropy can be expressed as

Ve(tX) =

FX(t)
t∫

lX

fX(x) (log fX(x))2 dx−
(

t∫
lX

fX(x) log fX(x)dx

)2

F 2
X(t)

,

and by using L’Hôpital’s rule twice, it readily follows

lim
t→l+X

Ve(tX) = lim
t→l+X

⎛
⎜⎝f ′

X(t)FX (t)

f2
X(t)

log fX(t)− f ′
X(t)

f2
X(t)

t∫

lX

fX(x) log fX(x)dx

⎞
⎟⎠

= lim
t→l+X

f ′
X(t)

f2
X(t)

t∫

lX

FX(x)f ′
X(x)

fX(x)
dx = 0,

where the last equality depends on the assumptions in (2.5).
By using (1.6) and (2.4) one can find the past entropy and past varentropy for some distributions of

interest in reliability theory. Some examples are listed here.
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Fig. 1. Plots of past entropy and past varentropy of exponential distribution with parameter λ = 1, 2, 3, 4 (black, blue,
red, and green, respectively).

• Let X be a random variable with uniform distribution over (0, b), i.e., X ∼ U(0, b), b > 0. Hence,
for t ∈ (0, b) we have

He(tX) = log t,

Ve(tX) = 0.

• Let X be a random variable with exponential distribution, i.e., X ∼ exp(λ), for λ > 0. Then, for
t > 0, we have

He(tX) = 1 + log

(
1− e−λt

λ

)
− λte−λt

1− e−λt
,

Ve(tX) = 1− λ2t2e−λt

(1− e−λt)2
.

The plots of past entropy and past varentropy are shown in Fig. 1 for different choices of λ.
Observe that limt→0+ Ve(tX) = 0 as expected since the exponential distribution satisfies the
assumptions given in (2.5) for any value of the rate λ.

• Let X be a random variable such that fX(x) = 2x and FX(x) = x2, x ∈ (0, 1). Hence, for
t ∈ (0, 1), we have

He(tX) =
1

2
+ log

t

2
,

Ve(tX) =
1

4
.

• Let X be a random variable Beta(2, 2) distribution, i.e., such that fX(x) = 6x(1 − x) and
FX(x) = 3x2 − 2x3, x ∈ (0, 1). Hence, for t ∈ (0, 1), we have

He(tX) =
1

t2/2− t3/3

[(
t2

2
− t3

3

)
log

(
6(1− t)

t(3− 2t)

)
+

2

9
t3 − 1

3
t2 − 1

6
t− 1

6
log(1− t)

]

Ve(tX) =
1

t2/2− t3/3

[(
t2

2
− t3

3

)
log2

(
6(1− t)

t(3− 2t)

)
+

1

3

(
4

3
t3 − 2t2 − t

)
log

(
6(1− t)

t(3− 2t)

)

+
1

9

(
−8

3
t3 + 4t2 + 8t+ 5 log(1− t)

)
− 1

3
log

(
1

t2/2− t3/3

)
log(1− t)

− 1

6
log2(1− t)− π2

18
+

1

3
Li2(1− t))

]
− [He(tX)]2,
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Fig. 2. Plots of past entropy and past varentropy of X ∼ β(2, 2).
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Fig. 3. Plots of past entropy and past varentropy of X with cdf FX(x) = 1−
(
b−x
b

)α
for b = 5 and α = 2, 3, 4, 5 (black,

blue, red, and green, respectively).

where Li2 is the Spence’s function or dilogarithm function (see, e.g., Morris, 1979). The plots
of past entropy and past varentropy are shown in Fig. 2.

• Let X be a random variable having cumulative distribution FX(x) = 1−
(
b−x
b

)α, for x ∈ (0, b) ⊆
R
+ and α > 0. Then, for t ∈ (0, b):

He(tX) =
bα

bα − (b− t)α
log

(
αb(α−1)

bα − (b− t)α

)
− (b− t)α

bα − (b− t)α
log

(
α(b− t)(α−1)

bα − (b− t)α

)
− α− 1

α
,

Ve(tX) =

(
α− 1

α

)2

− bα(b− t)α

[bα − (b− t)α]2
log2

[(
b

b− t

)α−1
]
.

The plots of this past entropy and of the corresponding past varentropy are shown in Fig. 3.

