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Abstract—We consider the order statistics X1:n, . . . , Xn:n based on independent identically sym-
metrically distributed random variables. We determine sharp upper bounds in the properly centered
linear combinations of order statistics

∑n
i=1 ci(Xi:n − μ), where (c1, . . . , cn) is an arbitrary vector

of coefficients from the n-dimensional real space, and μ is the symmetry center of the parent
distribution, in various scale units. The scale units are constructed on the basis of absolute central
moments of the parent distribution of various orders. The bounds are specified for single order
statistics. The lower bounds are immediately concluded from the upper ones.

PACS numbers: 60E15, 62G30
DOI: 10.3103/S1066530721030030

Keywords: independent identically distributed random variables, symmetric distribution, order
statistic, L-statistic, sharp bound

1. INTRODUCTION

Symmetric models are frequently studied in statistical inference. A fundamental example is the family
of normal distributions. We consider n non-degenerate independent identically distributed random
variables X1, . . . ,Xn (iid, for short) whose common marginal distribution function F , say, is symmetric.
This means that there exists μ ∈ R, called the symmetry center of F , such that

F (x− μ) = 1− F (μ − x−), x ∈ R. (1.1)

We assume that F has a finite expectation which immediately implies that EX1 = μ. Due to the
assumption, all the order statistics Xi:n, i = 1, . . . , n, based on X1, . . . ,Xn have finite expectations as
well.

The purpose of this paper is to provide the sharp upper bounds on the expectations E
∑n

i=1 ci(Xi:n −
μ) of linear combinations of order statistics (L-statistics, for short) centered about μ, where c =
(c1, . . . , cn) ∈ R

n is an arbitrary vector of combination coefficients. The bounds are expressed in the
scale units σp = (σp

p)1/p based on the absolute central moments

σp
p = E|X1 − μ|p, 1 ≤ p < ∞,

of the parent distribution. Writing σp below, we tacitly assume that X1 has a positive and finite pth
absolute central moment. If we additionally assume that X1 has a bounded support we also use the
following scale measure

σ∞ = lim
p→∞

σp = max{μ − F−1(0), F−1(1)− μ},

where

F−1(0) = inf {x ∈ R : F (x) > 0},
F−1(1) = sup{x ∈ R : F (x) < 1}
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denote the left and right end-points of the support of F , respectively. Note that for the symmetric
distribution function F

σ∞ = μ− F−1(0) = F−1(1)− μ.

Bounds on the expectations of order statistics and their linear combinations were studied by a number
of researchers. The first contribution to the topic was due to Plackett [11] who determined the sharp
upper bounds on the expectations of sample ranges E

Xn:n−X1:n
σ2

expressed in the standard deviation
units σ2. The respective bounds were valid for general parent distributions as well as those under the
restriction to the symmetric ones. Moriguti [8] presented the optimal bound on E

Xn:n−μ
σ2

. His result
was extended in Arnold [1] to more general scale units σp, 1 < p < ∞. The positive sharp bounds
on E

Xi:n−μ
σ2

for high ranks n
2 + 1 ≤ i ≤ n− 1 were established in Rychlik [13]. The order statistics

with low ranks 1 ≤ i ≤ n+1
2 were treated in Rychlik [14]. The general idea of calculating positive

bounds on E
∑n

i=1 ci
Xi:n−μ

σp
for various p was proposed by Rychlik [12]. We develop the idea here more

precisely, and present the method of establishing analogous non-positive bounds. We also mention more
precise evaluations for order statistics under the more stringent condition that the parent distribution is
symmetric and unimodal which were presented in Gajek and Rychlik [3] and Rychlik [14]. Sharp bounds
on the variances of order statistics coming from symmetric populations were described in Moriguti [8],
Papadatos [10], and Jasiński and Rychlik [6].

It is well known that whenU1, . . . , Un are independent identically uniformly distributed on the interval
[0, 1], then the distribution function and the density function of the ith order statistic Ui:n have the forms

P(Ui:n ≤ x) = Fi:n(x) =

n∑
k=i

Bk,n(x),

fi:n(x) = F ′
i:n(x) = nBi−1,n−1(x), 0 < x < 1, i = 1, . . . , n,

respectively, where

Bk,m(x) =

(
m

k

)
xk(1− x)m−k, 0 < x < 1, k = 0, . . . ,m,

denote the Bernstein polynomials of degree m. More generally, if X1, . . . ,Xn are iid with a parent
distribution function F , then the order statistics have the distribution functions

P(Xi:n ≤ x) = Fi:n(F (x)) =
n∑

k=i

Bk,n(F (x)), x ∈ R, i = 1, . . . , n.

Given distribution function F , let

F−1(u) = inf{x ∈ R : F (x) ≥ u}, 0 < u < 1,

denote the left-continuous version of the quantile function of F . It is also commonly known that if
U1, . . . , Un are iid standard uniform, then X1 = F−1(U1), . . . ,Xn = F−1(Un) are iid F-distributed, and
F−1(U1:n) ≤ . . . ≤ F−1(Un:n) are the respective order statistics. Therefore

μ = EX1 =

1∫
0

F−1(x) dx,

σp
p = E|X1 − μ|p =

1∫
0

|F−1(x)− μ|p dx,

and

EXi:n =

1∫
0

F−1(x)fi:n(x) dx,
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E

n∑
i=1

ci(Xi:n − μ) =

1∫
0

[F−1(x)− μ]
n∑

i=1

cifi:n(x) dx.

