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Abstract—This work studies the problem of binary classification with the F-score as the perfor-
mance measure. We propose a post-processing algorithm for this problem which fits a threshold
for any score base classifier to yield high F-score. The post-processing step involves only unlabeled
data and can be performed in logarithmic time. We derive a general finite sample post-processing
bound for the proposed procedure and show that the procedure is minimax rate optimal, when
the underlying distribution satisfies classical nonparametric assumptions. This result improves
upon previously known rates for the F-score classification and bridges the gap between standard
classification risk and the F-score. Finally, we discuss the generalization of this approach to the
set-valued classification.
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1. THE PROBLEM

Consider a random couple (X, Y ) taking values in R
d × {0, 1} with joint distribution P. The vector

X ∈ R
d is the feature vector and the binary variable Y ∈ {0, 1} is the label. Denote by PX the marginal

distribution of the feature vector X ∈ R
d and by η(X) := E[Y |X] the regression function. A classifier is

any measurable function g : Rd �→ {0, 1} and the set of all such functions is denoted by G.
A common way to measure the risk of a classifier g is via its misclassification error P(Y �= g(X)).

However, once the relation P(Y = 1) ≈ P(Y = 0) fails to be satisfied, practitioners often seek for a
balance between precision and recall of the constructed classifier [14], which are defined as

Pr(g) = P(Y = 1|g(X) = 1), Re(g) = P(g(X) = 1|Y = 1),

respectively. Ultimately, a desired classifier maximizes both quantities simultaneously or seeks for
some trade-off among them. Aggregates which combine both measures into one are often employed
in practical applications [1]. Among others, a popular choice of such an aggregate is the F-score which
is defined for a fixed parameter of choice b > 0 as

Fb(g) =

(
1

1 + b2

(
Pr(g)

)−1
+

b2

1 + b2

(
Re(g)

)−1
)−1

. (1)

In other words, the F-score with the parameter b is the weighted harmonic average of the precision and
the recall.1) In practice common choices of parameters are b = 2; 0.5; 1, which puts more emphasis
on recall (b = 2), precision (b = 0.5), and treats both equally (b = 1). Our goal is to build a data-
driven post-processing procedure, whose expected F-score is as high as possible. In the paradigm of
post-processing we assume that an initial estimator η̂ of the regression function η is available and is
constructed using an i.i.d. sample (X1, Y1), . . . , (Xn, Yn) drawn from P and independent from (X, Y ).
A post-processing procedure is any procedure which receives the initial estimator η̂ plus an additional

*E-mail: evgenii.chzhen@universite-paris-saclay.fr
1)The (weighted) harmonic mean of any real number and zero is defined as zero.
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sample and outputs a classifier ĝ : Rd → {0, 1}. In our case, this additional sample is unlabeled.
It consists of Xn+1, . . . ,Xn+N sampled2) i.i.d. from PX. We define an Fb-score optimal classifier
g∗ : Rd �→ {0, 1} as a solution of

max
g∈G

(
1

1 + b2

(
Pr(g)

)−1
+

b2

1 + b2

(
Re(g)

)−1
)−1

.

Consequently, the theoretical performance of any classifier g : Rd → {0, 1} is measured by its excess
score E defined as

Eb(g) := Fb(g
∗)− Fb(g),

which is the difference of the optimal possible value and the Fb-score of g.

Related works and contributions. In practical applications the classification power is often
measured by the precision and the recall of a classifier [12, 14, 16]. In particular, practitioners consider
more complex measures, which trade-off the two conflicting quantities [see for instance 16, Sections 3.5
and 3.5.4]. A popular choice of such measure is the Fb-score—a weighted harmonic mean of the
precision and the recall, which is often used when P(Y = 1) < P(Y = 0) to discover rare positive
labels [9]. For example, the Fb-score is reported as one of the success criteria is several applied and
algorithmic works [4, 9, 15, 22, 24, 33].

Until very recently, the theoretical study of the binary classification was almost exclusively focused
on the classical misclassification risk or its convex surrogates. More recently, statistically grounded
post-processing estimation procedures under the Fb-score classification received an increasing amount
of attention over the recent years [3, 8, 17, 25, 37, 38]. However, most of the previous works were almost
exclusively focused on the asymptotic results, with a notable exception of [38], where they establish finite
sample results for their procedure.