It is interesting to observe that the past varentropy is constant in two of the cases described above,
increasing in one case, and non-monotone in the other one. Thus, monotonicity of the varentropy is not
always guaranteed. Let us remark that, if the reversed hazard rate is decreasing for all t, then the past
entropy is increasing for all t (see [10, Proposition 2.2]). However, monotonicity of the reversed hazard
rate is not a sufficient condition for monotonicity of the varentropy. In fact, for the β(2, 2) distribution the
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reversed hazard rate qX(t) = 6(1− t)/(3t − 2t2) is decreasing, while the varentropy is not monotone.
For this reason, conditions for the monotonicity of Ve(tX) and an implicit formula for the derivative of
the past varentropy are now described.

Conditions for monotonicity of the past varentropy can be easily provided by using the results that
appear in [32]. For it, we recall the definition of two stochastic comparisons between variables that are
used in the proof. Given the random variables X1 and X2 having distributions F1 and F2, respectively, we
say that X1 is smaller than X2 in the concave order, X1 ≤c X2 in notation, if F−1

2 (F1(x)) is convex on
the support of F1. We say that X1 is smaller than X2 in the starshaped order, X1 ≤∗ X2 in notation,
if F−1

2 (F1(x))/x is increasing on the support of F1. Details and applications of these stochastic orders
can be found in Shaked and Shanthikumar (2007).

Proposition 2.1. Let X be a random lifetime with an absolutely continuous distribution FX and a
strictly decreasing [increasing] density function fX . If the ratio

fX(F−1
X (pF (s)))

fX(F−1
X (pF (t)))

(2.6)

is increasing in p ∈ (0, 1) for all s ≤ t, then the corresponding past varentropy Ve(tX) is increasing
[decreasing] in t ∈ S.

Proof. Recall that, for any t ∈ S, the past lifetime tX has density ftX(x) = fX(x)/FX(t) and
cumulative distribution FtX(x) = FX(x)/FX (t), with x ≤ t. Thus, the corresponding quantile function
is F−1

tX
(p) = F−1

X (pFX(t)), for p ∈ (0, 1). Also observe that, for s ≤ t,

fsX(F−1
sX

(p))

ftX(F−1
tX

(p))
=

fX(F−1
X (pFX(s)))

FX(s)
· FX(t)

fX(F−1
X (pFX(t)))

=
fX(F−1

X (pF (s)))

fX(F−1
X (pF (t)))

· FX(t)

FX(s)
,

where the latter is increasing in p by assumption (2.6). Then one has sX ≤c tX (see Remark 4.3 in [32],
or Section 4.2 in [33]). Now observe that, since fX is decreasing [increasing] by assumption, then also
fsX and ftX are decreasing [increasing]. Thus, by the equivalence pointed out in Remark 4.6 in Paolillo
et al. (2021), one also has that fsX(sX) ≤∗ ftX(tX) [fsX(sX) ≥∗ ftX(tX)], which, in turns, implies
Ve(sX) ≤ Ve(tX) [Ve(sX) ≥ Ve(tX)] by Theorem 5.2 in the same paper. �

It is easy to verify, for example, that exponential distributions satisfy the assumptions of Proposi-
tion 2.1 for any value of the rate λ.

The following result provides an implicit formula for the derivative of the past varentropy, useful to
describe distributions having constant varentropy.

Proposition 2.2. For all t ∈ S, the derivative of the past varentropy is

V ′
e (tX) = −qX(t)

[
Ve(tX)− (He(tX) + log qX(t))2

]
.

Proof. First observe that by differentiating both sides of (2.3) we get the following expression for the
derivative of the past entropy:

H ′
e(tX) = qX(t)[1−H(tX)− log qX(t)]. (2.7)

Consider now (2.4). By differentiating both sides we get

V ′
e (tX) =

qX(t)

FX(t)

t∫

0

fX(x)(log fX(x))2dx+ qX(t)(log fX(t))2

− 2(QX(t) +He(tX))(−qX(t) +H ′
e(tX)), (2.8)

where qX(t) is defined in (2.1). Hence, recalling (2.7) and (2.4), from (2.8) we get

V ′
e(tX) = −qX(t)

[
Ve(tX) + (QX(t) +He(tX))2 − (log fX(t))2

− 2(QX(t) +He(tX))(He(tX) + log qX(t))] ,

and, after straightforward calculations, one gets the statement. �
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From (2.7) one can obtain conditions such that absolutely continuous distributions, having contin-
uous densities, have a corresponding constant past varentropy. To this aim, consider first the case of
random variables having support S = [0, 1].

