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Abstract—In this paper, we define a multiple random good of order 2 denoted by X12 whose possible
values are of a monetary nature. A two-risky asset portfolio is a multiple random good of order 2. It
is firstly possible to establish its expected return by using a linear and quadratic metric. We secondly
establish the expected return on X12 denoted by P(X12) by using a multilinear and quadratic metric.
An extension of the notion of mathematical expectation of X12 is carried out by using the notion
of α-norm of an antisymmetric tensor of order 2. An extension of the notion of variance of X12

denoted by Var(X12) is shown by using the notion of α-norm of an antisymmetric tensor of order
2 based on changes of origin. An extension of the notion of expected utility connected with X12 is
considered. An extension of Jensen’s inequality is shown as well. We focus on how the decision-
maker maximizes the expected utility connected with multiple random goods of order 2 being chosen
by her under conditions of uncertainty and riskiness.
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1. INTRODUCTION

1.1. A Contingent Consumption Plan

In this paper, the investor is modeled as being a consumer. It is not money alone that matters, but it
is the average consumption that money can buy that is the ultimate good being chosen by her. A state
of the world of a contingent consumption plan is a single event, so it is a well-determined proposition
identified with a real number such that, by betting on it, it is possible to establish whether it is true or
false (see also [16]).

Let X be a random good. Let I(X) = {x1, x2, . . . , xm} be the set of the possible values for X, where
we have x1 < x2 < . . . < xm without loss of generality because I(X) identifies a finite partition of m
mutually exclusive states of the world of a contingent consumption plan. We write inf I(X) = x1 and
sup I(X) = xm. The elements of I(X) are of a monetary nature. They give rise to an m-dimensional
consumption vector denoted by

(x1, x2, . . . , xm).

It expresses all possible quantitative states of the world of a contingent consumption plan. It is possible
to verify that it is contained in a closed structure which is a linear space over R (see also [36]). Indeed, its
elements may be added together and multiplied by real numbers called scalars to obtain other elements
belonging to the same linear structure. Such elements identify other contingent consumption plans. A
linear space over R is a space furnished with a metric measure. We denote it by Em. It has a Euclidean
structure. A located vector at the origin of Em is entirely determined by its end point. Accordingly, an
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ordered m-tuple of real numbers can indifferently be called either an m-dimensional point of Em (affine
space) or an m-dimensional vector of Em, where Em and Em are isomorphic.

Uncertainty about a state of the world of a contingent consumption plan is of a personalistic nature in
the sense that uncertainty about an event ceases only when the investor receives sure information about
it (see also [9]).

The probability associated with a state of the world of a contingent consumption plan is the degree
of belief in the occurrence of it attributed by a given investor at a given instant and with a given set
of information and knowledge (see also [10]). We think of probability as being a mass. It is not a
measure according to measure theory. Within this context, a mechanical transposition of all the notions,
procedures, results of measure theory into the calculus of probability does not take place. The well-
known implications of the mechanical meaning of mass make clear all those probabilistic properties
meant as knowledge of the barycenter of a nonparametric distribution of mass or of moments of inertia.
The concept of probability does not exist independently of the evaluations the investor makes of it
mentally or instinctively (see also [23]). Such evaluations can be based on objective elements such
as a judgment of equal probability expressing symmetry or a judgment based on statistical frequencies
(see also [15]). Nevertheless, they do not exist outside of the investor’s judgment whose nature is always
subjective.1)

A function defined on the set of all possible quantitative states of the world of a contingent consump-
tion plan coincides with X. Its domain expressed by I(X) is a finite collection of possible events, where
each of them is generically denoted by Ei, i = 1, . . . ,m. We write

X = x1|E1|+ x2|E2|+ . . .+ xm|Em|,
where we have

|Ei| =
{
1, if Ei is true

0, if Ei is false

for every i = 1, . . . ,m.
One and only one of all possible quantitative states of the world of a contingent consumption plan

belonging to I(X) will be true at the right time (see also [14]). We establish the following.
Definition 1. Let idR : R → R be the identity function on R, where R is a linear space over itself.

Given m incompatible and exhaustive states of the world of a contingent consumption plan, a random
good denoted by X is the restriction of idR to I(X) = {x1, x2, . . . , xm} ⊂ R such that it turns out to be
idR|I(X) : I(X) → R.

We consider the finest possible partition into elementary events. They are not further subdivisible
for the purposes of the problem under consideration. We do not consider other events. That alternative
which will turn out to be verified “a posteriori” is nothing but a random point contained in I(X). It
expresses everything there is to be said whenever uncertainty ceases (see also [22]).

We say that a probability distribution associated with the possible values for a random good can
vary from investor to investor. It can vary in accordance with the state of information and knowledge
associated with each investor. Each investor is faced with m masses denoted by p1, p2, . . . , pm. They are
located on m real numbers denoted by x1, x2, . . . , xm.

Each single state of the world of a contingent consumption plan could uniquely be expressed by
infinite real numbers, so we could also write

{x1 + a, x2 + a, . . . , xm + a},
where a ∈ R is an arbitrary constant. We consider infinite changes of origin in this way. It is possible
to consider different quantities from a geometric point of view. They are nevertheless the same quantity
from a randomness point of view because states of the world and probabilities associated with them do
not change.

1)Different nonparametric distributions of mass underlie different measures of a metric nature. Nevertheless, if we talk about
mass then there always exists the physical feeling of being able to move it in a coherent way. This is because the notion
of mass has no intrinsically a special status unlike the one of measure treated by measure theory. To move all the masses
under consideration in a coherent way implies that each mass is found between 0 and 1, end points included, and their sum
is finitely equal to 1.
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1.2. Contravariant and Covariant Indices Associated with a Contingent Consumption Plan

Let Ei, i = 1, . . . ,m, be a generic state of the world of a contingent consumption plan. We establish
the following.

