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Abstract—There are many collaborative studies where the data are discrepant while uncertainty
estimates reported in each study cannot be relied upon. The classical commonly used random effects
model explains this phenomenon by additional noise with a constant heterogeneity variance. This
assumption may be inadequate especially when the smallest uncertainty values correspond to the
cases which are most deviant from the bulk of data. An augmented random effects model for meta-
analysis of such studies is offered. It proposes to think about the data as consisting of different
classes with the same heterogeneity variance only within each cluster. The choice of the classes is
to be made on the basis of the classical or restricted likelihood. We discuss the properties of the
corresponding procedures which indicate the studies whose heterogeneity effect is to be enlarged.
The conditions for the convergence of several iterative algorithms are given.
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1. INTRODUCTION: HETEROSCEDASTIC META-ANALYSIS MODEL

In a research synthesis problem one has to combine several estimates of the quantity of interest μ.
The popular random effects model (REM) postulates the form of these estimators xi, i = 1, . . . , N ,

xi = μ+ λi + εi. (1)

Here, the parameter of primary focus μ is the common mean representing the treatment effect in
biostatistics or the reference value in metrology. The measurement error εi of the ith study is supposed
to have zero mean and the variance representing the within-study variability. The protocol requires that
the participants who possibly use different measuring techniques report not only their estimates of μ, but
also the estimates s2i of this variance (within study uncertainty).

The term λi is commonly taken to have zero mean with some heterogeneity variance traditionally
denoted by τ2. One can view λi as the additional noise imposed by Nature on the experiment, where
one observes the results of independent individual studies all measuring the same overall effect μ. This
variance can be estimated by one of the developed procedures [8, 10]. The classical fixed effects model
(FEM) corresponding to the situation when τ2 = 0 provides a poor fit in many practical situations
[1]. Indeed the heterogeneity in most research synthesis studies can be quite substantial (Thompson
and Sharp, 1999). Moreover, some medical researchers believe that “examination of heterogeneity
is perhaps the most important task in meta-analysis” [7, p. 30]. In many heterogeneous studies
the assumption that all λ’s have the same dispersion seems to be violated if the smallest reported
uncertainties correspond to the cases which are most deviant from the rest of data. Indeed this condition
appears to be due mainly to mathematical expediency and limits the applicability of REM. We advocate
a more detailed analysis by admitting several distinct heterogeneity variances whose larger values are
assigned to the aberrant, outlying cases. The most homogeneous data subset gets zero heterogeneity
variance.
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By independence of λi and εi, the variance of xi cannot be smaller than the variance of εi typically
estimable by s2i although it commonly includes non-statistically derived components. In many situ-
ations there is doubt about the validity of these estimates especially when they are identified with the
unknown uncertainties. Hoaglin [10] discusses possible dire consequences of such identification in the
homogeneity hypothesis testing problem τ2 = 0. The case of REM allowing τ2 to depend on the study
was investigated by Rukhin (2019a) who suggested to use si only as a lower bound on the unknown ith
uncertainty so that τ2i ≥ s2i . In this work s2i also serves as the lower bound for the unknown variance
of xi.

More generally one can entertain an augmented random effects model (AREM) which puts the
studies into different classes or clusters according to the several values of the unknown heterogeneity
variance, say, τ2 = τ2k > 0, k = 1, . . . ,K. Then the cluster corresponding to τ20 = 0 plays a special role:
it includes all conforming studies satisfying FEM. This class represents the largest consistent subset
of all studies allowing to identify cases affected by “excess-variation” from likelihood calculations. Its
definition is a controversial issue in metrology [3, 20, 4]. We illustrate our definition of this concept by
two practical examples in Section 6. The situation when each heterogeneous cluster consists of just one
element corresponds to the mentioned setting with s2i representing a lower bound on the variance of xi.

There is a body of work aimed at extending REM for meta-analysis needs. See Ohlssen et al., 2007,
Lee and Thompson, 2008, or Kulinskaya and Olkin, 2014 for more flexible parametric and nonparametric
models. The main objective of this paper is to suggest a methodology for selecting one of AREM models
with distinct heterogeneity variances. We use maximum likelihood estimators of the mean and variances
which provide likelihood-based information criterions studied numerically in Section 7. For this purpose
in the next section iterative algorithms to find the maximum likelihood procedures and the conditions
for their convergence are discussed. Section 3 contains a necessary condition for the global extremum,
and Section 4 gives an example where s2i are equal to illustrate that the traditional REM have smaller
likelihood than some other AREM models. Section 5 discusses the algebraic difficulty of the likelihood
equations. The proofs are collected in the Appendix.

2. MAXIMUM LIKELIHOOD ESTIMATORS

Assume that the data are represented by a series of independent but not equally distributed random
variables xi ∼ N(μ, σ2

i ) with the unknown common mean μ and variances σ2
i , σ

2
i = τ2i + s2i , where τ2i ≥

0 is unknown and s2i represents the within-study variance, i = 1, . . . , N . Supposing that there are no
more than K different positive τ ’s, the variance of xi for i in the class Ik is s2i + τ2k . Clusters I0, I1, . . . , IK
define a partition of the set {1, . . . , N} with Ik containing nk elements, n0 + n1 + · · ·+ nK = N.
The total number of heterogeneous clusters K cannot exceed N − n0, and there is no generality loss
in assuming that n1 ≥ · · · ≥ nK . The special cluster I0 corresponds to the vanishing heterogeneity
variance τ20 = 0.

For given n0 and K, the number of non-empty heterogeneity clusters is the Stirling number of the

second kind
{N − n0

K

}
(Graham et al., 1994). Thus the total number of all different partitions is

∑
0≤n0≤N

{
N − n0

K

}(
N

n0

)
=

{
N + 1

K + 1

}
,

which allows I0 to be empty. When K = 1, this number is 2N − 1, for K = 2 it is (3N − 2N+1 +1)/2, for
K = N − 1, it is N(N + 1)/2. An implication is that in practice either K should be chosen to be small
or close to N .