Proposition 2.3. Let X have support S = [0, 1]. Then, its varentropy Ve(tX) is constant if, and only
if, X has cumulative distribution function

FX(x) = xα, x ∈ [0, 1], (2.9)

for a parameter α > 0. In this case, one has Ve(tX) = (1− 1/α)2 for all t ∈ [0, 1].
Proof. First observe that, if X has cumulative distribution defined as in (2.9), then the pdf is given by

fX(x) = αxα−1, x ∈ (0, 1),

and, for t ∈ (0, 1), the past varentropy is defined as

Ve(tX) =

t∫

0

αxα−1

tα

[
log

(
αxα−1

tα

)]2
dx−

⎡
⎣

t∫

0

αxα−1

tα
log

(
αxα−1

tα

)
dx

⎤
⎦
2

.

By the change of variable y =
(
x
t

)α, we get

Ve(tX) =

1∫

0

[
log

(
αy(α−1)/α

t

)]2

dy −

⎡
⎣

1∫

0

log

(
αy(α−1)/α

t

)
dy

⎤
⎦
2

= log2
(α
t

)
−

1∫

0

2

(
α− 1

α

)
log

(
αy(α−1)/α

t

)
dy −

[
log

(α
t

)
− α− 1

α

]2

= log2
(α

t

)
− 2

(
α− 1

α

)
log

(α
t

)
+ 2

(
α− 1

α

)2

−
[
log

(α

t

)
− α− 1

α

]2
.

Thus Ve(tX) is constant and equal to (1− 1/α)2. It follows now, from Proposition 2.2, that

(He(tX) + log qX(t))2 = (1− 1/α)2

and so
|He(tX) + log qX(t)| = |1− 1/α|, ∀t ∈ [0, 1]. (2.10)

Since the density fX is continuous by assumption, then also qX and He(Xt) are continuous. Thus,
He(tX) + log qX(t) is continuous in t ∈ [0, 1], so that equality (2.10) implies

He(tX) + log qX(t) = c, ∀t ∈ [0, 1] (2.11)

for some c ∈ R.
As shown in [23, Theorem 2.1], Theorem 2.1, there exist only three families of distribution for which

(2.11) is satisfied. Two of them have infinite support on the left, i.e., of the form (−∞, b], for b ∈ R (thus
they cannot be distributions of random lifetimes), and the only one having support entirely contained in
R
+ (and in [0, 1] in particular) is the one defined in (2.9). Finally, since the family defined in (2.9) has

constant past varentropy, the assertion follows. �
To generalize the above result to random lifetimes having different supports, we can use the following

proposition, that deals with the past varentropy under linear transformations. We recall that if Y =
aX + b for a > 0 and b ≥ 0, then the past entropies of X and Y are related by

He(tY ) = He

(
t−b
a
X

)
+ log a ∀t (2.12)

(see Di Crescenzo and Longobardi, 2002).
Proposition 2.4. Let Y = aX + b, with a > 0 and b ≥ 0. Then, for their past varentropies, we have

Ve(tY ) = Ve

(
t−b
a
X

)
, ∀t. (2.13)
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Proof. From Y = aX + b we know that FY (x) = FX

(
x−b
a

)
and fY (x) =

1
afX

(
x−b
a

)
. Hence, from

(1.7) and (2.12), we get

Ve(tY ) =

t−b
a∫

0

fX(x)

FX

(
t−b
a

)
(
log

1
afX (x)

FX

(
t−b
a

)
)2

dx−
(
H

(
t−b
a
X

)
+ log a

)2
. (2.14)

By writing

log
1
afX (x)

FX

(
t−b
a

) = log
fX (x)

FX

(
t−b
a

) − log a

and developing the two squares in (2.14), one easily obtains the statement. �
From Propositions 2.3 and 2.4 one immediately gets the following statement.