Definition 2. Let X be a random good. The investor is in doubt between m monetary values for X,
so x1 is the return on X if E1 occurs with probability denoted by p1, . . . , xm is the return on X if Em

occurs with probability denoted by pm. It is also possible to say that x1 is the wealth that X yields and
that can be spent by the investor if E1 occurs with probability denoted by p1, . . . , xm is the wealth that
X yields and that can be spent by the investor if Em occurs with probability denoted by pm.

We write

(x1, p1), (x
2, p2), . . . , (x

m, pm)

in order to identify masses associated with the possible values for X. Masses are expressed by using
covariant indices. They are used together with contravariant ones. We wish to distinguish possibility
from probability in this way. We use contravariant indices to identify the possible values for X. We use
covariant indices to denote the corresponding probabilities that are assigned to them. The conditions of
coherence are of an objective nature. They impose no limits on the probabilities that the investor may
subjectively assign (see also [5]).

1.3. The Objectives of the Paper

In this paper, we define a multiple random good of order 2 denoted by X12 whose possible values are of
a monetary nature. A two-risky asset portfolio is a multiple random good of order 2. It is firstly possible
to establish its expected return by using a linear and quadratic metric. Given 1X and 2X, where 1X
and 2X are the components of X12, whenever we use a linear metric in order to establish the expected
return on a two-risky asset portfolio, we focus on the components of X12 only. We focus on 1X and 2X
only. We secondly establish the expected return on X12 denoted by P(X12) by using a multilinear and
quadratic metric. Whenever we use a multilinear metric in order to establish the expected return on a
two-risky asset portfolio, we focus on X12. Whenever we use a multilinear metric, we are not interested
in studying separately the components of X12 denoted by 1X and 2X, but we are interested in studying
X12 as a whole. If the decision-maker is risk neutral then P(X12) is a subjective price coinciding with
the certainty equivalent to X12. An extension of the notion of mathematical expectation of X12 denoted
by P(X12) is carried out by using the notion of α-norm of an antisymmetric tensor of order 2. We prove
a theorem about this. An extension of the notion of variance of X12 denoted by Var(X12) is shown by
using the notion of α-norm of an antisymmetric tensor of order 2 based on changes of origin. We prove
a theorem about this. An extension of the notion of expected utility connected with X12 is considered.
An extension of Jensen’s inequality is shown as well. Whenever the decision-maker maximizes the
expected utility of X12, she maximizes the utility of average quantities of consumption. We focus on
how the decision-maker maximizes the expected utility connected with multiple random goods of order
2 being chosen by her under conditions of uncertainty and riskiness. What she actually chooses inside
of her budget set underlies all of this.

2. LOGICAL AND PROBABILISTIC ASPECTS CONCERNING AN ORDERED PAIR OF
CONTINGENT CONSUMPTION PLANS

Let B⊥
m =

{
ei | i ∈ Im = {1, . . . ,m}

}
be an orthonormal basis of Em. Two marginal random goods

denoted by 1X and 2X give rise to a joint random good denoted by 1X 2X whenever all its possible
monetary values are obtained by considering the Cartesian product of the possible values for 1X and
2X belonging to I(1X) and I(2X) respectively. Two random goods are logically independent if and only
if there are m2 possible values for 1X 2X. Let (1X, 2X) be an ordered pair of random goods (see also
[25]). We are faced with two different partitions, where each of them is characterized by m incompatible
and exhaustive events. After considering I(1X) = {(1)x1, . . . , (1)xm} and I(2X) = {(2)x1, . . . , (2)xm}
we establish the following

Definition 3. All states of the world of an ordered pair of contingent consumption plans are obtained
by considering the Cartesian product of the possible values for two logically independent random goods
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Table 1

Random good 1 Random good 2 0 10 11 Sum

0 0 0 0 0

6 0 0.3 0.1 0.4

7 0 0.1 0.5 0.6

Sum 0 0.4 0.6 1

denoted by 1X and 2X. Such marginal random goods give rise to a joint random good denoted by
1X 2X. It is a function written in the form 1X 2X : I(1X)× I(2X) → R, where it turns out to be
1X 2X((1)x

i, (2)x
j) = (1)x

i
(2)x

j , with i, j = 1, . . . ,m.

We are evidently faced with

1X 2X = (1)x
1
(2)x

1|(1)E1||(2)E1|+ . . . + (1)x
m

(2)x
m|(1)Em||(2)Em|, (1)

where it is possible to write

|(1)Ei||(2)Ej | =
{
1, if (1)Ei and (2)Ej are both true

0, otherwise
(2)

for every i, j = 1, . . . ,m.
We geometrically consider (1)x ∈ Em as well as (2)x ∈ Em. We write

(1)x = (1)x
iei

and

(2)x = (2)x
iei,

where we use the Einstein summation convention. We note that (1)x and (2)x are uniquely represented

with respect to B⊥
m. There exists one and only one m-tuple of real numbers coinciding with the set

{(1)xi} and satisfying the first linear combination that appears. There also exists one and only one m-

tuple of real numbers coinciding with the set {(2)xi} and satisfying the second linear combination that
appears. We associate the contravariant components of (1)x and (2)x with the possible values for 1X 2X

expressed in the same unit of measurement (see also [28]).
The covariant components of an affine tensor of order 2 represent the joint probabilities of the joint

distribution of 1X and 2X. We associate in an orderly manner the covariant components of an affine
tensor of order 2 with the joint probabilities of the joint distribution of 1X and 2X. Their number is
overall equal to m2. We write

p = pij (3)

with p ∈ Em ⊗ Em. Since it turns out to be
m∑
i=1

m∑
j=1

pij = 1, (4)

all probabilistic evaluations being made by the investor are coherent. Conditions of coherence pertain to
the meaning of probability. They do not pertain to motives of a mathematical nature (see also [27]).