For given clusters I0, I1, . . . , IK the (classical) log-likelihood function (times −2) is

L(μ, τ21 , . . . , τ
2
K ; I0, I1, . . . , IK)

= L(μ, τ21 , . . . , τ
2
K) =

K∑
k=0

∑
Ik

[
(xi − μ)2

τ2k + s2i
+ log(τ2k + s2i )

]
, τ20 = 0. (2)
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We call (2) the augmented random effects model (AREM.CL.K) likelihood. A standard argument shows
that for given clusters the model AREM.CL.K is identifiable.

The form of the restricted likelihood function L̃ (AREM.RL.K) is also well known:

L̃(τ21 , . . . , τ
2
K) =

K∑
k=0

∑
Ik

[
(xi − μ̃)2

τ2k + s2i
+ log(τ2k + s2i )

]

+ log

⎛⎝ K∑
k=0

∑
Ik

1

τ2k + s2i

⎞⎠ . (3)

Here the cluster weighted mean

μ̃ = μ̃(τ21 , . . . , τ
2
K) =

K∑
k=0

∑
Ik

xi
τ2k + s2i

⎡⎣ K∑
k=0

∑
Ik

1

τ2k + s2i

⎤⎦−1

(4)

is the best linear unbiased estimator of μ which also minimizes (2) in μ for given τ ’s.

Thus to find strictly positive maximum likelihood estimates τ̂2k , one has to solve equations

∂L

∂τ2k
= 0, k = 1, . . . ,K,

with positive definite matrix of second derivatives. These equations can be written in the form∑
Ik

(xi − μ̃)2 − s2i
(τ2k + s2i )

2
= τ2k

∑
Ik

1

(τ2k + s2i )
2
. (5)

The following Theorem 2.1 gives an explicit form of the Hessian and offers an iterative algorithm
motivated by (5).

Let a and d be K-dimensional vectors with the coordinates

ak = 21/2
∑
Ik

xi − μ̃

(τ2k + s2i )
2

(∑
m

∑
Im

1

τ2m + s2i

)−1/2

and

dk = 2
∑
Ik

(xi − μ̃)2

(τ2k + s2i )
3
−

∑
Ik

1

(τ2k + s2i )
2
, k = 1, . . . ,K.

Theorem 2.1. For AREM.CL.K the Hessian H = (∂2L/[∂τ2k∂τ
2
� ])

K
k,�=1 has the form

H = diag(d)− aaT . (6)

With τ̂2k substituted for τ2k in the definition of a, d, and μ̃ to get â, d̂, μ̂, the sufficient condition for
the minimum of (2) to be attained is:

K∑
k=1

â2k
d̂k

< 1, d̂k > â2k, k = 1, . . . ,K. (7)

A necessary condition is that
∑K

k=1 â
2
k/d̂k ≤ 1.

Provided that (7) holds and

d̂k − â2k < 2
∑
Ik

1

(τ̂2k + s2i )
2
, k = 1, . . . ,K, (8)
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the positive maximum likelihood estimators τ̂2k , k = 1, . . . ,K exist and can be determined by
iterations as

τ̂2k = max

⎡⎣0,∑
Ik

(xi − μ̂)2 − s2i
(τ̂2k + s2i )

2

⎤⎦⎡⎣∑
Ik

1

(τ̂2k + s2i )
2

⎤⎦−1

. (9)

There are many numerical methods like the Newton–Raphson rule which need only condition (7) for
convergence. They are more reliable than the EM algorithm and can be used instead of (9) or (14) in the
following Theorem 2.2. An attractive feature of iterations in Theorem 2.1 is that they decrease the value
of (2) at each step (Rukhin, 2011). This fact matters since the likelihood may not be a unimodal function
of τ2; indeed the (polynomial) Eq. (5) can have several positive solutions. Therefore the choice of a good
starting value is important.

To find the global optimizers Î0, . . . , ÎK , enumerate all
{N + 1

K + 1

}
partitions I0, . . . , IK of the index set

{1, . . . , N} and for each partition determine the solution of (5) via Theorem 2.1. Failure to converge is
interpreted as non-existence of solutions satisfying (8) resulting in rejection of the candidate clustering.
The partition Î0, . . . , ÎK which provides the overall minimizer is taken as the final choice delivering
the maximum likelihood estimators τ̂21 , . . . , τ̂

2
K and μ̂. A necessary optimality condition is provided in

Section 3.

In the simplest but important case, K = 1 (AREM.CL.K = 1), we have to choose two clusters,
one with zero heterogeneity I0, another its heterogeneous complement I1. Then one has to determine
the likelihood defined by the conditions: for i ∈ I1, τ2i = τ2 with unknown but positive τ2, while I0
corresponds to j’s for which τ2j = 0. The maximum likelihood estimator of μ is of the form (4) with
τ2 = τ̂2,

μ̂ =

⎡⎣∑
I0

xj
s2j

+
∑
I1

xi
τ̂2 + s2i

⎤⎦⎡⎣∑
I0

1

s2j
+

∑
I1

1

τ̂2 + s2i

⎤⎦−1

,

and τ̂2 = τ̂2(I1) is a solution of the equation∑
I1

(xi − μ̂)2

(τ̂2 + s2i )
2
=

∑
I1

1

τ̂2 + s2i
. (10)

To get the μ-estimator for a fixed I1, it suffices to solve (10) choosing the true minimizer of
minμ,τ2 L(μ, τ

2) out of possibly several solutions with positive second derivative, i.e.,⎛⎝∑
I1

1

τ̂2 + s2i
+

∑
I0

1

s2j

⎞⎠∑
I1

(xi − μ̂)2

(τ̂2 + s2i )
3
−

⎛⎝∑
I1

xi − μ̂

(τ̂2 + s2i )
2

⎞⎠2

>
1

2

⎛⎝∑
I1

1

τ̂2 + s2i
+

∑
I0

1

s2j

⎞⎠∑
I1

1

(τ̂2 + s2i )
2
. (11)