Corollary 2.1. Let X be an absolutely continuous random lifetime with continuous density fX .
Then, its varentropy Ve(tX) is constant if, and only if, X has cumulative distribution function in
the family

FX(x) =

(
x− b

a

)α

, x ∈ [b, a+ b], (2.15)

for a parameter α such that α > 0.

Apart for the property stated in Corollary 2.1, the family defined in (2.15) is the only one of lifetimes
distribution having continuous density that satisfies the property stated in the next proposition. Recall
first that the Generalized Reversed Hazard Rate of a random lifetime is defined, for γ ∈ R, as

qγ,X(t) =
fX(t)

[FX(t)]1−γ
, t ∈ S (2.16)

(see Buono et al. (2021), where their applications in the study of properties of aging intensity functions
are described). We remark that, by choosing γ = 0 in (2.16), we get q0,X(t) = qX(t), i.e., q0,X is the
usual reversed hazard rate function. Let us observe that for γ = 1 the generalized reversed hazard rate
function is equal to the density function. This is reasonable since the density function gives a first rough
illustration of the aging tendency of the random variable by its monotonicity.

Proposition 2.5. Let X be a random lifetime having continuous density, and let γ ∈ R. Its
generalized reversed hazard rate function qγ,X(t), with parameter γ, is constant if, and only if, FX is
in the family defined in (2.15) and γ = 1/α. Moreover, in this case one has

q1/α,X(t) =
fX(t)

[FX(t)]1−1/α
= e1−1/α−He(X), ∀t ∈ [b, a+ b]. (2.17)

Proof. Let us suppose that there exists c ∈ R such that q1−c,X(t) = ec−He(X) for all t ∈ S, being S
the support of X. From (2.1) and (2.3) we have

He(tX) + log qX(t) = log fX(t)− 1

FX(t)

∫

(0,t)
⋂

S

fX(x) log fX(x)dx

= log fX(t) +
1

FX(t)

⎡
⎢⎣He(X) +

∫

(t,+∞)
⋂

S

fX(x) log fX(x)dx

⎤
⎥⎦ .

Moreover, from the hypothesis, we get∫

(t,+∞)
⋂

S

fX(x) log fX(x)dx = −He(X)FX(t)− cFX (t) log FX(t)
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and so

He(tX) + log qX(t) = He(X) + log
fX(t)

[FX (t)]c
= c.

This last equality is satisfied only for distributions in the family described in (2.15), with c = 1− 1/α.
Conversely, if X has distributions in the family described in (2.15), then, with a direct calculation, one
can verify that (2.17) holds. �

A generalization of Proposition 2.1 will now be stated. For it, let φ be a differentiable and strictly
monotonic function and let Y = φ(X) for a given X. It has been shown in Di Crescenzo and Longobardi
(2002) that the past entropies of X and Y are related by the equations

He(tY ) =

{
He

(
φ−1(t)X

)
+ E[log φ′(X)|X < φ−1(t)], if φ is strictly increasing

He

(
Xφ−1(t)

)
+ E[log(−φ′(X))|X > φ−1(t)], if φ is strictly decreasing.

(2.18)

Similar results can be proved for the past varentropy.
Proposition 2.6. Let Y = φ(X), where φ is a differentiable and strictly monotonic function. Then, if

φ is strictly increasing, for the past varentropy of Y we have

Ve(tY ) = Ve

(
φ−1(t)X

)
− 2E

[
log

fX(X)

FX(φ−1(t))
log φ′(X)

∣∣∣∣X < φ−1(t)

]

+ Var[log φ′(X)|X < φ−1(t)]− 2He

(
φ−1(t)X

)
E[log φ′(X)|X < φ−1(t)], (2.19)

whereas, if φ is strictly decreasing

Ve(tY ) = Ve

(
Xφ−1(t)

)
− 2E

[
log

fX(X)

FX(φ−1(t))
log(−φ′(X))

∣∣∣∣X > φ−1(t)

]

+ Var[log(−φ′(X))|X > φ−1(t)]− 2H
(
Xφ−1(t)

)
E[log(−φ′(X))|X > φ−1(t)]. (2.20)

Proof. Suppose first that φ is strictly increasing. From Y = φ(X) we know that FY (x) =

FX

(
φ−1(x)

)
and fY (x) =

fX(φ−1(x))
φ′(φ−1(x))

. Hence, from (1.7) and (2.18), we get

Ve(tY ) =

φ−1(t)∫

0

fX(x)

FX (φ−1(t))

(
log

fX (x)

FX (φ−1(t))
− log φ′(x)

)2

dx

−
[
He

(
φ−1(t)X

)
+ E[log φ′(X)|X < φ−1(t)]

]2
.