The assumption (1.1) implies that

F−1(x)− μ = μ− F−1(1− x+), 0 < x < 1. (1.2)

It follows that F−1(x)− μ is non-positive for 0 < x ≤ 1
2 and nonnegative for 1

2 < x < 1. Since for
every symmetric F the set of points 0 < x < 1 such that F−1(x)− μ �= μ− F−1(−x) has the Lebesgue
measure equal to 0, for every c ∈ R

n we can write
1
2∫

0

[F−1(x)− μ]
n∑

i=1

cifi:n(x) dx =

1∫
1
2

[F−1(1− x)− μ]
n∑

i=1

cifi:n(1− x) dx

=

1∫
1
2

[F−1(1− x)− μ]
n∑

i=1

cifn+1−i:n(x) dx = −
1∫

1
2

[F−1(x)− μ]
n∑

i=1

cn+1−ifi:n(x) dx.

In consequence,

E

n∑
i=1

ci(Xi:n − μ) =

1∫
0

[F−1(x)− μ]
n∑

i=1

cifi:n(x) dx

=

1∫
1
2

[F−1(x)− μ]

n∑
i=1

(ci − cn+1−i)fi:n(x) dx

=

1∫
1
2

[F−1(x)− μ]fcs:n(x) dx, (1.3)

where cs = (c1 − cn, c2 − cn−1, . . . , cn − c1). Notice that

fcs:n(x) =
n∑

i=1

(ci − cn+1−i)fi:n(x) =
n∑

i=1

ci[fi:n(x)− fi:n(1− x)] (1.4)

is antisymmetric about 1
2 , where it vanishes. It is the derivative of the function

Fcs:n(x) =
n∑

i=1

(ci − cn+1−i)Fi:n(x) =
n∑

i=1

ci[Fi:n(x) + Fi:n(1− x)− 1], (1.5)

which is symmetric about 1
2 , and vanishes at 0 and 1.

We use the formula (1.3) for establishing the optimal upper bounds on the expectations of centered L-
statistics E

∑n
i=1 ci

Xi:n−μ
σp

gauged in various scale units σp, 1 ≤ p ≤ ∞. One can guess that the signs of
the bounds depend merely on the coefficients c1, . . . , cn, but they do not depend on the scale units. The
positive and non-positive bounds are deduced with use of different methods. In Section 2, we determine
the conditions on c ∈ R

n assuring positivity of the bounds, the bound values, and the conditions of
their attainability. In Sections 3 and 4 we consider analogous problems for the L-statistics which have
non-positive bounds. Precisely, in Section 3 we describe the conditions on the coefficient vectors c
under which the upper bound on the expectations of the respective centered L-statistics amount to 0,
and are attained by some symmetric parent distributions. We also determine corresponding optimal
distributions. We analyze the remaining cases in Section 4. Then the optimal bounds are either equal to
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0, but they are merely attained in the limit or they take on strictly negative values. In all the cases, we
deduce the bounds for single order statistics from the general results.

The lower bounds are immediately deduced from the upper ones with use of the following transfor-
mation Yi = 2μ−Xi, i = 1, . . . , n. We notice that the transformation neither changes the marginal
symmetric distribution nor affects the independence. We also have Yi:n − μ = −(Xn+1−i:n − μ), i =
1, . . . , n. It follows that the lower bound on E

∑n
i=1 ci

Xi:n−μ
σp

is just the negative of the upper bound on

E
∑n

i=1 cn+1−i
Xi:n−μ

σp
, and their attainability conditions are identical. Therefore we concentrate below

on calculating the upper bounds only.

2. POSITIVE BOUNDS

For establishing the positive bounds, we use here two tools described in the following three lemmas.
The first one is a simplified version of Theorem 1 in Moriguti [9].

Lemma 1. Suppose that a real function h defined on [a, b] has a finite integral. Let h denote
(the right-continuous version of, say) the derivative of the greatest convex minorant H of the
antiderivative H(x) =

∫ x
a h(t)dt, a ≤ x ≤ b of h. Then for every nondecreasing function g : [a, b] �→

R we have
b∫

a

g(x)h(x) dx ≤
b∫

a

g(x)h(x) dx (2.1)

under the assumption that both the integrals exist. The equality in (2.1) is attained it g is
constant on every interval contained in the set {x ∈ [a, b] : H(x) < H(x)}.

The greatest convex minorant H of H is defined as the supremum of all convex functions not greater
than H . By definition, it is convex as well. It can be shown that in the case that h is square integrable
over [a, b], then h is the projection of h onto the family of all nondecreasing functions in L2([a, b], dx)
(see, e.g., Rychlik [13]).

The other tool is the classic Hölder inequality, see, e.g., Mitrinović [7].

Lemma 2. Let g and h belong to the Banach spaces Lp([a, b], dx) and Lq([a, b], dx), respectively,
for some 1 < p < ∞ and 1 < q = p

p−1 < ∞. Then

b∫
a

g(x)h(x) dx ≤

⎡
⎣ b∫

a

|g(x)|p dx

⎤
⎦
1/p ⎡

⎣ b∫
a

|h(x)|q dx

⎤
⎦
1/q

,

and the equality in (2.2) holds if either g(x) = 0, or h(x) = 0, or

g(x) = α|h(x)|q/psgn{h(x)}

almost everywhere on [a, b] for some positive α.
The last auxiliary result is called the variation diminishing property of Bernstein polynomials.
Lemma 3 (cf. [13, p. 66]). The number of zeros of a given nonzero linear combination

B(x) =
n∑

i=0

aiBi,n(x), 0 < x < 1,

of Bernstein polynomials of a fixed degree n is not greater than the number of sign changes in
the sequence a0, . . . , an. Moreover, the signs of B in the right neighborhood of 0 and the left
neighborhood of 1 coincide with the signs of the first and last nonzero elements among a0, . . . , an,
respectively.
The first statement was proved in Schoenberg [15]. The second claim is trivial.