When I0 = ∅, I1 = {1, . . . , N}, one gets the setting of traditional REM with just one τ2 and (9)
presents a commonly used procedure to determine this parameter (e.g., Rukhin, 2019b). However
in all examples the likelihood of this model cannot exceed that of models with non-empty I0 (see
Section 4). The seemingly new convergence conditions (7) and (8) mean that in this situation â21 <

d̂1 < 2
∑

I1
(τ̂2 + s2i )

−2 + â21. The likelihood of this case typically is smaller than that of some other
AREM.CL.K = 1 models.
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Another special case is the model AREM.CL.K = N − n0, with lower bounded variances, nk ≡
1, k �∈ I0. In this situation

μ̂ =

⎡⎣∑
k �∈I0

xk
τ̂2k + s2k

+
∑
I0

xj
s2j

⎤⎦⎡⎣∑
k �∈I0

1

τ̂2k + s2k
+

∑
I0

1

s2j

⎤⎦−1

.

Then the iteration scheme of Theorem 2.1 can be reduced to a one-dimensional problem involving only μ̂.
Theorem 2.2. A sufficient condition for the minimum in AREM.CL.K = N − n0 is that for any

k �∈ I0,

2

τ̂2k + s2k
<

∑
� �∈I0

1

τ̂2� + s2�
+

∑
I0

1

s2j
<

∑
I0

2

s2j
. (12)

A non-strict version of (12) and inequalities

(xk − μ̂)2 > s2k, k �∈ I0, (13)

form necessary conditions. The iteration scheme to find the maximum likelihood estimator

μ̂ =

⎡⎣∑
k �∈I0

xk
(xk − μ̂)2

+
∑
I0

xj
s2j

⎤⎦⎡⎣∑
k �∈I0

1

(xk − μ̂)2
+

∑
I0

1

s2j

⎤⎦−1

(14)

converges if (12) holds. Under condition (13) the maximum likelihood estimators τ̂2k = (xk −
μ̂)2 − s2k, k �∈ I0, are positive.

Similar results can be derived for restricted maximum likelihood estimators of τ2 with K simultane-
ous equations ∑

i∈Ik

(xi − μ̃)2

(τ̃2k + s2i )
2
=

∑
i∈Ik

1

τ̃2k + s2i
−

∑
i∈Ik

1

(τ̃2k + s2i )
2

(∑
m

∑
i∈Im

1

s2i + τ̃2m

)−1

. (15)

Define the K-dimensional vectors b and c by their coordinates

bk =
∑
Ik

1

(τ2k + s2i )
2

(∑
m

∑
Im

1

τ2m + s2i

)−1

and

ck = 2
∑
Ik

(xi − μ̃)2

(τ2k + s2i )
3
−
∑
Ik

1

(τ2k + s2i )
2
+

∑
Ik

2

(τ2k + s2i )
3

(∑
m

∑
Im

1

τ2m + s2i

)−1

,

k = 1, . . . ,K. By substituting the restricted maximum likelihood estimators τ̃2k , one gets vectors b̃, c̃ as
well as ã.

Theorem 2.3. For AREM.RL.K the Hessian corresponding to (15) has the form

H̃ = C − ããT − b̃b̃T , (16)

C = diag(c̃). A sufficient condition for the minimum of L̃(τ21 , . . . , τ
2
K) in (3) to be attained at

τ̃2k , k = 1, . . . ,K is that for all k

ã2k + b̃2k < c̃k (17)

and ∑
k

ã2k + b̃2k
c̃k

< min

⎡⎣1 +∑
k

ã2k
c̃k

∑
k

b̃2k
c̃k

−
(∑

k

ãk b̃k
c̃k

)2

, 2

⎤⎦ . (18)
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For any minimizer non-strict inequalities in (17) and (18) must hold. Under these conditions an
iteration scheme to find positive restricted maximum likelihood estimators τ̃2k , k = 1, . . . ,K,

τ̃2k = max
{
0,
∑
Ik

(xi − μ̃)2 − s2i + [
∑

m

∑
Im

(τ̃2m + s2i )
−1]−1

(τ̃2k + s2i )
2

}⎡⎣∑
Ik

1

(τ̃2k + s2i )
2

⎤⎦−1

,

μ̃ = μ̃(τ̃21 , . . . , τ̃
2
K), converges if (17) and (18) are valid.

Specification of Theorem 2.3 for AREM.RL.K = 1 and AREM.RL.K = N − n0 is given in Sec-
tion 9.4; heuristic discussion of the conditions in Theorems 2.1–2.3 is postponed until Section 4.

3. CONDITION FOR GLOBAL EXTREMUM

In this section we give a necessary condition for attaining the global extremum of (2) over all clusters
I0, I1, . . . , IK .

Given the partition I0, I1, . . . , IK , consider L(μ̃, τ21 , . . . , τ
2
K) as a function of τ21 , . . . , τ

2
K . Let

S = S(τ21 , . . . , τ
2
K) =

∑
m

∑
Im

(τ2m + s2i )
−1, (19)

so that μ̃ =
∑

m

∑
Im

xi(τ
2
m + s2i )

−1/S.

For a fixed q = 0, . . . ,K, choose any n ∈ Iq which is moved from Iq to Ip and put Īq = Iq\{n} with
the set Ip (p �= q) replaced by Īp = Ip

⋃
{n}. Let Īk = Ik, k �= p, q, and denote the similar modification

of μ̃ by

μ̄ =
∑
m

∑
Īm

xi
τ2m + s2i

⎡⎣∑
m

∑
Īm

1

τ2m + s2i

⎤⎦−1

,=
xnΔ+ μ̃S

Δ+ S
, (20)

Δ = (τ2p + s2n)
−1 − (τ2q + s2n)

−1. In this notation one has for any τ2k , k = 1, . . . ,K∑
k

∑
Īk

(xi − μ̄)2

τ2k + s2i
=

∑
k

∑
Ik

(xi − μ̃)2

τ2k + s2i
+

ΔS(xn − μ̃)2

Δ+ S
. (21)

To prove (21) write the sum in its left-hand side as∑
k

∑
Ik

(xi − μ̄)2

τ2k + s2i
+Δ(xn − μ̄)2 =

∑
k

∑
Ik

(xi − μ̃)2

τ2k + s2i
− S(μ̃ − μ̄)2 +

ΔS2(xn − μ̃)2

(Δ + S)2

and employ (20) to simplify.