Now, by developing the two squares in the previous equality, and observing that

φ−1(t)∫

0

fX(x)

FX (φ−1(t))

(
log φ′(x)

)2 dx− E
2[log φ′(X)|X < φ−1(t)]

= Var[log φ′(X)|X < φ−1(t)],

we obtain the result.
The proof is similar if φ is strictly decreasing. �
Example 2.1. The Inverted Exponential distribution (exp), introduced as a lifetime model in Lin

et al. (1989), has been considered by many authors in reliability studies (see, e.g., [22, 31], and references
therein). The past varentropy of an inverted exponential distribution can be actually obtained by using
Proposition 2.6. To this aim, consider X ∼ exp(λ) and Y = φ(X) = 1/X so that φ is strictly decreasing
and Y ∼ exp(λ). We can use the result presented in (2.20) to evaluate the past varentropy of Y . In fact,
we have

Ve(tY ) = Ve

(
X1/t

)
− 2E

[
log

λe−λX

e−λ/t
log

(
1

X2

)∣∣∣∣X >
1

t

]
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Fig. 4. Plots of past varentropies of inverse exponential distributions with parameter λ = 1, 2, 3, 4 (black, blue, red, and
green, respectively).

+ Var
[
log

(
1

X2

)∣∣∣∣X >
1

t

]
− 2H

(
X1/t

)
E

[
log

(
1

X2

)∣∣∣∣X >
1

t

]
.

The residual entropy and the residual varentropy for the exponential distribution are given as

He(Xt) = 1− log λ, Ve(Xt) = 1,

and then the past varentropy of Y is expressed as

Ve(tY ) = 1− 2E

[
log

λe−λX

e−λ/t
log

(
1

X2

)∣∣∣∣X >
1

t

]

+ Var
[
log

(
1

X2

)∣∣∣∣X >
1

t

]
− 2(1− log λ)E

[
log

(
1

X2

)∣∣∣∣X >
1

t

]
.

With several calculations, the above expression reduces to

Ve(tY ) = −3 +
4λ

t
log

1

t2
+

8t

λ
+

(
8− 4λ

t

)
1

e−λ/t
Ei

(
−λ

t

)
− 4

e−2λ/t
Ei2

(
−λ

t

)

+
4

e−λ/t
log

1

t2
Ei

(
−λ

t

)
− 4

λe−λ/t

+∞∫

1/t

log x2

x2
e−λxdx,

where Ei(·) is the exponential integral function (see, e.g., Gautschi and Gahill, 1972). The plot of this
past varentropy is shown in Fig. 4 for different choices of λ.

We conclude this section pointing out that there exists a strong relationship between the past
varentropy and the residual varentropy of an absolutely continuous random lifetime X whenever its
support S is finite. Without loss of generality let X assume values in [0, uX ], and let fX be its density
function. Then consider a random lifetime X̃ whose density is the symmetric of fX with respect to uX/2,
i.e., the lifetime having density fX̃(x) = fX(uX − x) for all x ∈ [0, uX ]. It is easy to observe that X and
X̃ have the same information content, i.e., that IC(X) and IC(X̃) have the same distribution. Let now
t ∈ [0, uX ], and consider the conditioned lifetimes (X|X > t) and (X̃ |X̃ ≤ uX − t). Again, it is easy to
verify that the corresponding densities are symmetric, i.e., that f(X̃|X̃≤uX−t)(x) = f(X|X>t)(uX − x), so

that IC(X|X > t) and IC(X̃ |X̃ ≤ uX − t) have the same distribution. It obviously follows that, for all
t ∈ [0, uX ], it holds

He(X̃ |X̃ ≤ uX − t) = He(X|X > t) and Ve(X̃ |X̃ ≤ uX − t) = Ve(X|X > t).
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Thus properties and explicit expressions of the past entropy and past varentropy of a random lifetime
with finite support can be obtained from properties and explicit expressions of the corresponding residual
entropy and residual varentropy, after an appropriate transformation of the density.