We are now in a position to prove the following proposition.
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Proposition 1. Suppose that X1, . . . ,Xn are non-degenerate iid symmetrically distributed
about μ, and they have a finite moment of order 1 < p < ∞. Then for every c = (c1, . . . , cn) ∈ R

n

E

n∑
i=1

ci
Xi:n − μ

σp
≤ 1

21/p

⎡
⎢⎣

1∫
1
2

[(f
cs:n

)+(x)]
qdx

⎤
⎥⎦

1
q

, (2.2)

where (f
cs:n

)+(x) = max{f
cs:n

(x), 0} is the positive part of the derivative f
cs:n

(x) of the greatest

convex minorant F cs:n(x) of (1.5) restricted to the interval
(
1
2 , 1

)
. Moreover, if c satisfies

Fcs:n(x) < 0 for some
1

2
< x < 1, (2.3)

then the bound (2.2) is positive and sharp. It is attained then by the distribution function F
determined from the relation

F−1(x)− μ

σp
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− [(f
cs:n

)+(1−x)]q/p

⎡
⎣2

1∫
1
2

(f
cs:n

)q+(x)dx

⎤
⎦
1/p , 0 < x ≤ 1

2

[(f
cs:n

)+(x)]q/p

⎡
⎣2

1∫
1
2

(f
cs:n

)q+(x)dx

⎤
⎦
1/p ,

1
2 < x < 1.

(2.4)

Proof. The bound (2.2) follows from the relations

E

n∑
i=1

ci
Xi:n − μ

σp
=

1∫
1
2

F−1(x)− μ

σp
fcs:n(x) dx

≤
1∫

1
2

F−1(x)− μ

σp
f
cs:n

(x) dx ≤
1∫

1
2

F−1(x)− μ

σp
(f

cs:n
)+(x) dx

≤

⎡
⎢⎣

1∫
1
2

|F−1(x)− μ|p
σp
p

dx

⎤
⎥⎦

1
p
⎡
⎢⎣

1∫
1
2

[(f
cs:n

)+(x)]
q dx

⎤
⎥⎦

1
q

=
1

2
1
p

⎡
⎢⎣

1∫
1
2

[(f
cs:n

)+(x)]
q dx

⎤
⎥⎦

1
q

. (2.5)

The first two inequalities follow from the facts that F−1(x)−μ
σp

is nondecreasing (see Lemma 1) and

nonnegative on
[
1
2 , 1

)
.

Under the assumption (2.3) f
cs:n

is positive on some neighborhood of 1. It follows that the RHS of
(2.2) is strictly positive. We also show that the corresponding bound is attainable. The equality in the
last inequality of (2.5) is attained under the assumption

F−1(x)− μ

σp
= α

[
(f

cs:n
)+(x)

] q
p
,

1

2
< x < 1, (2.6)
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for some positive α (α = 0 is excluded here, because F is non-degenerate). By the assumption, the LHS
of (2.6) has the pth norm equal to 1

21/p
. The RHS has the same norm for

α =

⎡
⎢⎣2

1∫
1
2

[(f
cs:n

)+(x)]
q dx

⎤
⎥⎦
− 1

p

. (2.7)

Note that under the conditions (2.6) with (2.7) the second inequality in (2.5) becomes the equality,

because F−1(x)−μ
σp

vanishes on the (possibly empty) interval where f
cs:n

(x) is negative. Moreover, the
conditions imply the equality in the first inequality, because the constancy intervals of (2.6) contain all
the intervals where F cs:n(x) < Fc:n(x) (cf. Lemma 1). The symmetry condition (1.2) and continuity of
(2.6) we define the lacking part of the symmetric quantile function attaining the bound in (2.5)

F−1(x)− μ

σp
=

μ− F−1(1− x)

σp
= −

[(f
cs:n

)+(1− x)]q/p⎡
⎣2 1∫

1
2

(f
cs:n

)q+(x)dx

⎤
⎦
1/p

, 0 < x ≤ 1

2
.

This shows that that the parent distribution described in (2.4) actually provides the equality in (2.2). �
In the most classic subcase p = 2 the formulae slightly simplify.
Corollary 1. Let X1, . . . ,Xn be iid symmetrically distributed about μ, and have a positive and

finite variance σ2
2 . Then for every c ∈ R

n

E

n∑
i=1

ci
Xi:n − μ

σ2
≤

⎡
⎢⎣1

2

1∫
1
2

[(f
cs:n

)+(x)]
2dx

⎤
⎥⎦

1
2

.

Under the condition (2.3) the above bound is positive and it is attained then by the distribution
function satisfying

F−1(x)− μ

σ2
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− (f
cs:n

)+(1−x)
⎡
⎣2

1∫
1
2

[(f
cs:n

)+(x)]2dx

⎤
⎦
1/2 , 0 < x ≤ 1

2

(f
cs:n

)+(x)
⎡
⎣2

1∫
1
2

[(f
cs:n

)+(x)]2dx

⎤
⎦
1/2 ,

1
2 < x < 1.