We note the following.
Remark 1. Given an orthonormal basis of Em, the contravariant and covariant components of a

same vector of Em coincide. They represent the same numbers. Accordingly, we could indifferently use
lower indices instead of upper ones and vice versa. �
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Table 2

Random good 1 Random good 2 0 6 7 Sum

0 0 0 0 0

6 0 0.4 0 0.4

7 0 0 0.6 0.6

Sum 0 0.4 0.6 1

2.1. Metric Aspects Concerning an Ordered Pair of Contingent Consumption Plans
We say that an ordered pair of random goods denoted by (1X, 2X) is represented by an ordered triple

of geometric entities denoted by (
(1)x, (2)x, pij

)
(5)

with (i, j) ∈ Im × Im.
We consider the notion of α-product between (1)x and (2)x in order to establish a quadratic metric

on Em. It is a scalar or inner product obtained by using the joint probabilities of the joint distribution of
1X and 2X together with the contravariant components of (1)x and (2)x. We write

〈(1)x, (2)x〉α = (1)x
i
(2)x

jpij = (1)x
i
(2)xi, (6)

where

(2)x
jpij = (2)xi (7)

is a vector homography by means of which we pass from (2)x
j to (2)xi by using pij . For instance, from

Table 1 it follows that it turns out to be P(1X 2X) = 70.1. Given the contravariant components of (2)x
identifying the following column vector ⎛

⎜⎜⎜⎝
0

10

11

⎞
⎟⎟⎟⎠ ,

its covariant components are expressed by
0 · 0 + 10 · 0 + 11 · 0 = 0,

0 · 0 + 10 · 0.3 + 11 · 0.1 = 4.1,

and
0 · 0 + 10 · 0.1 + 11 · 0.5 = 6.5,

so it is possible to write the following result

〈⎛
⎜⎜⎜⎝
0

6

7

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

0

4.1

6.5

⎞
⎟⎟⎟⎠
〉

= 〈(1)x, (2)x〉α = P(1X 2X) = 70.1.

On the other hand, after calculating the covariant components of (1)x in a similar way, we write

〈⎛
⎜⎜⎜⎝

0

2.5

4.1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

0

10

11

⎞
⎟⎟⎟⎠
〉

= 〈(1)x, (2)x〉α = P(1X 2X) = 70.1.
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From the notion of α-product it follows the one of α-norm of an m-dimensional vector. We write

||(1)x||2α = 〈(1)x, (1)x〉α = (1)x
i
(1)x

ipii = (1)x
i
(1)xi (8)

as well as

||(2)x||2α = 〈(2)x, (2)x〉α = (2)x
i
(2)x

ipii = (2)x
i
(2)xi (9)

because the joint probabilities of the particular joint distributions under consideration whose covariant
indices are not equal coincide with 0. For instance, from Table 2 it follows that it turns out to be

〈⎛
⎜⎜⎜⎝
0

6

7

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

0

2.4

4.2

⎞
⎟⎟⎟⎠
〉

= 〈(1)x, (1)x〉α = ||(1)x||2α = 43.8.

Also, it is possible to show two metric inequalities. The Schwarz’s α-generalized inequality is given by∣∣∣〈(1)x, (2)x〉α
∣∣∣ ≤ ||(1)x||α||(2)x||α, (10)

whereas the α-triangle inequality is expressed by

||(1)x + (2)x||α ≤ ||(1)x||α + ||(2)x||α. (11)

From (10) it follows the notion of α-cosine, so it is possible to write

cos((1)x, (2)x)α =
〈(1)x, (2)x〉α

||(1)x||α||(2)x||α
. (12)

2.2. The Relative and Subjective Nature of the Joint Probabilities Associated with an Ordered Pair of
Contingent Consumption Plans

The covariant components of an affine tensor of order 2 belonging to Em ⊗Em are joint probabilities
whose nature is relative (see also [6]). They depend on the variable group of circumstances supposed to
be of interest to the occurrence of a specific state of the world characterizing 1X 2X. Such circumstances
are known at the time. They generally vary from instant to instant. It follows that probabilities vary
according to the state of information and knowledge associated with a given investor which can be
enriched by the flow of information and results that are learned or observed with respect to more or less
similar cases. We note that each new piece of information is able to modify the evaluations of probability
being made by the investor according to Bayes’ rule (see also [8]). The nature of the joint probabilities is
also subjective in the sense that a probability concerning a state of the world of a contingent consumption
plan and depending on the variable state of information and knowledge associated with a given investor
is intrinsically personalized. It follows that different investors having the same state of information
and knowledge could give a greater attention to certain circumstances than to others. The state of
information and knowledge associated with a given investor can also modify the set of all possible
quantitative states of the world of a contingent consumption plan, where each of them is a real number
(see also [13]). Accordingly, the absolute value of each real number can change.

Since it turns out to be

dim (Em ⊗ Em) = m2,

there exists an isomorphism between Em ⊗Em and Em2
. We can think of locating m2 masses on m2

points, where each point of them is a real number denoted by (1)x
i
(2)x

j , i, j = 1, . . . ,m. We write

(x, p) ⊂ Em2
,

where x and p are two m2-dimensional vectors.
If we write

〈(1)x, (2)x〉α = (1)x
i
(2)x

jpij = P(1X 2X),
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then we observe a “reduction of dimension” because we pass from m2 points to 1 point, where the
latter is always studied together with its Cartesian coordinates. If we consider all coherent previsions of
1X 2X then P(1X 2X) = (P(1X), P(2X)) is a point of a two-dimensional convex set coinciding with
the budget set of the investor (see also [7]). Such a convex set is a continuous subset of R×R. All
coherent previsions of 1X 2X are obtained by taking all the values between 0 and 1, end points included,
into account for each mass of m2 masses. The number of such values is infinite. P(1X 2X) is always
decomposed into two linear measures, P(1X) and P(2X), respectively. Each of them shows a “reduction
of dimension” because we pass from m one-dimensional points which are found on a one-dimensional
straight line to 1 one-dimensional point which is found on the same line. All coherent previsions of 1X
and 2X are obtained by taking all the values between 0 and 1, end points included, into account for each
mass of m masses. The number of such values is infinite.