In this work we propose and analyze yet another post-processing algorithm (see Section 3), which
calibrates any score based classifier to maximize the Fb-score. In particular, in Section 3.1 we derive a
general post-processing bound, which holds without any assumptions on the distribution. This result
shows that our algorithm is universally consistent, recovering similar guarantees as that of [17, 25].
Meanwhile, unlike the algorithms of [17, 25], the proposed post-processing step is performed using only
unlabeled data and it requires only logarithmic time in the unlabeled data, making it attractive for
applications where the cost of labels is high and the computational powers are limited.

In Section 4 we consider the scenario of nonparametric classification and establish an upper bound
for the proposed procedure, moreover, our lower bound demonstrates that this rate is minimax optimal.
In standard nonparametric classification, a classical result of Audibert and Tsybakov [2] establishes that
the optimal rate of convergence of the misclassification risk is n−(1+α)β/(2β+d), where α is the margin
parameter [34], β is the smoothness of the conditional distribution of the label; and d is the dimension
of the feature space. Recently, under stronger assumptions, Yan et al. [38] proposed a post-processing
algorithm for the Fb-score maximization whose rate is n−(1+min{α,1}β)/(2β+d), that is, it is slower than
that of misclassification risk. Our result shows that the rate of Yan et al. [38] is suboptimal. In particular,
under milder assumptions our algorithm achieves n−(1+α)β/(2β+d) rate of convergence for the excess Fb-
score.

Finally, in Section 5 we show that our approach can be generalized to the set-valued classification
framework [10, 30] using an extension of the Fb-score to this setup [7, 23].

Notation. We make use of the following notation. For any x ∈ R we denote by (x)+ = max{x, 0}
its positive part. For two real numbers a, b we denote by a ∨ b (resp., a ∧ b) the maximum (resp.,
the minimum) between a, b. In this work the symbols P and E stand for a generic probability and
expectation respectively, while P and PX are the distributions of (X, Y ) and X, respectively. For any
function f : Rd → R we set ||f ||p = (

∫
Rd f(x)dPX(x))

1/p. By the abuse of notation for any x ∈ R
d we

denote by ||x||2 its Euclidean norm. Finally, for any x ∈ R
d we denote by ||x||∞ the sup norm of x.

2)It is assumed that Xn+1, . . . ,Xn+N are independent from (X1, Y1), . . . , (Xn, Yn), (X, Y ).
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2. REMINDER ON THE Fb-SCORE

Zhao et al. [40] demonstrated that a maximizer of the F1-score can be obtained by comparing the
regression function η(X) with a threshold θ∗∈ [0, 1]. An important consequence of their analysis, is the
fact that this threshold θ∗ depends on the whole joint distribution P. This fact is the crucial distinction
between the classical setup with misclassification risk, where the threshold is known beforehand and is
equal to 1/2 [11].

Theorem 1 (Zhao et al. [40]). Assume that P(Y = 1) �= 0 and let θ∗ ∈ [0, 1] be a solution of the
following equation

b2θP(Y = 1) = E(η(X)− θ)+. (2)

Let g∗ : Rd → {0, 1} be defined for all x ∈ R
d as

g∗(x) = I{{{η(x) > θ∗}}. (3)

Then, it holds that

1. θ∗ exists and unique,

2. Fb(g
∗) = θ∗(1 + b2),

3. g∗ is a Fb-score optimal classifier.

Zhao et al. [40] derived the form of the Fb-score optimal classifier for b = 1 and the extension of
their proof to other values of b > 0 trivially follows from their analysis. For the sake of completeness we
provide a complete and an alternative proof of this result. This particular proof strategy plays a crucial
role in our consequent statistical analysis.

Proof of Theorem 1. In Lemma 13 of Section 7 it is shown that θ∗, defined by Eq. (2) exists and is
unique for any b > 0. Let us show that if θ∗ satisfies Eq. (2), then it holds that Fb(g

∗) = θ∗(1 + b2) for
g∗(x) = I{{{η(x) > θ∗}}}. Simple computations imply that the expression for the Fb-score in Eq. (1)
can be written as

Fb(g) =
(1 + b2)P(Y = 1, g(X) = 1)

b2P(Y = 1) + P(g(X) = 1)
.