Now we consider the extreme case p = 1 and ∞.
Proposition 2. If X1, . . . ,Xn are iid symmetrically distributed about μ, and have a finite first

absolute moment σ1, and c ∈ R
n, then

E

n∑
i=1

ci
Xi:n − μ

σ1
≤ 1

2
(f

c:n
)+(1). (2.8)

Under condition (2.3) on the vector of coefficients c the RHS is positive. Define then

αs
∗ = αs

∗(1, c) = min

{
1

2
≤ α ≤ 1 : f

c:n
(α) = f

c:n
(1)

}
.

If αs
∗ < 1 then the equality in (2.8) holds for the marginal distribution

P

(
X1 = μ− σ1

2(1− α)

)
= P

(
X1 = μ+

σ1
2(1− α)

)
= 1− α,

P (X1 = μ) = 2α− 1 (2.9)
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with α = αs
∗. If αs

∗ = 1, then the bound (2.8) is attained in the limit by the marginal distributions
(2.9) with α → 1.

Proof. The inequality proof is following

E

n∑
i=1

ci
Xi:n − μ

σ1
≤

1∫
1
2

F−1(x)− μ

σ1
f
cs:n

(x) dx

≤
1∫

1
2

F−1(x)− μ

σ1
(f

cs:n
)+(x) dx

≤ (f
cs:n

)+(1)

1∫
1
2

F−1(x)− μ

σ1
dx =

1

2
(f

cs:n
)+(1). (2.10)

If (2.3) holds then (f
cs:n

)+(1) = f
cs:n

(1) > 0. If moreover αs
∗ < 1, then the last inequality in (2.10)

is attained if

F−1(x)− μ

σ1
=

{
0, 1

2 < x ≤ αs
∗

d > 0, αs
∗ < x < 1.

(2.11)

Note that all the intervals where F cs:n(x) < Fcs:n(x) and so f
cs:n

(x) is constant are contained in the

intervals
(
1
2 , α

s
∗
)

and (αs
∗, 1). This assures the equality in the first inequality of (2.10). Moreover,

{x : f
cs:n

(x) < 0} is contained in
(
1
2 , α

s
∗
)

which guarantees the equality in the middle inequality. By

the symmetry assumption (2.11) is extended on
(
0, 12

)
by

F−1(x)− μ

σ1
=

{
−d, 0 < x ≤ 1− αs

∗
0, 1− αs

∗ < x ≤ 1
2 .

(2.12)

The first absolute central moment condition forces d = 1
2(1−αs∗)

. Then the conditions (2.11) and (2.12)
determine (2.9) with α = α∗.

If αs
∗ = 1, then (f

cs:n
)+(x) = fcs:n(x) is strictly increasing on some neighborhood of 1. For (2.9)

with α sufficiently close to 1, all the intervals where f
cs:n

is constant and f
cs:n

< 0 are contained in(
1
2 , α

)
, which gives the equalities in the first two inequalities of (2.10), respectively. By continuity of

(f
cs:n

)+, the last inequality becomes the equality as well. �
Observe that in the case αs

∗ = 1, then the RHS of (2.8) takes on the simple form
1

2
fcs:n(1) =

n

2
(cn − c1).

Proposition 3. Suppose that X1, . . . ,Xn are independent, have a common distribution sym-
metric about μ, and a nondegenerate bounded support. Let

αs
∗∗ = αs

∗∗(∞, c) = max

{
1

2
≤ α ≤ 1 : f

cs;n
(α) ≤ 0

}
(2.13)

for some fixed c ∈ R
n. Then

E

n∑
i=1

ci
Xi:n − μ

σ∞
≤ −Fcs:n(α

s
∗∗).

Under the assumption (2.3) the bound is positive and it is attained by the parent distribution

P(X1 = μ− σ∞) = P(X1 = μ+ σ∞) = 1− αs
∗∗,

P(X1 = μ) = 2αs
∗∗ − 1. (2.14)
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Proof. As usual, we start with proving the inequality

E

n∑
i=1

ci
Xi:n − μ

σ∞
≤

1∫
1
2

F−1(x)− μ

σ∞
f
cs:n

(x) dx

≤
1∫

1
2

F−1(x)− μ

σ∞
(f

cs:n
)+(x) dx ≤

1∫
1
2

(f
cs:n

)+(x) dx

= −F cs:n(α
s
∗∗) = −Fcs:n(α

s
∗∗), (2.15)

where the restrictions 0 ≤ F−1(x)−μ
σ∞

≤ 1 assure the validity of the last inequality. Note that f
cs:n

(x) �=
fcs:n(x) only inside the intervals where F cs:n(x) < Fcs:n(x), and

∫ α2

α1
f
cs:n

(x)dx =
∫ α2

α1
fcs:n(x)dx if

f
cs:n

(αi) = fcs:n(αi), i = 1, 2. Therefore F cs:n(α
s
∗∗) = Fcs:n(α

s
∗∗).

The ultimate and penultimate inequalities are attained under the conditions

F−1(x)− μ

σ∞
= 1 if f

cs:n
(x) > 0, (2.16)

F−1(x)− μ

σ∞
= 0 if f

cs:n
(x) < 0, (2.17)

respectively. These intervals together with {x : f
cs:n

(x) = 0} (if non-degenerate) contain all the
intervals where F cs:n(x) < Fcs:n(x). This means that under the conditions (2.16) and (2.17) the bound
(2.15) is attained.