3. BOUNDS FOR THE PAST VARENTROPY

A very simple upper bound for the past varentropy can be provided for a large class of distributions,
as stated in the next proposition.

Proposition 3.1. Let X be a non-negative random variable with support S and log-concave pdf
fX(x). Then

Ve(tX) ≤ 1 for all t ∈ S.

Proof. We observe that if fX(x) is log-concave, then also ftX(x) = fX(x)
FX(t) is log-concave. From

Theorem 2.3 of Fradelizi et al. (2016), we know that if X has a log-concave pdf, then Ve(X) ≤ 1 and the
proof follows from this result. �

For example, the density fX(x) = 6x(1− x), x ∈ [0, 1] of X ∼ β(2, 2) is logconcave, so that the past
varentropy of X is always smaller than 1, as confirmed by its plot shown in Fig. 2.

However, by comparing this bound with the plot of Ve(tX), one can immediately observe that it is
a really large bound. Better upper bounds can be provided, for any X, by using results available in the
literature. For it recall that, for a random lifetime X, the corresponding Inactivity Time at t is defined as
X(t) = (t−X|X ≤ t) = t− tX , i.e., the random time whose density is

fX(t)
(x) =

fX(t− x)

FX(t)
.

The following upper bound for Var[− log fX(t)
(X(t))] has been proved in Goodarzi et al. (2016),

Proposition 1, making use of an upper bound for variances proved in Cacoullos and Papathanasiou
(1985):

Var[− log fX(t)
(X(t))] ≤ E

[
η2X(t−X(t))

qX(t−X(t))

(
mX(t−X(t))−mX(t) +X(t)

)]
(3.1)

for all t ∈ S, where ηX(x) = −f ′
X(x)/fX(x) is the eta function and mX(x) = E[X(x)] = x− μ̃X(x) is

the mean inactivity time function, and where μ̃X(x) is defined in (1.5). Now observe that

Ve(X(t)) = Var[− log fX(t)
(X(t))] = E[log2 fX(t)

(X(t))]−
[
He(X(t)))

]2

=

t∫

0

fX(t− x)

FX(t)
log2

(
fX(t− x)

FX(t)

)
dx−

⎡
⎣

t∫

0

fX(t− x)

FX(t)
log

(
fX(t− x)

FX(t)

)
dx

⎤
⎦
2

=

t∫

0

fX(x)

FX(t)
log2

(
fX(x)

FX(t)

)
dx−

⎡
⎣

t∫

0

fX(x)

FX(t)
log

(
fX(x)

FX(t)

)
dx

⎤
⎦
2

= Var[− log ftX(tX)] = Ve(tX).

Thus, recalling that mX(x) = x− μ̃X(x) and X(t) = t− tX , from (3.1) one gets the upper bound

Ve(tX) ≤ E

[
η2(tX)

qX(tX)
(μ̃(t)− μ̃(tX))

]
∀ t ∈ S.

A lower bound for the past varentropy can also be proved. For it, define first the variance past
lifetime function ν̃2X as

ν̃2X(t) = Var(tX) = Var(X|X ≤ t) =
1

FX(t)

t∫

0

x2fX(x)dx− (μ̃X(t))2, t ∈ S.
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Note that, for every t ∈ S the variance past lifetime function ν̃2X(t) is the same as the variance of the
inactivity time X(t) (see, e.g., [19] for details and properties of the variance of the inactivity time function).

Proposition 3.2. Let tX be the past lifetime of X at time t, and let the mean past lifetime μ̃X(t) and
the variance past lifetime ν̃2X(t) be finite for all t ∈ S. Then

Ve(tX) ≥ ν̃2X(t)
[
E(ω′

t(tX))
]2

,

where the function ωt(x) is defined by solving the equation

ν̃2X(t)ωt(x)ftX(x) =

x∫

0

(μ̃X(z) − z)ftX(z)dz, x ∈ S. (3.2)

Proof. Recall that if X is a random variable with pdf fX , mean μX and variance σ2
X , then

Var[g(X)] ≥ σ2
[
E(ω(X)g′(X))

]2
, (3.3)

where ω(x) is defined by σ2ω(x)f(x) =
x∫
0

(μ− z)f(z)dz (see Cacoullos and Papathanasiou, 1989).