This formula and the representation (2) of the likelihood function lead to the following result.

Theorem 3.1. If in AREM.CL.K the clusters I0, I1, . . . , IK with estimates τ̂21 , . . . , τ̂
2
K and μ̂

provide the global minimum of (2), then for any n ∈ Iq and p, 0 ≤ p �= q ≤ K, one must have

ΔS(xn − μ̂)2

Δ+ S
≥ log

(
τ̂2q + s2n
τ̂2p + s2n

)
. (22)

Here S is defined by (19) with τ̂21 , . . . , τ̂
2
K replacing τ21 , . . . , τ

2
K .

According to Theorem 3.1 the distance between elements of heterogeneity clusters Ik, k ≥ 1 and μ̂
measured relative to τ2k cannot be too small. Therefore the optimal homogeneity cluster I0 must consist
of data points which are fairly close to the consensus estimate μ̂.
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4. EQUAL VARIANCES

To elucidate the conditions of Theorems 2.1–2.3 in this section we look at the simplest case K = 1
when all heterogeneity is in x’s, i.e., s2i are equal, s2i ≡ s2. Then μ̂ = x̄ =

∑
xi/N , τ̂2 = max[0,

∑
i(xi −

x̄)2/N − s2]. Provided that τ̂2 > 0,

L(∅, {1, . . . , N}) = N [1 + log(τ̂2 + s2)],

which can be assumed smaller than L({1, . . . , N}, ∅). For a heterogeneity cluster I = I1 of cardinal-
ity M ,

μ̄ =

∑
i/∈I xi/s

2 +
∑

i∈I xi/(τ
2 + s2)

(N −M)/s2 +M/(τ2 + s2)
= (1− ω)x̄Ic + ωx̄I ,

where ω = M(τ2 + s2)−1/[(N −M)s−2 +M(τ2 + s2)−1], ω ≤ ω0 = M/N, x̄I =
∑

i∈I xi/M, x̄Ic =∑
i/∈I xi/(N −M), N ≥ 3.

By putting αI =
∑

i∈I(xi − x̄I)
2/(Ms2), βI =

∑
i/∈I(xi − x̄Ic)

2/[(N −M)s2], γI = (x̄I − x̄Ic)
2/s2,

it is convenient to work with the difference between likelihoods

[L(μ̃, τ2(ω); Ic, I)− L(∅, {1, . . . , N})]/N = ω0 log

(
ω0(1− ω)

(1− ω0)ω

)
+

(1− ω0)

1− ω
[αIω + βI(1− ω) + γIω(1− ω)]− 1− log(v). (23)

Here

v = ω0αI + (1− ω0)βI + ω0(1− ω0)γI =

∑
i(xi − x̄)2

Ns2
. (24)

The quantities a1 and d1 from Theorem 2.1 are such that

a21 =
2M(1 − ω)2ωs2γI

(τ2 + s2)3
=

2(N −M)ω2(1− ω)γI
(τ2 + s2)2

,

d1 =
2(N −M)ω[αI + γI(1− ω)2]

(1− ω)(τ2 + s2)2
− M

(τ2 + s2)2
.

The condition (7) there means that at maximum likelihood solution

αI + γI(1− ω)3 ≥ ω0(1− ω)

2(1 − ω0)ω
.

which means that αI ≥ [ω0(2ω− 1)(1−ω)][2(1−ω0)ω
2] and then the iteration algorithm is convergent.

The condition 12 of Theorem 2.2 is much simpler, ω < 1
2 , indicating that the relative weight of increased

variance cases cannot exceed one-half.
The restricted likelihoods (up to a constant term) are L̃(∅, {1, . . . , N}) = (N − 1)[1 + log(Nv/(N −

1))], v > (N − 1)/N , and

L̃(μ̃, τ2(ω); Ic, I) = log

(
1− ω0

1− ω

)
+N

[
ω0 log

(
ω0(1− ω)

(1− ω0)ω

)
+

(1− ω0)

1− ω
[αIω + βI(1− ω) + γIω(1− ω)]

]
.

In Theorem 2.3 one has b1 = ω2(τ2 + s2)−2 and

c1 = b1 +
2ω

(τ2 + s2)2
,

so that the condition (17) means that

αI ≥
(1− ω)(M − 2ω + ω2)

2(N −M)ω
.
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Since K = 1, (18) is equivalent to (17) and under this condition the iteration algorithm converges.
The situation with equal uncertainties is also helpful to find out if the classical random effects model

(I0 = ∅) can have a higher likelihood than AREM.CL.K with a non-empty homogeneous data set.
Define for any K

L(I0, . . . , IK) = min
τ21 ,...,τ

2
K

L(μ̃, τ21 , . . . , τ
2
K ; I0, . . . , IK). (25)

Conjecture. If L is defined by (25) and K = 1, then

L(∅, {1, . . . , N}) ≥ min
I0 �=∅

L(I0, Ic0). (26)

This conjecture holds in many practical examples. It is a feature of the model with lower bounded
variances (Rukhin, 2019a). We confirm (26) here for the equal variances case for all N ≥ 3,K = 1.

For 0 < ω ≤ ω0, and v ≥ 1 given in (24) we define FI(ω;αI , βI , γI) as the left hand side of (23),

FI(ω;αI , βI , γI) = ω0 log

(
ω0(1− ω)

(1− ω0)ω

)
+

(1− ω0)

1− ω
[αIω + βI(1− ω) + γIω(1− ω)]− 1− log(v). (27)

The goal is to show that for some M, 1 ≤ M < N there is I such that min0<ω≤ω0 FI(ω;αI , βI , γI)) < 0.
One has FI(ω0;αI , βI , γI) = v − log(v)− 1 > 0 and limω→0 FI(ω;αI , βI , γI) = +∞. Thus the sought
minimum cannot be attained close to the boundary.