Assume now that (2.3) holds, and the condition (2.16) is satisfied on a non-degenerate interval
(otherwise the bound is zero, and it is attained by a degenerate parent distribution which contradicts
our assumptions). Then the bound is positive, and

F−1(x)− μ

σ∞
=

{
0, 1

2 < x ≤ αs
∗∗

1, αs
∗∗ < x < 1

satisfies (2.16) and (2.17), which means the bound (2.13) is attained by (2.14). �
Observe that if f

c:n
(x) > 0, 1

2 < x < 1, then the optimal marginal distribution (2.14) is supported
on two points. We cannot exclude the possibility that f

c:n
(x) = 0 on some non-degenerate interval

[βs
∗∗, α

s
∗∗], say. Then the bound is attained by the five-point symmetric distributions

P(X1 = μ) = 2βs
∗∗ − 1,

P(X1 = μ∓ d) = αs
∗∗ − βs

∗∗,

P(X1 = μ∓ σ∞) = 1− αs
∗∗

for any 0 < d < 1 as well. Obviously, the point μ is reduced if βs
∗∗ =

1
2 .

Now we focus on the special case of single order statistics. For Xi:n, 1 ≤ i ≤ n, we have

f s
i:n(x) = fi:n(x)− fn+1−i:n(x) = n

(
n− 1

i− 1

)
[xi−1(1− x)n−i − xn−i(1− x)i−1]. (2.18)

This is negative, equal to 0, and positive on
(
1
2 , 1

)
for i ≤ n

2 , i = n+1
2 and i ≥ n

2 + 1, respectively. It
always vanishes at 1

2 . It follows that the respective antiderivative

F s
i:n(x) = Fi:n(x)− Fn+1−i:n(x),

1

2
< x ≤ 1,

is nonnegative for i ≤ n+1
2 , and we can obtain sharp positive upper bounds of Propositions 1–3 only for

i ≥ n
2 + 1.
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If i = n, then

f s
n:n(x) = n[xn−1 − (1− x)n−1],

1

2
< x ≤ 1,

is positive and increasing, which implies

(f s
n:n

)+(x) = f s
n:n(x) = n[xn−1 − (1− x)n−1].

For n
2 + 1 ≤ i ≤ n− 1, (2.18) is negative on

(
0, 12

)
, positive on

(
1
2 , 1

)
, and equal to 0 at 0, 1

2 , and 1.
It has at least one local maximum in

(
1
2 , 1

)
, and its derivative changes the sign from plus to minus there.

Also, it has at least one minimum in
(
0, 12

)
, and its derivative is negative and positive left and right to it,

respectively. We have

(f s
i:n)

′(x) = n(n− 1)[−Bn−i−1,n−2(x) +Bn−i,n−2(x) +Bi−2,n−2(x)−Bi−1,n−2(x)].

By Lemma 3, F s
i:n(x) is first concave, then convex, and ultimately concave, because it has at least

one convexity interval. Since it is symmetric about 1
2 , it is first convex and then concave on

(
1
2 , 1

)
.

Its greatest convex minorant F s
i:n is first identical with F s

i:n and then linear. Linearity of F s
i:n on the

whole interval is excluded, because F s
i:n

(
1
2

)
< F s

i:n(1) and f s
i:n

(
1
2

)
= 0. The shape changing point

α∗ = α∗(i, n) is determined by the equation

f s
i:n(α) = fi:n(α)− fn+1−i:n(α) =

F s
i:n(1) − F s

i:n(α)

1− α
=

Fn+1−i:n(α)− Fi:n(α)

1− α
. (2.19)

Consequently,

(f s
i:n

)+(x) = fs
i:n

(x) = f s
i:n(min{x, α∗})

= fi:n(min{x, α∗})− fn+1−i:n(min{x, α∗}).
This leads us to the following conclusions.

Corollary 2. Assume that X1, . . . ,Xn are iid, and symmetrically distributed about μ, and
0 < σp < ∞ for some 1 ≤ p ≤ ∞. Then for p = 1

E
Xn:n − μ

σ1
≤ n

2
,

and the equality is attained in the limit by the marginal distributions

P

(
X1 = μ∓ σ1

2(1 − α)

)
= 1− α,

P(X1 = μ) = 2α− 1

for α → 1.
For 1 < p < ∞

E
Xn:n − μ

σp
≤ n

21/p

⎡
⎢⎣

1∫
1
2

[xn−1 − (1− x)n−1]qdx

⎤
⎥⎦
1/q

, (2.20)

and the equality condition is

F−1(x)− μ

σp
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− [(1−x)n−1−xn−1]q/p⎡
⎣2

1∫
1
2

[xn−1−(1−x)n−1]qdx

⎤
⎦
1/p , 0 < x ≤ 1

2

[xn−1−(1−x)n−1]q/p⎡
⎣2

1∫
1
2

[xn−1−(1−x)n−1]qdx

⎤
⎦
1/p ,

1
2 < x < 1.
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For p = ∞

E
Xn:n − μ

σ∞
≤ 1− 1

2n−1
,

with the equality condition

P(X1 = μ∓ σ∞) =
1

2
.

The statement of the corollary for 1 < p < ∞ can be found in Arnold [1]. In the case p = 2 inequality
(2.20) simplifies to

E
Xn:n − μ

σ2
≤ n

√
1

4n− 2

(
1− [(n− 1)!]2

(2n − 2)!