Using this expression and the definition of g∗ we can write

Fb(g
∗) = (1 + b2)

P(Y = 1, g∗(X) = 1)

b2P(Y = 1) + P(g∗(X) = 1)
= (1 + b2)

E[η(X)I{{η(X) ≥ θ∗}]
b2P(Y = 1) + P(η(X) ≥ θ∗)

= (1 + b2)
E[(η(X) − θ∗)I{{η(X) ≥ θ∗}] + θ∗EI{η(X) ≥ θ∗}

b2P(Y = 1) + P(η(X) ≥ θ∗)

= (1 + b2)
E(η(X)− θ∗)+ + θ∗P(η(X) ≥ θ∗)

b2P(Y = 1) + P(η(X) ≥ θ∗)
.

Finally, thanks to the definition of θ∗ we obtain

Fb(g
∗) = (1 + b2)

θ∗b2P(Y = 1) + θ∗P(η(X) ≥ θ∗)

b2P(Y = 1) + P(η(X) ≥ θ∗)
= (1 + b2)θ∗.

Hence Fb(g
∗) = (1 + b2)θ∗, the optimality of g∗ follows from Lemma 2 below. �

Lemma 2. Let g : Rd �→ {0, 1} be any classifier and assume that P(Y = 1) �= 0, then

Fb(g
∗)− Fb(g) =

(1 + b2)E|η(X)− θ∗|I{g∗(X) �= g(X)}
b2P(Y = 1) + P(g(X) = 1)

,

where g∗ is defined in Theorem 1.
Proof. Fix any classifier g : Rd �→ {0, 1}. The excess score of g can be expressed as

Eb(g)
1 + b2

=
P(Y = 1, g∗(X) = 1)

b2P(Y = 1) + P(g∗(X) = 1)
− P(Y = 1, g(X) = 1)

b2P(Y = 1) + P(g(X) = 1)
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=
E[η(X)I{η(X) > θ∗}]

b2P(Y = 1) + P(g∗(X) = 1)
− E[η(X)I{g(X) = 1]}

b2P(Y = 1) + P(g(X) = 1)
.

Adding and subtracting E[η(X)I{g(X)=1]}
b2P(Y=1)+P(g∗(X)=1)

on the right hand side we derive after rearranging that

Eb(g)
1 + b2

=
E[η(X)I{η(X) > θ∗}]− E[η(X)I{g(X) = 1]}

b2P(Y = 1) + P(g∗(X) = 1)

+
E[η(X)I{g(X) = 1]}

b2P(Y = 1) + P(g(X) = 1)

(
P(g(X) = 1)− P(g∗(X) = 1)

b2P(Y = 1) + P(g∗(X) = 1)

)
.

Notice thatE[η(X)I{η(X) > θ∗}]−E[η(X)I{g(X) = 1}] = E[(η(X)− θ∗)(I{η(X) > θ∗}− I{g(X) = 1})]+
θ∗(P(g∗(X) = 1)− P(g(X) = 1)), therefore

Eb(g)
1 + b2

=
E[(η(X) − θ∗)(I{η(X) > θ∗} − I{g(X) = 1})] + θ∗(P(g∗(X) = 1)− P(g(X) = 1))

b2P(Y = 1) + P(g∗(X) = 1)

+
Fb(g)

1 + b2

(
P(g(X) = 1)− P(g∗(X) = 1)

b2P(Y = 1) + P(g∗(X) = 1)

)

=
E|η(X)− θ∗|I{g∗(X) �= g(X)}
b2P(Y = 1) + P(g∗(X) = 1)

+

(
θ∗ − Fb(g)

1 + b2

)
P(g∗(X) = 1)− P(g(X) = 1)

b2P(Y = 1) + P(g∗(X) = 1)
.

Thanks to Theorem 1 we know that θ∗ = Fb(g
∗)

1+b2
and hence previous equality can be equivalently

expressed as

Eb(g)
1 + b2

=
E|η(X)− θ∗|I{g∗(X) �= g(X)}
b2P(Y = 1) + P(g∗(X) = 1)

+
Eb(g)
1 + b2

· P(g
∗(X) = 1)− P(g(X) = 1)

b2P(Y = 1) + P(g∗(X) = 1)
. (4)

We conclude by solving the previous equality for Eb(g). �
Lemma 2 is the main advantage of our proof over the previously available one. It is a cornerstone

in our statistical analysis, allowing us to derive both finite-sample and asymptotic results. Following
Theorem 1, in this work we call θ∗ the optimal threshold. Let us point out that Theorem 1 allows
to obtain a trivial upper bound on the optimal threshold, narrowing the search region. Indeed, since
θ∗(1 + b2) = Fb(g