Hence, in (3.3) choosing g(x) = − log ftX(x) and tX as X, one obtains

Var(− log ftX(tX)) ≥ ν̃2X(t)

[
E

(
ωt(tX)

f ′
tX

(tX)

ftX(tX)

)]2
. (3.4)

By differentiating both sides of (3.2), one has

ω(x)
f ′
TX(x)

f
TX(x)

=
μ̃X(x)− x

ν̃2X(t)
− ω′

t(x),

and then, from (3.4),

V (tX) = Var(− log ftX(tX)) ≥ ν̃2X(t)

[
E

(
μ̃X(t)− tX

ν̃2X(t)
− ω′(tX)

)]2
= ν̃2X(t)

[
E(ω′

t(tX))
]2

.

�

4. PAST VARENTROPY AND PARALLEL SYSTEMS

When the past varentropy Ve(tX) of a random lifetime X is available, then in some cases it is possible
to easily compute the past varentropy of another lifetime Y whose distribution is a transformation of that
one of X. An example is given by the scale model: the family of random variables {X(a) : a > 0} follows
a Scale model if there exists a non-negative random variable X with cumulative distribution function F

and density f such that X(a) has distribution F (a)(t) = F (at) for all t, where a > 0 is the parameter of
the model. Some examples are the exponential, Weibull (with a fixed shape parameter) and Pareto (with
a fixed shape parameter) distributions. In these cases, from Proposition 2.4 one immediately obtains
that

Ve(tX
(a)) = Ve (atX) , ∀t.

A more interesting case is when the family of random variables {X(a) : a > 0} follows a Proportional
Reversed Hazard Rate model, i.e., if there exists a non-negative random variable X with cumulative
distribution function FX and density fX such that

F (a)(t) = P(X(a) ≤ t) = [FX(t)]a, f (a)(t) = a[FX(t)](a−1)fX(t), t ∈ S, (4.1)

being F (a) and f (a) the cumulative distribution function and the density of X(a), respectively (see Gupta
and Gupta (2007) for more details). We remark that the model takes the name from the fact that the
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reversed hazard rate functions of the random variables in the family are proportional to the reversed
hazard rate function of X; in fact, letting q(a) be the reversed hazard rate of X(a),

q(a)(t) =
f (a)(t)

F (a)(t)
= a

fX(t)

FX(t)
= a qX(t) ∀t ∈ S.

Moreover, we note that the inverse cumulative reversed hazard rate function is expressed as

QX(a)(t) = − logF (a)(t) = aQX(t).

The proportional reversed hazard rate model finds applications, for example, in analysis of parallel
systems. In fact, if we have a system composed by n units in parallel and characterized by i.i.d.
lifetimes X1, . . . ,Xn with distribution FX(t), then the lifetime of the system is given by X(n) =
max{X1, . . . ,Xn}. Then, we have FX(n)(t) = [FX(t)]n, i.e., the system satisfies the proportional
reversed hazard rate model (4.1) with a = n. The purpose of the next examples is to highlight the
behavior of the past varentropy when it refers to the lifetime of a parallel system with i.i.d. components.

To this aim, let us first evaluate the past entropy of X(a) and the past varentropy of X(a) for an
arbitrary a > 0. One has

He

(
tX

(a)
)
= −QX(a)(t)−

1

[FX(t)]a

t∫

0

f (a)(x) log f (a)(x)dx

= −aQX(t)− 1

[FX(t)]a

[FX(t)]a∫

0

γ(y; a)dy,

with the change of variable y = [FX(x)]a, and where γ(y; a) = log
[
ay1−1/afX(F−1

X (y1/a))
]
. Hence, we

obtain the past varentropy of X(a) as

Ve

(
tX

(a)
)
=

1

[FX(t)]a

t∫

0

f (a)(x)(log f (a)(x))2dx−

⎡
⎣ 1

[FX(t)]a

t∫

0

f (a)(x) log f (a)(x)dx

⎤
⎦
2

=
1

[FX (t)]a

[FX(t)]a∫

0

[γ(y; a)]2dy −

⎡
⎢⎣ 1

[FX(t)]a

[FX(t)]a∫

0

γ(y; a)dy

⎤
⎥⎦
2

.