)
.

This inequality was established by Moriguti [8].

Corollary 3. Under the assumptions of Corollary 2 for n
2 + 1 ≤ i ≤ n− 1 the following

inequalities are sharp.

For p = 1 we have

E
Xi:n − μ

σ1
≤ 1

2
f s
i:n(α

s
∗),

which becomes the equality for

P

(
X1 = μ∓ σ1

2(1− αs
∗)

)
= 1− αs

∗,

P(X1 = μ) = 2αs
∗ − 1,

where αs
∗ is defined in the Eq. (2.19).

For 1 < p < ∞

E
Xi:n − μ

σp
≤ Bq

21/p
, (2.21)

where

Bq
q =

αs
∗∫

1
2

[fi:n(x)− fn+1−i:n(x)]
qdx+ (1− αs

∗)[fi:n(α
s
∗)− fn+1−i:n(α

s
∗)]

q.

The parent distribution assuring the equality in (2.21) is defined by the relations

F−1(x)− μ

σp
=

1

(2Bq
q )1/p

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
fn+1−i:n(α

s
∗)− fi:n(α

s
∗), 0 < x ≤ 1− αs

∗
fn+1−i:n(x)− fi:n(x), 1− αs

∗ < x ≤ 1
2

fi:n(x)− fn+1−i:n(x),
1
2 < x ≤ αs

∗
fi:n(α

s
∗)− fn+1−i:n(α

s
∗), αs

∗ < x < 1.

For p = ∞

E
Xi:n − μ

σ∞
≤

i−1∑
j=n+1−i

Bj,n

(
1

2

)
,

and the equality holds for

P(X1 = μ∓ σ∞) =
1

2
.
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3. ATTAINABLE ZERO BOUNDS

It remains to consider the linear combinations of order statistics with coefficient vectors c which do
not satisfy (2.3), i.e., for which

Fcs:n(x) =

n∑
i=1

(ci − cn+1−i)Fi:n(x) ≥ 0,
1

2
≤ x < 1. (3.1)

It is expected that under the condition (3.1) the bounds take on non-positive values. We first focus on
the case when the bounds are equal to 0 and attained for some fixed parent distributions. To this end we
assume that (3.1) holds together with

Fcs:n(α∗) = 0 for some
1

2
≤ α∗ = α∗(c) < 1. (3.2)

Since Fcs:n(1) = 0 as well, we obtain F cs:n(x) = f
cs:n

(x) = 0, α∗ ≤ x ≤ 1, and this is the maximal
value of the derivative of the greatest convex minorant. We have

E

n∑
i=1

Xi:n − μ

σp
=

1∫
1
2

F−1(x)− μ

σp
fc:n(x)dx ≤

1∫
1
2

F−1(x)− μ

σp
f
c:n

(x)dx

≤
1∫

1
2

F−1(x)− μ

σp
(f

c:n
)+(x)dx = 0 (3.3)

for arbitrary 1 ≤ p ≤ ∞ for which σp is finite and positive.

If Fcs:n

(
1
2

)
= 0, then we take (f

c:n
)+(x) = f

c:n
(x) = 0, 1

2 ≤ x < 1, and the last inequality is the

equality. The first one is the equality as well if F−1(x)−μ
σp

is constant on
[
1
2 , 1

)
. By assumption, it

is nonnegative. If we assume that it is strictly positive, we define a two-point symmetric distribution
supported on μ− d and μ+ d, which satisfies 0 < σp < ∞ for every 1 ≤ p ≤ ∞.

Otherwise we take the minimal α∗ >
1
2 which satisfies Fcs:n(α∗) = 0. Then f

cs:n
(x) is negative and

equal to 0 on the intervals
[
1
2 , α∗

)
and [α∗, 1), respectively. The latter inequality in (3.3) becomes the

equality if F−1(x)−μ
σp

= 0 for 1
2 ≤ x < α∗. So does the previous one if F−1(x)−μ

σp
= const for α∗ ≤ x < 1.

If the constant is strictly positive, taking into account the symmetry condition (1.2) we determine the
three-point symmetric distribution

P(X1 = μ∓ d) = 1− α∗,

P(X1 = μ) = 2α∗ − 1,

which has a bounded support (and all the moments finite in consequence), and attains the zero bound in
(3.3).

Summing up, we proved the following.
Proposition 4. If X1, . . . ,Xn are iid symmetrically distributed about μ with 0 < σp < ∞ for

some 1 ≤ p ≤ ∞, and c ∈ R
n satisfies (3.1) with (3.2), then

E

n∑
i=1

ci
Xi:n − μ

σp
≤ 0.

The equality is attained by the parent distribution

P

(
X1 = μ± σp

[2(1− α∗)]1/p

)
= 1− α∗,

P(X1 = μ) = 2α∗ − 1

(under the convention that a1/∞ = a0 = 1) for minimal α∗ satisfying (3.2).
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The construction of the distribution functions attaining the zero bounds presented above are unique
up to the scale transformations if there is a single 1

2 ≤ α∗ < 1 satisfying (3.2). If there are more such
points then the extreme distributions may have more support points. A specific family of coefficients
consists of ones that satisfy c′ = c, i.e., ci = cn+1−i, i = 1, . . . , n. The corresponding L-statistics
are linear combinations of quasi-midranges 1

2(Xi:n +Xn+1−i:n), 1 ≤ i ≤ n+1
2 (see, e.g., David and

Nagaraja [2, p. 242]). Then fcs:n(x) = 0, 1
2 ≤ x < 1 (see (1.4)), and the equality

E

n∑
i=1

ci
Xi:n − μ

σp
=

1∫
1
2

F−1(x)− μ

σp
fcs:n(x)dx = 0

is attained by arbitrary symmetric parent distribution with mean μ and 0 < σp < ∞. This confirms a well
known fact that the convex combinations of order statistics with the coefficients satisfying ci = cn+1−i,
i = 1, . . . , n, are unbiased estimators of the symmetry centers of symmetric distributions. In particular,
for the expectation of the sample median (equal to Xn+1

2
:n and 1

2 (Xn
2
:n +Xn

2
+1:n), when the sample size

is odd and even, respectively) is identical with the population mean.