3. TWO CONTINGENT CONSUMPTION PLANS JOINTLY CONSIDERED
THAT ARE INDEPENDENT OF THE NOTION OF ORDERED PAIR

We note the following.
Remark 2. Let 1X and 2X be two marginal random goods, where each of them is characterized

by m possible values. The two m-dimensional vectors, whose contravariant components represent
the possible values for two random goods which are separately considered, are assumed to be linearly
independent. The possible values for two logically independent random goods which are jointly
considered have to be represented by the contravariant components of a tensor of order 2. It is an
antisymmetric tensor of order 2 whenever we are interested in handling a multiple random good of order
2 denoted by X12, where its components are expressed by 1X and 2X. �

We pass from an ordered pair of contingent consumption plans to two contingent consumption plans
which are jointly considered regardless of the notion of ordered pair. We have to consider a multiple
random good of order 2 (double random good) denoted by

X12 = {1X, 2X}, (13)

whose possible values coincide with the contravariant components of an antisymmetric tensor of order
2. Given the marginal probabilities of 1X and 2X, after choosing m2 joint probabilities connected with
1X 2X, it is necessary to consider four joint distributions characterizing 1X 1X, 1X 2X, 2X 1X, and
2X 2X, with

1X 1X : I(1X)× I(1X) → R, (14)

2X 2X : I(2X)× I(2X) → R, (15)

and

2X 1X : I(2X)× I(1X) → R, (16)

in order to release X12 from the notion of ordered pair of contingent consumption plans. We note that
1X and 2X are not put near unlike what happens when we jointly consider iX and jX, where we have
i, j = 1, 2. We can think of putting the m2 joint probabilities into a two-way table having m rows and m
columns. Each probability distribution of a marginal random good is viewed to be as a particular joint
distribution. This is because all off-diagonal joint probabilities of the two-way table under consideration
coincide with 0. It is possible to show that the mathematical expectation of iX jX, with i, j = 1, 2, is
always bilinear (see also [37]). This means that it is separately linear in each marginal random good. We
prove the following.

Theorem 1. The mathematical expectation of X12 = {1X, 2X} denoted by P(X12) coincides
with the determinant of a square matrix of order 2. Each element of such a determinant is a real
number coinciding with the mathematical expectation of iX jX, where we have i, j = 1, 2.

Proof. An affine tensor of order 2 representing the possible values for 1X 2X, where 1X 2X
corresponds to (1X, 2X), is written in the form

T = (1)x ⊗ (2)x = (1)x
i
(2)x

jei ⊗ ej. (17)
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An affine tensor of order 2 representing the possible values for 2X 1X, where 2X 1X corresponds to
(2X, 1X), is conversely written in the form

T = (2)x ⊗ (1)x = (2)x
j
(1)x

iej ⊗ ei. (18)

We wrote a same affine tensor of order 2 denoted by T whose m2 contravariant components are not the
same. If we pass from (17) to (18) then we note that the contravariant components whose upper indices
are equal do not change. If we pass from (17) to (18) then we note that the contravariant components
whose upper indices are not equal change. It follows that we write an antisymmetric tensor of order 2 in
the form

T =
∑
i<j

(
(1)x

i
(2)x

j − (1)x
j
(2)x

i
)
ei ⊗ ej (19)

because we have to consider (17) and (18) together. We wrote i < j under the summation symbol
because if it turns out to be i = j then every contravariant component inside parentheses is equal to
0. Hence, we denote by 12x an antisymmetric tensor of order 2 identifying X12. We write

12x
(ij) =

∣∣∣∣∣∣(1)
xi (1)x

j

(2)x
i

(2)x
j

∣∣∣∣∣∣ = (1)x
i
(2)x

j − (1)x
j
(2)x

i (20)

in order to identify the strict contravariant components of it. We have i < j. The number of such
components is overall equal to (

m

2

)
.

The corresponding strict covariant components of 12x are given by

12x(ij) =

∣∣∣∣∣∣(1)
xi (1)xj

(2)xi (2)xj

∣∣∣∣∣∣ =
∣∣∣∣∣∣(1)

xjpji (1)x
ipij

(2)x
jpji (2)x

ipij

∣∣∣∣∣∣ , (21)

where we have i < j. We do not compute the scalar value of (21). The number of the strict contravariant
and covariant components of 12x is absolutely unimportant. We always obtain the same outcome
independently of such a number. We put together (20) and (21), where (20) and (21) contain all strict
contravariant and covariant components of 12x at the same time. We always put together (20) and (21)
in the same way. We always associate (1)x

i with (1)xi, (1)x
j with (2)xj , (2)x

i with (1)xi, and (2)x
j with

(2)xj . After putting together (20) and (21), whose structure is evidently the one of two determinants
because we are considering multilinear matters, we obtain different single terms (monomials). It follows
that a variable index appearing twice in a monomial implies summation of it over all values of the index
(hence, every time it is possible to obtain a polynomial by using the Einstein notation). On the other
hand, all strict contravariant and covariant components of 12x are simultaneously identified with two
determinants because, in general, the determinant of a square matrix is the most exemplary multilinear
relationship as well as a linear combination of basis vectors is the most exemplary linear relationship.
We obtain the mathematical expectation of X12 given by

||12x||2α =

∣∣∣∣∣∣
||(1)x||2α 〈(1)x, (2)x〉α

〈(2)x, (1)x〉α ||(2)x||2α

∣∣∣∣∣∣
= ||(1)x||2α||(2)x||2α −

(
〈(1)x, (2)x〉α

)2
, (22)

where we evidently observe
〈(1)x, (2)x〉α = 〈(2)x, (1)x〉α. (23)

By putting together (20) and (21) we are always faced with four joint distributions characterizing 1X 1X,
1X 2X, 2X 1X, and 2X 2X that are all summarized. We write

||12x||2α = P(X12) > 0, (24)
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where it turns out to be