For fixed I the desired minimizer ω satisfies the cubic equation

αI + γI(1− ω)2 =
ω0(1− ω)

(1− ω0)ω
. (28)

If (28) does not have a solution ω in the interval (0, ω0), for which the second derivative is positive
then minFI(ω;αI , βI , γI) = 0 and the homogeneity cluster I cannot have larger likelihood than ∅. The
existence of a solution implies that αI + γI(1− ω0)

2 > 1.
One can express αI through ω and γI to get the inequality in terms of these two variables

ω0 log

(
ω0(1− ω)

(1− ω0)ω

)
+ (1− (ω0)γIω

2 − 1)− log(v) ≤ 0, (29)

which for fixed ω allows to find the region αI , βI , γI , where (27) holds.
Indeed it suffices to look at the simplest situation when M = N − 1 in which case bI = 0. If

minω
∑

I FI(ω, v) ≤ 0 then
∑

I minω FI(ω, v) ≤ 0 so that for some I, FI(ω, v) ≤ 0. To evaluate
minω

∑
I FI(ω, v) averages of αI and γI are needed. These quantities can be obtained by summing

over all M-element sets I,

ω0

∑
I

αI =

(
N

M

)
(M − 1)v

(N − 1)
,

(1− ω0)
∑
I

βI =

(
N

M

)
(N −M − 1)v

(N − 1)
,

which vanishes when M = N − 1, and

ω0(1− ω0)
∑
I

γI =

(
N

M

)
v

(N − 1)
.

Thus for M = N − 1 the inequality minω
∑

I FI(ω,αI , 0, γI) < 0 means that (27) holds with γI =

v/[(N − 1)ω0(1− ω0)] = v[N/(N − 1)]2, αI = (N − 2)v/[(N − 1)ω0] = vN(N − 2)/(N − 1)2. The
direct calculation given in Section 9.4 implies that this inequality holds for all N ≥ 3. Indeed the region
where (29) does not hold is convex and α0

I = N(N − 2)/(N − 1)2 and γ0I = [N/(N − 1)]2 provide its
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extreme point. Thus if αI −α0
I ≥ λN (γI − γ0I ), (29) holds. Here λN denotes the slope of the boundary at

(α0
I , γ

0
I ). It is shown in the Appendix that λN = (N2 − 2N − 2 + (N − 1)

√
N2 −N − 2)[N(N +2)]−1.

Thus for N ≥ 3, maxI αI − α0
I ≥ λN (minI γI − γ0I ), and one can determine the optimal cluster I form

the condition Ic = {argmink γk}.
The counterpart of (27) for the restricted likelihood (up to a constant term) is

N − 1

N

[(
Nv

N − 1

)
log

(
Nv

N − 1

)
− 1

]
≤ 1

N
log

(
1− ω

1− ω0

)
+ ω0 log

(
(1− ω0)ω

ω0(1− ω)

)
+

(ω0 − ω)(Nω0 + ω)

Nω
− (ω0 − ω)2cI ,

where
αI

1− ω
+ (1− ω)γI =

ω0

(1− ω0)ω
+

1

N(1− ω0)
.

However this inequality typically does not hold. The simplest example is given by a centered data
set: N = 3, x1 − x̄ = −5/(2

√
3), x2 − x̄ = 1/(2

√
3), x3 − x̄ = 2/

√
3, s2 = 1. Then the cluster {1, 2, 3}

provides the restricted likelihood solution with τ̃2 = 7/4. In contrast the maximum likelihood method
chooses heterogeneity cluster I1 = {2, 3} with a smaller variance estimate τ̂2 = 0.73.

Now we formulate the main results of this section.
Theorem 4.1. When s2i ≡ s2, for the optimal cluster I, ω = M(τ2 + s2)−1/[(N −M)s−2 +

M(τ2 + s2)−1] solves cubic equation (28). For all N ≥ 3, (26) holds when M = N − 1, with
Ic = {i}, i = argmink γk. For the restricted likelihood function the corresponding inequality does
not hold.

The estimates of τ2 obtained for I0 �= ∅ minimizing L(I0, Ic0) are typically (much) larger than those
derived from AREM.CL.K = 1. Indeed the inequality (27) cannot be true for ω1 = ω0/[ω0 + (1−
ω0)v] < ω0, as ω0(1− ω1)/[(1 − ω0)ω1] = v. Thus the minimizer ω in (27) cannot exceed ω1 which
corresponds to τ̂2.

In the general case of arbitrary uncertainties one cannot restrict attention to the case M = N − 1.
As a matter of fact the cluster leading to a larger likelihood value can correspond to any M,M =
1, . . . , N − 1. According to Theorem 3.1 all elements of the heterogeneity class must be far away from
the consensus mean estimate.

5. MAXIMUM LIKELIHOOD DEGREE

The goal here is to give the formula for the degree of (polynomial) likelihood equations (11)
representing the algebraic complexity of the problem. In the situation of the previous section this degree
is three. Our formula is based on a different representation of the likelihood function (2),

L(μ̃, τ21 , . . . , τ
2
K) =

∑
0≤k,�≤K

∑
i∈Ik,j∈I�

(xi − xj)
2

(τ2k + s2i )(τ
2
� + s2j)

⎡⎣∑
k

∑
Ik

1

τ2k + s2i

⎤⎦−1

+ log

⎛⎝ K∏
k=0

∏
Ik

(τ2k + s2i )

⎞⎠ ,

which follows from the Lagrange identity. It will be assumed that all x’s in each cluster and all s’s are
distinct (i.e., that the data is generic). This is a usual condition imposed when studying the maximum
likelihood degree (cf. Gross et al., 2012) for a homogeneous variance component problem.