Let us now consider, as an example, the case where X has a modified Pareto distribution
with FX(t) = t/(1 + t) and density fX(t) = 1/(1 + t)2, for t ≥ 0. In this case, γ(y; a) =

log
[
ay1−1/a(1− y1/a)2

]
, so that

He

(
tX

(a)
)
= a log

(
t

1 + t

)
− 1

[t/(1 + t)]a

[t/(1+t)]a∫

0

γ(y; a)dy,

Ve

(
tX

(a)
)
=

1

[t/(1 + t)]a

[t/(1+t)]a∫

0

[γ(y; a)]2dy −

⎡
⎢⎣ 1

[t/(1 + t)]a

[t/(1+t)]a∫

0

γ(y; a)dy

⎤
⎥⎦
2

.

When a is an integer, i.e., when X(a) represents the lifetime of a parallel system of a number a of i.i.d.
components, one obtains the past entropies and past varentropies shown in Fig. 5 (for different integer
values of a). It is interesting to observe that both the past entropies and the past varentropies intersect
each other for different values of a: for small values of the time t one has the smaller past entropies and
larger past varentropies when the number of components in parallel is large, and vice versa for large
values of the time t. It means, for example, that in the long run (for large values of the inspection time t)
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Fig. 5. Plots of past entropy and the past varentropy of modified Pareto PRHR model for a = 1 (dashed line) and
a = 2, 3, 4, 5, 6 (blue, red, green, cyan, and black, respectively).
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Fig. 6. Plots of past entropy and the past varentropy of exponential PRHR model for a = 1 (dashed line) and
a = 2, 3, 4, 5, 6 (blue, red, green, cyan, and black, respectively).

the uncertainty of the information content of the past lifetime of a parallel system reduces as the number
of components in the system increases (and vice versa for small t).

The same can be observed when X has an exponential distribution with parameter λ. In this case,
γ(y; a) = log

[
λay1−1/a(1− y1/a)

]
, so that

He

(
tX

(a)
)
= a log

(
1− e−λt

)
− 1

[1− e−λt]a

[1−e−λt]a∫

0

γ(y; a)dy,

Ve

(
tX

(a)
)
=

1

[1− e−λt]a

[1−e−λt]a∫

0

[γ(y; a)]2dy −

⎡
⎢⎣ 1

[1− e−λt]a

[1−e−λt]a∫

0

γ(y; a)dy

⎤
⎥⎦
2

.

The plots of He

(
tX

(a)
)

and Ve

(
tX

(a)
)
, for different integer values of a and with λ = 2, are shown in

Fig. 6. As for the modified Pareto case, both the past entropies and the past varentropies intersect each
other for different values of a, having a similar behavior.

It must be observed that this behavior differs from what is shown in Example 4.1 in [11], where
the residual varentropies for a proportional hazard model with an underlying generalized exponential
distribution do not intersect for different values of the parameter a.
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This behavior seems to be confirmed by other similar analysis we performed. But there exists a family
for which the past varentropies do not intersect, which is the family discussed in Proposition 2.3, whose
varentropies are constant. In fact, let Xα be a lifetime having support S = [0, 1] and distributionFα(x) =
xα, for x ∈ S. Then, the corresponding parallel system with n i.i.d. components has distribution
Fnα(x) = xnα for x ∈ S, which is still in the family of distribution having constant past varentropy. Thus,
in particular, one has Ve(tXnα) = (1− 1/(nα))2 for all t ∈ S, and obviously these past varentropies do
not intersect as n varies in N

+. This is another interesting property of such a family of distributions.

CONCLUSIONS

In this paper, we have introduced and studied the past varentropy. It is related to the past entropy,
which is a measure of information about the past lifetimes. In particular, the past varentropy provides the
variability of the information content of past lifetimes. We have given some examples of past varentropy
and obtained conditions ensuring that it is monotone or constant. Moreover, its behavior under linear
or monotonic transformations has been studied. A relationship between past varentropy and residual
varentropy has been also provided, and upper and lower bounds for the past varentropy have been
described. Finally, the behavior of the past varentropy under construction of parallel systems of i.i.d.
components (and, more generally, under proportional reversed hazard rate models) has been discussed.
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