4. OTHER NON-POSITIVE BOUNDS

We finally focus on the case of L-statistics with the coefficients c1, . . . , cn satisfying the condition

Fcs:n(x) =
n∑

i=1

(ci − cn+1−i)Fi:n(x) > 0,
1

2
≤ x < 1. (4.1)

We show that then the optimal upper bounds are either equal to 0, but they are attained in the limit by
sequences of parent distributions or the bounds are strictly negative. Proposition 5 show that the sharp
bounds cannot be negative if the are measured in the σp units with parameter p different from 1.

Proposition 5. Suppose that X1, . . . ,Xn are independent identically symmetrically dis-
tributed about μ ∈ R non-degenerate random variables with a finite moment of order 1 < p < ∞.
If the vector c = (c1, . . . , cn) satisfies the condition (4.1), then the bound

E

n∑
i=1

ci
Xi:n − μ

σp
≤ 0 (4.2)

is sharp. It is attained in the limit by the family of three-point distributions

P

(
X1 = μ∓ σp

[2(1− α)]1/p

)
= 1− α,

P(X1 = μ) = 2α− 1 (4.3)

as α → 1.
Proof. The upper bound for the LHS of (4.2) under the assumption (4.1) cannot be greater than 0

due to Proposition 1. Our aim is to show that the zero bound cannot be improved. We consider the
parametric family of of one-dimensional probability distributions with the quantile functions satisfying

F−1
α (x)− μ =

⎧⎪⎨
⎪⎩
−1, 0 < x ≤ 1− α

0, 1− α < x ≤ α

1, α < x < 1,

1

2
< α < 1. (4.4)

The respective pth absolute central moments and their pth roots are equal to σp
p = Eα|X1 − μ|p =

2(1 − α) and σp = [2(1− α)]1/p, respectively. Furthermore

Eα

n∑
i=1

ci
Xi:n − μ

σp
=

1∫
1
2

F−1
α (x)− μ

σp
fcs:n(x)dx
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=

1∫
α
fcs:n(x)dx

[2(1 − α)]1/p
= − Fcs:n(α)

[2(1 − α)]1/p
. (4.5)

Note that this is negative by (4.1). We represent the numerator as follows

Fcs:n(α) =

n∑
i=1

(ci − cn+1−i)

n∑
j=i

Bj,n(α) =

n∑
j=1

[
j∑

i=1

(ci − cn+1−i)

]
Bj,n(α)

=

n−1∑
j=1

[
j∑

i=1

(ci − cn+1−i)

](
n

j

)
αj(1− α)n−j . (4.6)

The last summand can be dropped because
∑n

i=1(ci − cn+1−i) = 0. Therefore

Eα

n∑
i=1

ci
Xi:n − μ

σp
= − Fcs:n(α)

[2(1− α)]1/p

= − 1

21/p

n−1∑
j=1

[
j∑

i=1

(ci − cn+1−i)

](
n

j

)
αj(1 − α)n−j−1/p

tends to 0 as α → 1, because j ≤ n− 1 < n− 1
p for all j = 1, . . . , n− 1. Since our bound problem is

location-scale invariant, we simply normalize the distributions satisfying (4.4) transforming them into
(4.3) which satisfy moment conditions. �

Corollary 4. Under the assumptions of Proposition 5 with an extra condition that X1, . . . ,Xn

have a bounded support, the following yields

E

n∑
i=1

ci
Xi:n − μ

σ∞
≤ 0

with the attainability condition

P (X1 = μ∓ σ∞) = 1− α,

P(X1 = μ) = 2α− 1

as α → 1.
Proof. It is easily deduced from the above one. For the distribution functions defined in (4.4) we have

σ∞ = 1. In consequence

Eα

n∑
i=1

ci
Xi:n − μ

σ∞
= −Fcs:n(α) (4.7)

(cf. (4.5)). Looking at (4.6) we immediately conclude that (4.7) tends to 0 when α approaches 1. �
Proposition 6. Under the assumptions of Proposition 5 with p = 1, we have

E

n∑
i=1

ci
Xi:n − μ

σ1
≤ − min

1
2
≤α≤1

Ucs:n(α), (4.8)

where

Ucs:n(α) =
n

2

n−1∑
j=1

1

n− j

[
j∑

i=1

(ci − cn+1−i)

]
Bj,n−1(α). (4.9)

If the minimum is attained at 1
2 < α∗ < 1 (α∗ =

1
2 , respectively) then the bound is attained by the

three-point (two-point, respectively) symmetric marginal distribution

P

(
X1 = μ∓ σ1

2(1− α∗)

)
= 1− α∗,
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P(X1 = μ) = 2α∗ − 1. (4.10)

If 1 is the minimum point of (4.9), then the bound (4.8) is attained in the limit by (4.10) with α∗
replaced by α → 1.