To represent the solutions of likelihood equations as those of polynomial equations let

P = P (τ21 , . . . , τ
2
K ; I0, I1, . . . , IK) =

K∏
k=1

∏
i∈Ik

(τ2k + s2i )
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be a polynomial of degree n1 + · · ·+ nK = N − n0 > 0. Then with S0 =
∑

j∈I0 s
−2
j ,

∑
I0

1

s2j
+

K∑
k=1

∑
Ik

1

τ2k + s2i
= S0 +

K∑
k=1

∂ log P

∂τ2k
= S0 +

K∑
k=1

P ′
k

P
.

We also define two polynomials

Q =
∑

0≤k,�≤K

∑
i∈Ik,j∈I�

(xi − xj)
2P (τ21 , . . . , τ

2
K)

(τ2k + s2i )(τ
2
� + s2j)

,

τ20 = 0, and

R = S0P +
K∑
k=1

P ′
k.

The degree of Q is N −max(n0, 2), that of R is N −max(n0, 1).

The scaled likelihood function L from (2) takes the form

L =
Q

R
+ log P +

∑
j∈I0

log s2j ,

and the likelihood equations for τ2� , � = 1, . . . ,K become

Q′
�PR−QPR′

� + P ′
�R

2 = 0. (30)

For the restricted likelihood function L̃ = Q/R + logR, these equations are simpler

Q′
�R−QR′

� +RR′
� = 0. (31)

Combining these facts with information about the degree of P,Q, and R, one gets the next result.
Theorem 5.1. The degree DL of the polynomial Eqs. (30) has the form

DL =

{
3N − 3n0 − 1 n0 ≥ 1

3N − 3 n0 = 0,

the degree RL of the Eqs. (31) is

RL =

{
2N − 2n0 − 1 n0 ≥ 1

2N − 3 n0 = 0.

6. TWO PRACTICAL EXAMPLES

In many applications the smallest reported values s2k often seem to belong to the outlying cases. Two
examples are provided in this section; many more can be found in metrology literature.

6.1. Key Comparison CCL-K1

Length key comparison CCL-K1 was carried out to compare the deviations from nominal length of
steel and tungsten carbide gauge blocks (Thalmann, 2002). The measurement results for one of these
blocks, namely, the deviations from a tungsten carbide gauge blocks of nominal length 1mm by eleven
participating national institutes are given in Table 1.

When K = 1, according to both maximum likelihood estimators Î1 = Ĩ1 = {6, 7, 8} increasing the
uncertainties of these three labs to 23.61, 23.95, and 24.27 nm (or to 23.81, 24.12, and 24.47 nm)
with τ̂ = 22.75 nm, μ̂ = 18.07 nm. For the restricted maximum likelihood estimator τ̃ = 22.76 nm,
μ̃ = 18.09 nm.

Cox (2007) analyzed the same data set with the conclusion that two laboratories 6 and 7 are to be
excluded from the largest consistent subset which he defined to be formed by the studies for which
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Table 1. CCL-K1 data on deviations from nominal length of a gauge block (tungsten carbide) in nm units

i 1 2 3 4 5 6 7 8 9 10 11

xi 15 15 30 18 24 –9 –9 33 12.5 8.8 21

si 9 14 10 13 9 7 8 9 8.6 10 5.4

Table 2. Relative air speed data (nominal speed 2 m/s)

xi 0.9993 1.0090 1.0196 1.0270

si 0.0026 0.0027 0.0017 0.0025

∑
j(xj − μ̃)2/s2j does not exceed the critical point of χ2-distribution for 0.05 significance level. This

approach which gives the consensus deviation as 20.3 nm has been criticized by Toman and Possolo,
2009 and Elster and Toman, 2010.

The maximum of the likelihood function is not attained at I1 = {6, 7}, so that a better definition of the
largest consistent subset is Î0 = Îc1 = {1, 2, 3, 4, 5, 9, 10, 11}. The same homogeneity cluster persists
when K = 2. The estimate τ̂1 = 22.55 nm is then replaced by τ̂1 = 11.07 nm and τ̂2 = 26.70 nm.
The classical maximum likelihood estimator of τ based on the cluster Î0 above is positive, but small:
0.056 nm; the commonly used DerSimonian–Laird estimator of this parameter vanishes so that Î0 looks
homogeneous.

Larger values of K do not lead to substantial gains in the likelihood functions. The best (classical
likelihood) choice for K = 3 recommends to remove from Î0 lab 3, i.e., to take {1, 2, 4, 5, 9, 10, 11} as a
new consistent subset; that for the restricted likelihood is {1, 2, 3, 4, 5, 9, 11}.

6.2. CIPM CCQM. FF-K3 Study

Another example of discrepant data is the international fluid flow comparisons of air speed measure-
ment (CCM.FF-K3) (Terao et al., 2007). An ultrasonic anemometer chosen as a transfer standard was
circulated between four national metrology institutes who reported calibration results at certain speeds.
The (dimensionless) data given in the Table 2 represents the ratio of the laboratory’s reference air speed
to the one measured by the transfer standard.

Since the data is aberrant, the organizers of this study decided to use the median as an estimator
of μ. When K = 1, the maximum likelihood estimator is Î0 = {3}, Î1 = {1, 2, 4}, μ̂ = 1.0193 while
the restricted maximum likelihood estimator gives Ĩ0 = ∅, Ĩ1 = {1, 2, 3, 4}, μ̃ = 1.0138. All increased
uncertainties are about 0.0137 (MLE) (τ̂2 = 1.81 × 10−4) or 0.0118 (REML) (τ̃2 = 1.49 × 10−4), re-
spectively. If K = 2, the maximum likelihood estimator practically remains the same, μ̂ = 1.020, but the
negative likelihood (2) is −36.35 (attained at Î0 = ∅, Î1 = {1, 2}, Î2 = {3, 4}) while the corresponding
value is −35.45 for K = 1.

For the restricted maximum likelihood estimator Ĩ0 = {3}, Ĩ1 = {2}, Ĩ2 = {1, 4}, μ̃ = 1.020, τ̃1 =
0.0199, τ̃2 = 0.0087, with the first increased uncertainty larger than that for K = 1, but the second
one smaller. The negative restricted likelihood (3) decreases from −22.89 to −23.52. For K = 2 both
μ-estimators evaluated according to different likelihood methods turn out to be practically equal to
1.0196 (larger than the median 1.0143).