P(X12) =

∣∣∣∣∣∣
||(1)x||2α 〈(1)x, (2)x〉α

〈(2)x, (1)x〉α ||(2)x||2α

∣∣∣∣∣∣
=

∣∣∣∣∣∣(1)
xi (1)x

ip
(11)
ii = (1)x

i
(1)xi (1)x

j
(2)x

ip
(12)
ij = (1)x

j
(2)xj

(2)x
i
(1)x

jp
(21)
ji = (2)x

i
(1)xi (2)x

j
(2)x

jp
(22)
jj = (2)x

j
(2)xj

∣∣∣∣∣∣ . (25)

We note that p(11) is the tensor of all joint probabilities associated with ((1)x, (1)x). The same is true for
all others contained in (25). It is possible to observe that in general it turns out to be

P(1X 2X) 	= P(X12). (26)

We finally write

P(X12) =

∣∣∣∣∣∣
P(1X 1X) P(1X 2X)

P(2X 1X) P(2X 2X)

∣∣∣∣∣∣ , (27)

where the determinant of the square matrix of order 2 under consideration is a bilinear function of the
columns of it. �

Given 1X and 2X and their coherent previsions denoted by

P(1X) = (1)x
1
(1)p1 + . . .+ (1)x

m
(1)pm

and

P(2X) = (2)x
1
(2)p1 + . . .+ (2)x

m
(2)pm,

where it turns out to be

(1)p1 + . . . + (1)pm = 1

as well as

(2)p1 + . . .+ (2)pm = 1,

with 0 ≤ (1)pi ≤ 1, 0 ≤ (2)pj ≤ 1, i, j = 1, . . . ,m, it is possible to consider all deviations from P(1X)

and P(2X) of the possible values for 1X and 2X. We are evidently faced with the marginal distributions
of the joint distribution of 1X and 2X (see also [29]). We prove the following

Theorem 2. The variance of X12 = {1X, 2X} denoted by Var(X12) coincides with the determi-
nant of a square matrix of order 2. Each element of such a determinant is a real number coinciding
with the variance of 1X and 2X and with their covariance.

Proof. All deviations from P(1X) and P(2X) of the possible values for 1X and 2X are translations.
They are changes of origin. It is possible to write

||12d||2α =

∣∣∣∣∣∣
||(1)d||2α 〈(1)d, (2)d〉α

〈(2)d, (1)d〉α ||(2)d||2α

∣∣∣∣∣∣
= ||(1)d||2α||(2)d||2α −

(
〈(1)d, (2)d〉α

)2
, (28)

where 12d is an antisymmetric tensor of order 2 representing X12 from a logical point of view. We are
faced with changes of origin of the possible values for 1X and 2X. We write

||12d||2α = Var(X12) = σ2
X12

. (29)

We note that it turns out to be

〈(1)d, (2)d〉α = 〈(2)d, (1)d〉α = Cov(1X, 2X) = Cov(2X, 1X), (30)
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so it is possible to write

Var(X12) =

∣∣∣∣∣∣
Var(1X) Cov(1X, 2X)

Cov(2X, 1X) Var(2X)

∣∣∣∣∣∣ . (31)

If we are faced with the variance of X12 then 1X and 2X are fused together. In general, if we compute
only the covariance of 1X and 2X (in addition to the variance of each of them) then they are simply put
near. �

We note the following.
Remark 3. GivenX12, P(X12) is coherent in the same way as P(1X), P(2X) as well as P(1X 2X) =

P(2X 1X), where P(X12) and P(1X 2X) = P(2X 1X) are both of them bilinear indices. P(X12) is an
aggregate index, whereas P(1X 2X) = P(2X 1X) is a disaggregate index. �

Remark 4. The origin of the variability of X12 is not standardized, but it depends on the variable state
of information and knowledge associated with a given investor. All deviations from P(1X) and P(2X)
of the possible values for 1X and 2X depend on her variable state of information and knowledge. �

4. THE BUDGET SET OF THE INVESTOR

Given the two-good assumption, the objects of investor choice are of a bilinear nature (see also [3]).
We consider two mutually orthogonal axes of a two-dimensional Cartesian coordinate system on which
an origin, a same unit of length and an orientation are established (see also [12]). All the m2 possible
states of the world of two contingent consumption plans which are jointly considered belong to a finite
subset of a two-dimensional Cartesian coordinate system, where each axis of it contains m possible
states of the world of a contingent and marginal consumption plan. It is possible to consider two half-
lines, where each of them extends indefinitely in a positive direction from zero before being restricted
(see also [19]). Only a joint distribution is considered inside of the budget set of the investor. Whenever
we summarize it, we obtain a bilinear measure. It coincides with a possible object of investor choice.
It is a synthesized element of the Frèchet class. We consider all coherent previsions of a joint random
good (see also [26]). All coherent previsions of a joint random good denoted by 1X 2X are expressed
by P(1X 2X). They are disaggregate and bilinear measures, so P(1X 2X) is always decomposed into
two coherent previsions of two marginal random goods denoted by P(1X) and P(2X), respectively. All
coherent previsions of a joint random good identify a two-dimensional convex set denoted by P ⊂ R×R.
It is a right triangle whose catheti belong to the first quadrant of a two-dimensional Cartesian coordinate
system. They meet at the point denoted by (0, 0). Its hypotenuse is the budget line identifying the budget
set of the investor. It is a hyperplane embedded in a two-dimensional Cartesian coordinate system. It
does not separate any point P of P from the set Q = I(1X)× I(2X) of all possible points for 1X and
2X belonging to I(1X) and I(2X), respectively. It makes sense to consider possible values for a joint
random entity as well as for two marginal random entities. Given the marginal previsions of 1X and 2X
denoted by P(1X) and P(2X), the budget constraint of the investor is a linear inequality expressed by

c1 P(1X) + c2 P(2X) ≤ c.