Proof. For c satisfying (4.1) we have

E

n∑
i=1

ci
Xi:n − μ

σ1
= Th(g)

=

1∫
1
2

g(x)h(x) dx =

1∫
1
2

F−1(x)− μ

σ1
fcs:n(x) dx < 0 (4.11)

for fixed h(x) = fcs:n(x) and every g(x) = F−1(x)−μ
σ1

which is necessarily nonnegative, nondecreasing,
and satisfies

||g||1 =

1∫
1
2

|g(x)| dx =

1∫
1
2

|F−1(x)− μ|
σ1

dx =
1

2
.

We apply here the norm maximization method proposed in Goroncy and Rychlik [5] (see also Goroncy
[4]). Under the simple transformation g̃ = g

−Th(g)
, we obtain the family of functions g̃ which constitute

the convex set S ∈ L1
([

1
2 , 1

]
, dx

)
of nonnegative, nondecreasing functions such that

Th(g̃) = −Th(g)

Th(g)
= −1

with the corresponding norms

||g̃||1 =
||g||1
|Th(g)|

= − 1

2Th(g)
.

We see that our original problem of maximizing (4.11) is equivalent to maximizing the norm over the
functions g̃ from the convex set S.

Every element of S can be approximated with arbitrary accuracy by stepwise nonnegative nonde-
creasing elements of S (indeed, it suffices to apply a standard piecewise constant interpolations gk,
k = 1, 2, . . ., with an increasing number of knots, and the uniformly decreasing distances among them,
and take their scale transformations g̃k assuring that Th(g̃k) = −1). Every stepwise element of S can
be represented as a convex mixture of two-valued elements of S, with the first value equal to 0. Since
the norm functional is convex, the norm of a mixture cannot exceed the maximal norm of its elements.
It follows that maximizing the norm over S we can focus only on two-valued members of the set.
Equivalently, we can just maximize the original functional (4.11) over the family of two-valued functions

g(x) = F−1(x)−μ
σ1

, 1
2 ≤ x < 1, with the first value equal to 0. It follows that we can focus our attention on

the symmetric distributions with quantile function satisfying (4.4). Then σ1 = 2(1− α) and

Eα

n∑
i=1

ci
Xi:n − μ

σ1
= −Fcs:n(α)

2(1 − α)

= −n

2

n−1∑
j=1

1

n− j

[
j∑

i=1

(ci − cn+1−i)

]
Bj,n−1(α). (4.12)

This assures that the formulae (4.8) with (4.9) represent the upper bound for the LHS of (4.7). The
attainability condition is easily established then. �

Corollary. For X1, . . . ,Xn satisfying the assumptions of Proposition 6 the following bound

E
X1:n − μ

σ1
< −1 +

1

2n−1
(4.13)
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is valid, and it is attained by the two-point symmetric distribution

P(X1 = μ− σ1) = P(X1 = μ+ σ1) =
1

2
.

Proof. We apply the conclusion of Proposition 6 for c = (1, 0, . . . , 0). Then
j∑

i=1

(ci − cn+1−i) = 1, i = 1, . . . , n− 1,

and we need to maximize the function

−U s
1:n(α) = −n

2

n−1∑
j=1

1

n− j
Bj,n−1(α),

1

2
≤ α ≤ 1. (4.14)

Elementary calculations show that

−(U s
1:n)

′(α) = −n

2
B0,n−2(α) −

n(n− 1)

2

n−2∑
j=1

1

(n− j)(n − j − 1)
Bj,n−2(α),

which is negative on the whole standard unit interval [0, 1]. It follows that (4.14) is maximized at 1
2 . For

calculating the respective minimal value it is more convenient to use the representation of the first line
of (4.12) which in the case of sample minimum takes on the form

− F s
1:n(α)

2(1− α)
= −F1:n(α) − Fn:n(α)

2(1− α)
= −1− (1− α)n − αn

2(1− α)
,

and whose value at 1
2 amounts to the RHS of (4.13). The attainability condition immediately follows

from Proposition 6. �
The above result was proved in Rychlik [14] with use of a different method.
Corollary 6. Assume that X1, . . . ,Xn are independent and identically symmetrically dis-

tributed about its mean μ. Suppose that c = (c1, . . . , cn) satisfies (4.1), and moreover c1 = cn.
Then

E

n∑
i=1

ci
Xi:n − μ

σ1
≤ 0,

and this bound is attained in the limit by the parent distributions

P

(
X1 = μ∓ σ1

2(1 − α)

)
= 1− α,

P(X1 = μ) = 2α− 1 (4.15)

as α → 1.
Proof. Under the assumption

n−1∑
i=1

(ci − cn+1−i) = c1 − cn = 0,

and (4.12) can be represented as

Ucs:n(α) =
n

2

n−2∑
j=1

1

n− j

[
j∑

i=1

(ci − cn+1−i)

]
Bj,n−1(α).

Notice that the function tends to 0 as α → 1, because so do all Bj,n−1(α), j = 1, . . . , n− 2. �
Corollary 7. For iid random variables X1, . . . ,Xn symmetrically distributed about its mean μ,

for every 2 ≤ i ≤ n
2 the following inequality is sharp

E
Xi:n − μ

σ1
≤ 0.

The bound is attained in the limit by the marginal distribution (4.15) as α → 1.
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