Table 3 summarizes the results. It indicates that from the view of information criterions AREM
with K = 2 provides the best fit to the data. Then maximum likelihood estimators coincide, and
Î0 = {3}, Î1 = {2}, Î2 = {1, 4}. The value K = 3 gives only small gains in the likelihood.
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Table 3. Likelihoods of different AREM models and information criterion numbers

Model FEM REM AREM.K = 1 AREM.K = 2 AREM.K = 3

dimension 1 2 2 3 4

CL 23.12 –32.47 –35.45 –36.35 –36.45

RL 36.70 –22.10 –22.89 –23.52 –23.62

AICtextrmAREM.CL 25.12 –28.47 –31.45 –30.35 –28.45

AICtextrmAREM.RL 38.70 –18.10 –18.89 –17.52 –15.62

BICtextrmAREM.CL 24.51 –29.69 –32.68 –32.19 –30.91

BICtextrmAREM.RL 38.10 –19.33 –20.11 –19.37 –18.07

7. SIMULATION RESULTS FOR INFORMATION QUANTITIES

The quantities (25) provide statistics for Akaike’s information criterion (AIC) or for the Bayesian
information criterion (BIC) based on the classical or restricted likelihood (Claeskens and Hjort, 2008).
Thus one can get the information criteria numbers for these models, e.g.,

AICAREM.CL = L(I0, . . . , IK) + 2(K + 1)

and

BICAREM.CL = L(I0, . . . , IK) + (K + 1) logN.

In the corresponding formulas for AICAREM.RL and BICAREM.RL through L̃(I0, . . . , IK) one has to
replace in the second term K + 1 by K. These numbers are employed in Section 6 in two practical
examples. Here we compare them numerically for AREM.K = 1 and AREM.K = N − n0.

To compare the properties of the considered likelihood procedures we performed Monte Carlo
simulations involving AREM when Ic0 = {1, . . . ,M} with M = 1 or 2, N = 5, K = 1. In these models
xi ∼ N(0, τ2 + s2i ), i = 1, . . . ,M and xj ∼ N(0, s2j ) for j ≥ M + 1. The variances s2k were obtained
from realizations of standard exponential random variables for 50 000 Monte Carlo runs.

Figure 1 displays the percentage of correct identification by information criterions AICAREM.CL and
AICAREM.RL. The Bayes information criterions BICAREM.CL and BICAREM.RL are not reported as their
values differ only by a constant.

This quantity ranges from 0.12 (τ2 = 0) to 0.31 (τ2 = 3) for AREM.CL when M = 1 which is
reasonable in view of the total number of models (2N − 1 = 31). When M = 2 it grows from 0.02 to
0.17. The probabilities of the correct choice behave similarly for K = N − n0 but are somewhat smaller
e.g., when M = 1 they increase from 0.09 to 0.21, and from 0.02 to 0.16 (M = 2).

Neither classical nor restricted likelihood procedures perform well in the case of the traditional REM
(M = N,K = 1) favoring AREM with smaller M .

8. DISCUSSION

This work proposes a class of models to handle discrepant heterogeneous data in research synthesis.
The traditional random effects model is extended to allow for different heterogeneity variance values.
The algorithms for determination of these values along with the convergence conditions are presented.
The procedures are based on the Gaussian likelihood although this distribution can be replaced by a
non-normal location/scale parameter family. However the underlying density cannot be well estimated
because usually the data is too scarce.

The suggested approach prescribes additional error to some outlying studies whose summary results
are given larger uncertainties but still enter the final answer. Typically the uncertainty enlargements
apply only to a few cases. The straightforward iterative numerical algorithms to evaluate the maximum
likelihood estimators can be employed for small/moderate number of studies. If there are many studies,
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Fig. 1. The percentage of correct model identification as a function of τ 2 for AIC based on classical likelihood (M = 1,
solid line; M = 2, line marked by +) and on restricted likelihood (M = 1, line marked by ∗; M = 2, line marked by
circles).

the likelihood calculations become impractical but the present methodology still can be used provided
that the sizes nk of heterogeneity clusters Ik, k = 1, . . . ,K are small.

We do not recommend more than two clusters unless there are good practical reasons to believe in
so many categories. Then the K = N − n0 model can be implemented. The largest consistent subset
obtained when K = 1 or 2 as a rule gets smaller if K increases while the chance of the correct model
identification diminishes.

Appendix

PROOF OF THEOREM 2.1

Proof. Since for μ̃ defined by (4)

∂μ̃

∂τ2k
= −

∑
Ik

xi − μ̃

(τ2k + s2i )
2

(∑
m

∑
Im

1

τ2m + s2i

)−1

,

the diagonal elements hkk of the Hessian are ∂2L/∂τ4k = dk − a2k, its off-diagonal elements have the
form: hk� = ∂2L/[∂τ2k∂τ

2
� ] = −aka�, k �= �. Thus (6) holds, and the matrix

Ĥ = diag(d̂)− ââT

is positive definite if and only if (7) is valid.