It is characterized by three strictly positive real numbers, c1, c2, and c (see also [11]). They are the two
objective prices, c1 and c2, of the two goods under consideration besides the amount of money she has
to spend (see also [34]). The two prices of the two goods under consideration identify the negative slope
of the budget line (see also [35]). We deal with two continuous goods because what the investor actually
chooses inside of her budget set is an average quantity of consumption associated with each of them.
The number of possible and coherent average quantities of consumption associated with each marginal
good is infinite. Two one-dimensional convex sets are identified because the two-dimensional convex set
coinciding with the budget set of the investor contains infinite coherent previsions of a bilinear nature,
where each of them is always decomposed into two previsions of a linear nature. Two one-dimensional
convex sets coincide with two line segments belonging to the two axes of a two-dimensional Cartesian
coordinate system. It is clear that each average quantity of consumption associated with random good
1 and random good 2 does not depend on objective elements only, but it depends on subjective elements
as well (see also [2]).
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We multiply c1, c2, and c by a positive number. The investor divides her relative monetary wealth
given by

c1
c1 + c2

(32)

and
c2

c1 + c2
(33)

between the two random goods denoted by 1X and 2X. It follows that it turns out to be
c1

c1 + c2
+

c2
c1 + c2

= 1. (34)

The budget set of the investor does not change (see also [30]). She always chooses one and only one of
the points of P from her budget set. All points of P are admissible in terms of coherence of P. We write

c1
c1 + c2

P(1X) +
c2

c1 + c2
P(2X) ≤ c

c1 + c2
(35)

whenever we use a bilinear measure that is decomposed into two linear measures. The left-hand side of
(35) is a weighted average of the two expected returns on 1X and 2X.

4.1. To Go Away from the Budget Set of the Investor: Changes of Origin

Let 1X and 2X be two random goods coinciding with two risky assets. Given

y = μ1 (1)d + μ2 (2)d, (36)

with μ1 =
c1

c1+c2
∈ R and μ2 =

c2
c1+c2

∈ R, it is possible to obtain, outside of the budget set of the
investor, the following expression given by

||y||2α = ||μ1 (1)d + μ2 (2)d||2α
= (μ1)

2 ||(1)d||2α + 2μ1 μ2〈(1)d, (2)d〉α + (μ2)
2 ||(2)d||2α. (37)

We focus on the riskiness of the components of X12 only, where 1X and 2X are the components of X12.
This is because we use a linear metric (see also [4]).

We establish the following.
Definition 4. We call linear metric the expression given by (37). Since it is also possible to write

||(1)d − (2)d||2α = ||(1)d||2α + ||(2)d||2α − 2〈(1)d, (2)d〉α, it derives from the notion of α-distance between
the two components of X12 denoted by 1X and 2X whose possible values are subjected to two changes
of origin.

We note the following.
Remark 5. Whenever we consider a linear and quadratic metric, we are faced with a joint distribution

only. It depends on the notion of ordered pair of random goods. �
We establish the following.
Definition 5. We call non-linear (multilinear) metric the expression given by (28). It is the area of

a 2-parallelepiped whose edges are two marginal random goods having their possible values that are
subjected to two changes of origin. The strict components of 12d are the coordinates of such edges
denoted by (1)d and (2)d.

By using (28), where (28) is an aggregate measure of a bilinear nature, it is possible to obtain the
Bravais-Pearson correlation coefficient. We firstly write

||12d̂||2α =

∣∣∣∣∣∣
||(1)d||2α 0

0 ||(2)d||2α

∣∣∣∣∣∣ . (38)
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After some mathematical steps, we obtain

−1 ≤
(
1− ||12d||2α

||12d̂||2α

)1/2

≤ 1, (39)

where it is possible to realize that the expression within the parentheses coincides with the Bravais-
Pearson correlation coefficient intrinsically referred to X12. We write it in the following form expressed by

r12 =
〈(1)d, (2)d〉α

||(1)d||α ||(2)d||α
. (40)

5. UNCERTAINTY AND RISKINESS: PROBABILITY AND UTILITY CONNECTED WITH
MULTIPLE RANDOM GOODS OF ORDER 2

Since Em ⊗ Em is isomorphic to Em2
, it is possible to transfer all the m2 possible states of the

world of two contingent consumption plans jointly considered identifying a joint random good on a one-
dimensional straight line on which an origin, a unit of length and an orientation are established. We deal
with four joint distributions, so we go away from the budget set of the investor. We transfer all them on
a one-dimensional straight line on which an origin, a unit of length and an orientation are chosen.

Any distribution of mass is completely characterized by its mathematical expectation and variance,
where the latter is a measure of the riskiness of the wealth distribution under consideration (see also
[18]). Both mathematical expectation and variance of X12 have been obtained by means of the notion of
α-norm of an antisymmetric tensor of order 2. Accordingly, in general, they are both of them greater than
zero (see also [33]). If the investor estimates all joint probabilities of 1X 2X in such a way that there exists
an inverse linear relationship between random good 1 and random good 2 then a higher mathematical
expectation of X12 is good in her opinion, other things being equal, and a higher variance or standard
deviation is bad. She is averse to risk. Her continuous utility function denoted by u(x) is a strictly
increasing and concave function, where its slope gets flatter as wealth increases (see also [17]). The form
and extent of the aversion to risk which is caught by the utility function under consideration will depend
on her temperament, her current mood and some other circumstance. This function is graphically
represented outside of the budget set of the investor (see also [1]). We use two mutually orthogonal
axes of a two-dimensional Cartesian coordinate system on which an origin, a same unit of length and
an orientation are established (see also [38]). It follows that we have (1)x

i
(2)x

j , i, j = 1, . . . ,m, together

with their masses on the horizontal axis. We have consequently u((1)x
i
(2)x

j) together with their masses

on the vertical one. We are evidently faced with m2 masses located on u(x) as well as on two mutually
orthogonal axes. We have also to consider (1)x

i
(1)x

i and u((1)x
i
(1)x

i) together with m2 masses as

well as (2)x
i
(2)x

i and u((2)x
i
(2)x

i) together with m2 masses. It is clear that (2)x
j
(1)x

i, j, i = 1, . . . ,m,

together with their masses on the horizontal axis as well as u((2)x
j
(1)x

i) together with their masses on

the vertical one give rise to the same values as (1)x
i
(2)x

j and u((1)x
i
(2)x

j). Each possible value that
is considered on the horizontal axis of a two-dimensional Cartesian coordinate system is expressed by
using the arithmetic product of two values associated with two contingent consumption plans which are
separately considered. Accordingly, all coherent arithmetic means are considered. They transfer on a
one-dimensional straight line all coherent α-products.