∗) and for any classifier g ∈ G we have Fb(g) ≤ 1 (since the Fb-score is the harmonic
average of the precision and the recall), then it holds that θ∗ ∈ [0, 1/(1 + b2)]. Thanks to the expression
on the excess score in Lemma 2 we can observe that if the optimal threshold is known a priori,
the problem of binary classification with the F-score is identical to the standard setting of binary
classification with the cost-sensitive misclassification risk [31]. Indeed, notice that the optimal classifier
g∗ minimizes

Rθ∗(g) = (1− θ∗)P(Y = 1, g(X) = 0) + θ∗P(Y = 0, g(X) = 1).

However, since the threshold depends on the whole distribution P, the empirical version of Rθ∗ is
generally not straightforward. This relation of the Fb-score and its cost-sensitive formulation was
exploited in [26] to build a practical algorithm for the Fb-score maximization, whose consistency is
unfortunately not established.

3. PROPOSED PROCEDURE

In this section we describe the proposed procedure ĝ to estimate the Fb-score optimal classifier g∗. We
assume that we have access to two datasets: labeled DL

n = {(X1, Y1), . . . , (Xn, Yn)} consists of n ∈ N

i.i.d. copies of (X, Y ) ∼ P; and unlabeled DU
N = {Xn+1, . . . ,Xn+N} consists of N ∈ N independent

copies of X ∼ PX. W.l.o.g. it is assumed that the size of the unlabeled dataset is not smaller that the
size of the labeled dataset, that is, N ≥ n. The above assumption is w.l.o.g. as long as we are willing
to sacrifice constant multiplicative factors in the rate of convergence. Indeed, since we have access
to (X1, Y1), . . . , (Xn, Yn),Xn+1, . . . ,Xn+N , we can create another3) dataset: (X1, Y1), . . . , (Xn

2
, Yn

2
),

3)For this discussion let us assume that n is even.
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Xn
2
+1, . . . ,Xn,Xn+1, . . . ,Xn+N by simply pooling out half of the labels. This step artificially ensures

that we have at least as many unlabeled data as the labeled ones.

Algorithm 1. Threshold estimation for Fb-score

Input: unlabeled data DU
N ; estimator η̂; parameter b > 0; number of iterations Kmax

Output: threshold estimator θ̂

1: procedure BISECTION ESTIMATOR

2: R̂(θ) ← θb2ÊN [η̂(X)]− ÊN (η̂(X)− θ)+

3: θmin ← 0, θmax ← 1
1+b2 , K ← 1

4: while K ≤ Kmax:

5: if R̂
(
θmin+θmax

2

)
= 0 then return θmin+θmax

2

6: if R̂
(
θmin+θmax

2

)
< 0 then θmin ← θmin+θmax

2 else θmax ← θmin+θmax
2

7: K ← K + 1

8: endwhile

9: return θ̂ = θmin+θmax
2

As already mentioned, the goal is to perform a post-processing of any plug-in estimator. To this end,
let η̂ be any estimator of the regression function η based on the labeled data DL

n. Notably, any consistent
estimator of η can be used [32]. Then, we use the output of Algorithm 1 to estimate θ∗. This algorithm
requires unlabeled data DU

N and the estimator η̂ to be adjusted. Finally, the constructed classifier ĝ is
defined as

ĝ(x) = I{η̂(x) > θ̂}, (5)

where θ̂ is computed according to Algorithm 1. Algorithm 1 is a bisection algorithm [6] applied to the
function R̂(θ), defined as

R̂(θ) = θb2ÊN [η̂(X)]− ÊN(η̂(X)− θ)+,

where ÊN is an expectation taken with respect to the empirical measure 1
N

∑n+N
i=n+1 δXi evaluated on

unlabeled data This function is an empirical version of the condition on the optimal threshold θ∗ imposed
by Eq. (2). Note that it can be applied on top of any off-the-shelf base estimator η̂ and it requires only an
unlabeled sample to approximate the marginal distribution PX of X.

3.1. General Analysis

Before stating an explicit rate on a standard nonparametric class of distributions, we provide a general
analysis of the proposed estimator which can be applied in a large variety of statistical models. In
particular, in this section we do not pose any assumption on the joint distribution P of (X, Y ). Of course
the performance of ĝ highly depends on the quality of the initial estimator η̂. Hence, our goal is to derive
a bound which explicitly involves the term responsible for estimation of η by η̂.