The vector function ψ = (ψ1, . . . , ψK) of τ21 , . . . , τ
2
K , with

ψk =
∑
Ik

(xi − μ)2 − s2i
(τ2k + s2i )

2

⎡⎣∑
Ik

1

(τ2k + s2i )
2

⎤⎦−1

= τ2k −

⎡⎣∑
Ik

1

(τ2k + s2i )
2

⎤⎦−1

∂L

∂τ2k

defines iterations (9): ψ(τ21 , . . . , τ
2
K) = (τ21 , . . . , τ

2
K). In these iterations μ = μ̃(τ21 , . . . , τ

2
K), as in (4).

The conditions (7) and (8) mean that the spectral radius of the Jacobian ψ′ evaluated at τ̂21 , . . . , τ̂
2
K is

smaller than 1 which is a sufficient condition for the convergence of iteration process (9) defined by ψ (cf.
Ortega and Rheinboldt, 2000). �
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PROOF OF THEOREM 2.2

Proof. According to (5) one has for stationary points (xk − μ̂)2 = τ̂2k + s2k. It follows that d̂k =

(τ̂2k + s2k)
−2 and â2k/d̂k = 2(τ̂2k + s2k)

−1[
∑

�(τ̂
2
� + s2�)

−2 +
∑

j s
−2
j ]−1. Therefore condition (7) in this

situation means that (12) is valid.
The (scalar) iteration function is now given by (14) and its (positive) derivative at μ̂,[∑

k

2

τ̂2k + s2k

]⎡⎣∑
k

1

τ̂2k + s2k
+

∑
j

1

s2j

⎤⎦−1

is smaller than 1 if and only if the first inequality in (12) holds. �

PROOF OF THEOREM 2.3 AND COMMENTS

Proof. Now the elements of the Hessian H̃ have the form

h̃k� = δk�c̃� − ãkã� − b̃kb̃�, k, � = 1, . . . ,K,

where δk� is the Kronecker symbol. Thus (16) holds. Provided that c̃k > 0, H̃ is positive definite if
and only if the similar matrix I − C−1/2ããTC−1/2 − C−1/2b̃b̃TC−1/2, is. The two eigenvalues λ of this
matrix, which are different from 1, solve the equation

(1− λ)2 − (ãTC−1ã+ b̃TC−1b̃)(1 − λ) + (ãTC−1ã)(b̃TC−1b̃)− (ãTC−1b̃)2 = 0,

and they are positive when and only when (18) holds. �
For AREM.RL.K = 1 the restricted maximum likelihood estimator of τ2 satisfies (15) and the

inequality ã21 + b̃21 < c̃1 which implies (18).

For AREM.RL.K = N − n0 all stationary points zk = zk(μ, ζ) = [(xk − μ)2 + 1/(ζ +
∑

s−2
j )]−1

depend only on two variables μ and ζ =
∑

(τ̃2k + s2k)
−1. The two-dimensional iteration function Ψ =

(μ, ζ) in these variables,

μ =

∑
k xkzk +

∑
j xjs

−2
j∑

k zk +
∑

j s
−2
j

, ζ =
∑

zk,

defines an iteration method which converges under conditions (17) and (18). Indeed in this case
c̃k = (τ̃2k + s2k)

−2, and for 2× 2 Jacobian Ψ′ evaluated at τ̃21 , . . . , τ̃
2
K one has

tr(Ψ′) =
∑
k

ã2k + b̃2k
c̃k

,

det(Ψ′) =
∑
k

ã2k
c̃k

∑
k

b̃2k
c̃k

−
(∑

k

ãk b̃k
c̃k

)2

.

Therefore (17) implies that (positive) diagonal elements of Ψ′ cannot exceed 1 while (18) means that
tr(Ψ′) < 1 + det(Ψ′). Then the spectral radius of Ψ′ is smaller than 1.

PROOF OF THEOREM 4.1

Proof. For fixed N,M = N − 1, I let Φ(α, γ) = FI(ω,α, 0, γ) where ω = ω(α, gl) is the solution of
(28). We start with the derivatives

ω′
α =

ω2

2γ(1 − ω)ω2 − ω0((1 − ω0)−1
,

ω′
γ = (1− ω)2ω′

α.
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Since ∂FI(ω,α, 0, γ)/∂ω = 0, one has

Φ′
α =

∂Φ

∂α
=

(1− ω0)ω

1− ω
− ω0

v
,

Φ′
γ = (1− ω0)ω − ω0(1− ω0)

v
.

The second derivatives depend on ω′
α, ω

′
γ ,

Φ′′
αα =

(1− ω0)ω
′
α

(1− ω)2
+

ω0

v2
,

Φ′′
αγ = (1− ω0)ω

′
α +

ω2
0(1− ω0)

v2
,

Φ′′
γγ = (1− ω0)(1− ω)2ω′

α +
ω2
0(1− ω0)

2

v2
.

If the function φ(γ) is defined by the equation Φ(φ(γ), γ) = 0 then

φ′(γ) = −
Φ′
γ

Φ′
α

,

and φ′(γ) vanishes when ω = ω0/v. Thus φ(γ) increases when γ ≤ γ̃ and then (sharply) decreases until
it vanishes at γ̄ such that

ω0 log

(
(1− ω0)ω

ω0(1− ω)

)
+ (1− ω0)(γ̄ω

2 − 1) = log(ω0(1− ω0)γ̄),

where

ω(1− ω) =
ω0

(1− ω0)γ̄
.

(As N increases γ̄ grows up very fast: log γ̄ ∼ N logN . This asymptotics also governs γ̃.)
The second derivative

φ′′(γ) = −
(Φ′

γ)
2Φ′′

αα − 2Φ′
αΦ

′
γΦ

′′
αγ + (Φ′

α)
2Φ′′

γγ

(Φ′
α)

3

= − 1

(Φ′
α)

3

[
(1− ω0)ω

′
α

(1− ω)2

(
(1− ω0)ω − ω0[1− ω0 − (1− ω)2]

v2

]2
+

ω2
0(ω0 − ω)2ω2(1− ω)2

v2

]
is negative when γ0 = (N/(N − 1)2 ≤ γ ≤ γ̃. Because of concavity of function φ(γ) the region where
Φ(α, γ) ≥ 0, γ0 ≤ γ ≤ γ̃ is convex.

It remains to evaluate the Hessian of Φ at (α0, γ0),

Φ′′
αα = − ω2

0(N + 2)

(N + 1)(N − 2)
,

Φ′′
αγ =

ω2
0(N

2 − 2N − 2)

(N + 1)N(N − 2)
,

Φ′′
γγ =

ω2
0(N

2 −N − 3)

(N + 1)N2(N − 2)
,

which leads to the formula for the slope

λN =
(N2 − 2N − 2 + (N − 1)

√
N2 −N − 2

N(N + 2)
.

�
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