We note the following.
Remark 6. Let u(x) be the cardinal utility function identifying a risk-averse investor. It is considered

outside of the budget set of the investor. This function lives inside of a two-dimensional Cartesian
coordinate system. All masses characterizing each joint distribution which is considered in order to
release X12 from the notion of ordered pair of contingent consumption plans are located on some points
of its diagram. They identify different one-dimensional convex sets as joint probabilities of every joint
distribution vary in the interval from 0 to 1 by taking all the values between 0 and 1, end points included,
into account. The number of these values is infinite. There are different one-dimensional convex sets
on the horizontal axis as well as different one-dimensional convex sets on the vertical one. All marginal
probabilities of every marginal distribution under consideration vary in the interval from 0 to 1 by taking
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all the values between 0 and 1, end points included, into account. The number of these values is infinite.
We note that

(P(X12), P[u(X12)])

is a point of a two-dimensional Cartesian coordinate system belonging to the union of different one-
dimensional convex sets. Such one-dimensional convex sets are found on the horizontal axis to which
P(X12) belongs as well as on the vertical one to which P[u(X12)] belongs. If u(x) identifies a risk-loving
investor or a risk-neutral decision-maker then all of this continues to be valid. If X is a random good
having m possible values then (P(X), P[u(X)]) is a two-dimensional point expressing two barycenters
of two nonparametric distributions of mass. �

We observe that X12 has been constructed in such a way that the marginal distributions of 1X and
2X never change with respect to the starting ones. The marginal distributions of the joint distribution
connected with 1X 1X coincide with the probability distribution of 1X. The marginal distributions of the
joint distribution connected with 2X 2X coincide with the probability distribution of 2X. The marginal
distributions of the joint distribution connected with 1X 2X coincide with the probability distribution
of 1X and 2X respectively. The marginal distributions of the joint distribution connected with 2X 1X
coincide with the probability distribution of 2X and 1X, respectively.

The investor estimates all joint probabilities of 1X 2X inside of her budget set in such a way that there
exists an inverse linear relationship between 1X and 2X. She is risk averse. For a risk-averse investor,
the utility of the mathematical expectation of X12 is greater than the expected utility of X12 given by

P[u(X12)] =

∣∣∣∣∣∣
u((1)x

i
(1)x

i)pii u((1)x
i
(2)x

j)pij

u((2)x
j
(1)x

i)pji u((2)x
i
(2)x

i)pii

∣∣∣∣∣∣
=

[
u((1)x

i
(1)x

i)pii u((2)x
i
(2)x

i)pii − u((1)x
i
(2)x

j)pij u((2)x
j
(1)x

i)pji

]
> 0, (41)

where (4) holds with regard to each factor characterizing the minuend and the subtrahend of (41). We
consider an extension of Jensen’s inequality connected with a discrete probability distribution. It is a
nonparametric probability distribution. We denote by

x12 = Pu(X12), (42)

the certainty equivalent to X12 given by

Pu(X12) = u−1{P[u(X12)]}. (43)

We note that (43) represents an associative mean. It is an increasing transform of the arithmetic mean
considered by means of u and obtained by using a bilinear function of the columns of a square matrix
of order 2 (see Theorem 1). Since it turns out to be x12 < P(X12) on the horizontal axis, it is possible
to say that X12 is not preferred to x12 in opinion of a risk-averse investor. In all cases she will prefer
the certain alternative to the uncertain one. She would content herself with receiving with certainty x12
which is less than P(X12) in exchange for the hypothetical gain given by 2P(X12) whose probability
is judged to be equal to 1/2 by her. In the scale of utility in which her judgments of indifference are
based it is possible to observe equal levels on the vertical axis in passing from 0 to x12 and from x12 to
2P(X12) on the horizontal axis, where 0 and 2P(X12) express two equiprobable events of a partition of
two incompatible and exhaustive events. The possibility of inserting the degree of preferability of X12

into the scale of the certain amounts is a necessary condition of all rational decision-making criteria that
can be followed (see also [32]).

The investor subjectively estimates all joint probabilities of 1X 2X inside of her budget set in such a
way that there exists a direct linear relationship between 1X and 2X. She is risk lover. For a risk-loving
investor, the expected utility of X12 is greater than the utility of the mathematical expectation of X12.
Her continuous and cardinal utility function is a strictly increasing and convex function, where its slope
gets steeper as wealth increases. The form and extent of this attitude towards risk which is caught by the
utility function under consideration will depend on her temperament, her current mood and some other
circumstance.

The investor subjectively estimates all joint probabilities of 1X 2X inside of her budget set in such
a way that 1X and 2X are stochastically independent. She is risk neutral. Accordingly, it is possible
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to observe that among those decisions leading to different joint contingent consumption plans her best
choice under conditions of uncertainty and riskiness must be the one leading to the plan with the highest
mathematical expectation denoted by P(X12). Her continuous utility function is an increasing linear
function. It is the 45◦ line. Its graphical form is always the same unlike the previous cases.

All of this is compatible with the fact that the notion of risk is intrinsically of a subjective nature.