Proposition 3. Let η̂ be any estimator of η such that η̂(x) ∈ (0, 1] almost surely. Consider
ĝ(·) = I{η̂(·) ≥ θ̂} where θ̂ is the output of Algorithm 1 with some Kmax ∈ N, then it holds that

E|Fb(g
∗)− (1 + b2)θ̂| ≤ (1 + b2)

(
A(P, b)

(
E||η − η̂||1 +

√
πP(Y = 1)

N
+

4

N

)
+ 2−Kmax

)
,

where A(P, b) = 1/(b2P(Y = 1)).
The above result states that the output of Algorithm 1 approximates the optimal value of the F-

score, provided that the base estimator η̂ is a good proxy for the regression function η. It also highlights
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the fact that this algorithm is computationally efficient, as it requires only a logarithmic number of
iterations. We assumed that η̂(x) ∈ (0, 1], which is not restrictive, since we can always project η̂ on
[δN , 1] with 0 < δN ≤ N−1/2 without harming its statistical properties. The derived bound depends on
the probability of positive class as 1/P(Y = 1), that is, the bound is most informative in the regime
of moderately low P(Y = 1). At the same time, the dependency on the size of unlabeled data is√

1/(NP(Y = 1)) + 1/(NP(Y = 1)), implying that the low values of P(Y = 1) mostly affect the first
stage of the procedure.

Proof of Proposition 3. Using Theorem 1 we known that Fb(g
∗) = θ∗(1 + b2), hence it is sufficient

to bound E|θ∗ − θ̂|. Let θ̄ be a unique solution of R̂(θ) = 0 defined in Algorithm 1. Using the triange
inequality we can write

E|θ∗ − θ̂| ≤ E|θ̄ − θ̂|+E|θ∗ − θ̄|. (6)

We bound both terms on the r.h.s. of Eq. (6) separately. For the first term in Eq. (6), notice that since
R̂(θ) is continuous on [0, 1] and R̂(0) < 0, R̂(1) > 0, then classical analysis of the bisection algorithm
implies that |θ̂ − θ̄| ≤ 2−Kmax almost surely.

We denote by Fη the cumulative distribution of η(X) and by F̂η̂ the empirical cumulative distribution
of η̂(X) conditional on labeled data DL

n. Recall the following classical fact: for any random variable
Z ∈ [0, T ] a.s. and any θ ∈ [0, T ], it holds that E[(Z − θ)+] =

∫ T
θ P(Z ≥ t)dt. Using this fact, the

thresholds θ∗, θ̄ ∈ [0, 1] satisfy

b2θ∗ =

∫ 1
θ∗(1− Fη(t))dt∫ 1
0 (1− Fη(t))dt

, b2θ̄ =

∫ 1
θ̄ (1− F̂η̂(t))dt∫ 1
0 (1− F̂η̂(t))dt

. (7)

Using the fact that 1− Fη(t) ≥ 0, on the event {θ̄ ≤ θ∗} Eq. (7) yields

b2(θ∗ − θ̄) ≤
∫ 1
θ̄ (1− Fη(t))dt∫ 1
0 (1− Fη(t))dt

−
∫ 1
θ̄ (1− F̂η̂(t))dt∫ 1
0 (1− F̂η̂(t))dt

.

Adding and subtracting
∫ 1
θ̄ (1− F̂η̂(t))dt

/∫ 1
0 (1− Fη(t))dt on the right hand side of the above inequality

we get

b2(θ∗ − θ̄) ≤

∫ 1
θ̄ (F̂η̂(t)− Fη(t))dt− θ̄

1∫
0

(F̂η̂(t)− Fη(t))dt

∫ 1
0 (1− Fη(t))dt

≤ 1

P(Y = 1)

1∫
0

|Fη(t)− F̂η̂(t)|dt =
1

P(Y = 1)
||Fη − F̂η̂||1. (8)

Similar argument used on the event {θ̄ > θ∗} yields

b2(θ̂ − θ∗) ≤ 1

P(Y = 1)
||Fη − F̂η̂||1. (9)

The combination of Eqs. (8), (9) allows us to derive

b2E|θ∗ − θ̄| ≤ 1

P(Y = 1)
E||Fη − F̂η̂||1.