5.1. The Criteria of Rational Choices Being Made by the Investor: Multiple Random Goods of Order 2

We establish the following.
Definition 6. The certain amount that the investor subjectively judges to be equivalent to a double

random good denoted byX12 is expressed byP(X12) whenever she is only interested in the mathematical
expectation ofX12. It is the price ofX12 for her whenever her utility function coincides with the 45-degree
line. It coincides with its coherent prevision given by

P(X12) =

∣∣∣∣∣∣
P(1X 1X) P(1X 2X)

P(2X 1X) P(2X 2X)

∣∣∣∣∣∣
= P(1X 1X)P(2X 2X)−P(1X 2X)P(2X 1X) > 0. (44)

It represents the price that the investor is willing to pay in order to purchase the right to participate in a
gamble identified with X12.

The slope of the budget line is equal to −1 whenever two marginal random goods are the same. The
two catheti of the right triangle under consideration are equal.

We note the following.
Remark 7. A choice being made by the investor under conditions of uncertainty and riskiness is

rational if and only if she chooses any coherent evaluation of the marginal probabilities together with the
joint ones characterizing m2 possible quantitative states of the world of two contingent consumption
plans that are jointly considered. She chooses a continuous and strictly increasing utility function in
accordance with her subjective attitude towards risk. She fixes as her goal the maximization of the
expected value of her utility, where the nature of such an expected value is firstly bilinear. �

Given a concave utility function denoted by u(x), where x coincides with the monetary wealth of a
risk-averse investor, it is possible to say that X12 is preferred to another double random good denoted by
X34 if and only if it turns out to be

P[u(X12)] > P[u(X34)] (45)

on the vertical axis of a two-dimensional Cartesian coordinate system. It follows that it turns out to be

Pu(X12) > Pu(X34) (46)

on the horizontal axis, where Pu(X12) is less than P(X12), whereas Pu(X34) is less than P(X34). If a
risk-averse investor is firstly faced with X34 then to pass from X34 to X12 is an advantageous transaction
to her because Pu increases. Given a convex utility function denoted by u(x), it is possible to say that
X12 is preferred to X34 by a risk-loving investor if and only if (45) and (46) hold. We observe that
Pu(X12) is greater than P(X12) as well as Pu(X34) is greater than P(X34) on the horizontal axis. Given
the 45-degree line denoted by u(x) identifying the identity of monetary value and utility, it is possible to
say that X12 is preferred to X34 by a risk-neutral investor if and only if (45) and (46) continue to be valid.
We note that it turns out to be Pu(X12) = P(X12) as well as Pu(X34) = P(X34) on the horizontal axis.

It is also possible to compare more than two joint contingent consumption plans. If the investor
prefers X12 to X34 then it turns out to be P[u(X12)] > P[u(X34)]. If she prefers X34 to X56, where X56

is different from X12 and X34, then we observe P[u(X34)] > P[u(X56)]. It follows that she rationally
prefers X12 to X56, so we note P[u(X12)] > P[u(X56)].

A choice is optimal if and only if there exists a utility function whose maximum expected value is
firstly bilinear (see also [31]). An extension of Daniel Bernoulli’s approach to the notion of expected
utility is carried out. All optimal choices under conditions of uncertainty and riskiness can be ranked
by the investor (see also [21]). They can be ranked inside of a linear space over R. Accordingly, she is
always able to establish which is her best choice (see also [24]).
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Even if we jointly study three or more than three contingent consumption plans, it is never practically
possible to consider more than two contingent consumption plans at a time from a metric point of view
(see also [20]). This is because we use a quadratic metric. It can be a linear or multilinear metric.

6. CONCLUSIONS AND FUTURE PERSPECTIVES

This paper is connected with revealed preference theory. Two marginal risky assets are two marginal
random goods that can be studied inside of the budget set of the investor. She is modeled as being a
consumer. In this paper, the budget set of the investor is innovatively studied. It makes sense to consider
possible values for a joint random good as well as for two marginal random goods. This is because the
budget line identifying the budget set of the investor formally coincides with a hyperplane embedded in
a two-dimensional Cartesian coordinate system. By definition, a hyperplane never separates any point
P of P from the set Q = I(1X)× I(2X) of all possible points for 1X and 2X belonging to I(1X) and
I(2X) respectively. The same is true with regard to two marginal random goods in the sense that the
same hyperplane never separates any point P of P from the sets I(1X) and I(2X) of all possible points
for 1X and 2X belonging to I(1X) and I(2X) respectively. Possible values for a joint random good
as well as for two marginal random goods are of an objective nature. They conceptually coincide with
what can objectively be observed. Since P(1X 2X) = (P(1X), P(2X)) is a synthesized element of the
Frèchet class, the notion of risk is intrinsically of a subjective nature.

There is a complete and reversible equivalence between the assumption of a coherent preference as
a basis for decisions and the choice of a coherent evaluation for probability and utility. In this paper,
all of this is referred to multiple random goods of order 2 whose possible values are of a monetary
nature. A multilinear approach to the criteria of investor choice under conditions of uncertainty and
riskiness consists in establishing disaggregate and aggregate measures based on what the investor
actually chooses inside of her budget set. Aggregate measures obtained by using a multilinear metric
allow to identify multiple random goods of order 2. It is also possible to identify multiple random
goods whose order is greater than 2. A multilinear approach to the criteria of investor choice under
conditions of uncertainty and riskiness shows that an evolution towards a synthesis is intentionally
tried. It avoids mistaken ideas such as the attempts to study decisions under conditions of uncertainty
forcing everything to intervene except the evaluation of probability being made by the investor. It is a
fundamental element. It is a basic and unavoidable result associated with specific conditions identifying
decisions where sure elements are absent. Bound choices being made by the investor under conditions
of uncertainty and riskiness have to be studied by considering all elements characterizing them. They
are not of an objective nature only, but they are also of a subjective nature. Accordingly, an evolution
towards a unitary vision in which it appears that a place and a link are found for theories previously
viewed as unconnected parts must intentionally be tried. It is possible to recompose these parts in an
organized way by using the properties of the notion of prevision of a random good. Such properties have
been treated in this paper.

We are able to study multilinear relationships between variables. We are able to propose a multilinear
regression model based on the main elements characterizing this study. Multilinear relationships
between variables are not dealt with in the literature.
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