Let us introduce F̂η, which stands for the empirical cumulative distribution of η(X) based on DU
N . Using

the triangle inequality we get

||Fη − F̂η̂||1 ≤ ||Fη − F̂η ||1 + ||F̂η̂ − F̂η||1. (10)
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Let p(t) = P(η(X) ≥ t), then by Bernstein’s inequality we have

E|P(η(X) ≥ t)− P̂N(η(X) ≥ t)| =
∞∫
0

P
(
|P(η(X) ≥ t)− P̂N(η(X) ≥ t)| ≥ x

)
dx

≤ 2

∞∫
0

exp

(
− Nx2

2(p(t) + 1
3x)

)
dx.

Furthermore, we can write for the inner integral

∞∫
0

exp

(
− Nx2

2(p(t) + 1
3x)

)
dx =

⎛
⎜⎝

3p(t)∫
0

+

∞∫
3p(t)

⎞
⎟⎠ exp

(
− Nx2

2(p(t) + 1
3x)

)
dx

≤
3p(t)∫
0

exp

(
−N2x2

4p(t)

)
dx+

∞∫
3p(t)

exp

(
−Nx

4

)
dx ≤

√
πp(t)

N
+

4

N
.

Therefore, using Fubini’s theorem, we obtain

E||Fη − F̂η||1 =

1∫
0

E|P(η(X) ≥ t)− P̂N (η(X) ≥ t)|dt ≤
√

π

N

1∫
0

√
P(η(X) ≥ t)dt+

4

N
.

Applying Cauchy–Schwarz inequality to the first term on the r.h.s. of the above inequality we derive the
following bound

E||Fη − F̂η ||1 ≤
√

πP(Y = 1)

N
+

4

N
.

It remains to bound ||F̂η̂ − F̂η||1. Let Zi = η(Xi) and Ẑi = η̂(Xi) for all i = n+ 1, . . . , N , then for the
second term on the r.h.s. of Eq. (10) we can write

||F̂η̂ − F̂η||1 =
1

N

1∫
0

∣∣∣∣∣
n+N∑
i=n+1

(
I{Zi ≤ t} − I{Ẑi ≤ t}

)∣∣∣∣∣ dt.

This expression corresponds to the Wasserstein-1 distance between empirical measures
of {Zn+1, . . . , Zn+N} and {Ẑn+1, . . . , Ẑn+N}. Hence, using its alternative definition we get

||F̂η̂ − F̂η||1 = inf
ω∈SN

1

N

n+N∑
i=n+1

|Zi − Ẑω(i)| ≤
1

N

N∑
i=n+1

|η(Xi)− η̂(Xi)|,

where the infimum is taken over all permutations SN of {n+ 1, . . . , n+N}. Finally, since conditionally
on the labeled data DL

n the random variables |η(Xi)− η̂(Xi)| with i = n+ 1, . . . , n +N are i.i.d., then
E||F̂η̂ − F̂η ||1 ≤ E||η − η̂||1. �

While Proposition 3 allows to estimate the value of the optimal F-score, it does not guarantee that
the proposed post-processing performs well in terms of this measure. Propositions 4 addresses this
question.

Proposition 4 (Post-processing bound). Let η̂ be any estimator of η satisfying assumptions
of Proposition 3. Consider ĝ(·) = I{η̂(·) ≥ θ̂} where θ̂ is the output of Algorithm 1 with some
Kmax ∈ N, then it holds that

Fb(g
∗)−E[Fb(ĝ)] ≤ (1 + b2)

(
2A2(P, b) ∨ A(P, b)E||η − η̂||1 + A2(P, b)

(√
πP(Y = 1)

N
+

4

N

))
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+ (1 + b2)A(P, b)2−Kmax ,

where A(P, b) = 1/(b2P(Y = 1)).
Proof. Observe that Lemma 2 and Proposition 3 immediately yield

Fb(g
∗)−E[Fb(ĝ)] ≤ E

[
1 + b2

b2P(Y = 1) + P(ĝ(X) = 1)

(
||η − η̂||1 + |θ∗ − θ̂|

)]

≤ (1 + b2)E
[
A(P, b)

(
||η − η̂||1 + |θ∗ − θ̂|

)]

≤ (1 + b2)

(
2A2(P, b) ∨ A(P, b)E||η − η̂||1 + A2(P, b)

(√
πP(Y = 1)

N
+

4

N

))

+ (1 + b2)A(P, b)2−Kmax .

�
The interpretation of both bound in Propositions 3 and 4 is straightforward. There are three terms: the

first term E||η − η̂||1 is the estimation error of the regression function; the second term N−1/2 is the price
that we pay for the unknown marginal distribution of the features; and the last term 2−Kmax correspond
to the deterministic error of Algorithm 1—we are not solving the equation R̂(θ) = 0 precisely.

Proposition 4 also allows to make the following corollary.

Corollary 1 (Universal consistency). Assume that the estimator η̂ constructed on labeled data DL
n

satisfies

lim
n→∞

E||η − η̂||1 = 0, ∀P s.t. P(Y = 1) �= 0,

then, the constructed classifier ĝ satisfies

lim
n,N,Kmax→∞

E[Fb(ĝ)] = Fb(g
∗), ∀P s.t. P(Y = 1) �= 0.

Following the celebrated result of [32] we can conclude for instance that if η̂ is the k-Nearest Neighbors
estimator with k → ∞ and k/n → 0, then the classifier ĝ is universally consistent for all non-degenerate
distributions in terms of the Fb-score.

4. NONPARAMETRIC MINIMAX ANALYSIS

Note that the result of Proposition 4 was derived without any assumptions4) on the joint distribution
of (X, Y ). While in nonparametric scenarios this bound is known to be optimal already for the
misclassification risk [39], it can be significantly improved under the celebrated margin assumption [1,
21, 27, 38]. The purpose of this section is to understand the minimax rate of convergence of the
excess score of the proposed classifier ĝ under the standard nonparametric assumptions with the margin
condition and establish its rate optimality.

4.1. Minimax Setup

We start by describing the class of joint distributions of (X, Y ) that is considered. The first
assumption is made on smoothness of the regression function η : Rd �→ [0, 1].

Definition 6 (Hölder smoothness). Let L > 0 and β > 0. The class of functions Σ(β,L,Rd)

consists of all functions h : Rd �→ [0, 1] such that for all x, x′ ∈ R
d, we have

|h(x) − hx(x
′)| ≤ L||x− x′||β2 ,

where hx(·) is the Taylor polynomial of h at point x of degree �β�.

Assumption 1. The distribution P of the pair (X, Y ) ∈ R
d × {0, 1} is such that η ∈ Σ(β,L,Rd)

for some positive constants β and L.

4)We only assumed that P(Y = 1) > 0 which is hardly an assumption in this context.
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Assumption 1 is usually not sufficient to obtain non-asymptotic rates: extra assumptions are required
on the marginal distribution PX of the vector X ∈ R

d. There are various assumptions that can be
imposed on PX. For instance strong and weak density assumptions [2], tail assumption [13], or
assumption on the covering number of the support of PX [18]. Since this is not the main concern of
this work, we stick to the most basic assumption on the marginal distribution. We refer to [13] and
references therein for the profound study of different conditions on the distribution of X. To introduce
our density assumption, let us first define the notion of a regular set.

Definition 7. A Lebesgue measurable set A ⊂ R
d is said to be (c0, r0)-regular for some

constants c0 > 0, r0 > 0 if for every x ∈ A and every r ∈ (0, r0] we have

λ (A ∩ B(x, r)) ≥ c0λ (B(x, r)) ,
where λ is the Lebesgue measure and B(x, r) is the Euclidean ball of radius r centered at x.

The strong density assumption is stated below.

Assumption 2. We say that the marginal distribution PX of the vector X ∈ R
d satisfies the

strong density assumption if

• PX is supported on a compact (c0, r0)-regular set A ⊂ R
d,

• PX admits a density μw.r.t. to the Lebesgue measure uniformly lower- and upper-bounded
by μmin ∈ (0,+∞) and μmax ∈ [μmin,+∞), respectively.

Note that the bound in Proposition 4 explodes with the growth of 1/P(Y = 1), thus to make our
minimax bounds meaningful we need to assume that P(Y = 1) is lower bounded by an arbitrary small,
but fixed positive constant p.

Assumption 3. There exists a positive constant p ≤ 1/2 such that P(Y = 1) ≥ p.
The assumption that p ≤ 1/2 is mostly technical as our lower bound construction is tailored for this

scenario. It is possible to relax this assumption to p ≤ 1− ζ with some fixed positive ζ . However, let us
also mention that the Fb-score is mostly used in the situation when P(Y = 1) < P(Y = 0), hence, from
practical perspective assumption p ≤ 1/2 is reasonable.

We study the rates of convergence under the margin assumption [2, 21, 34]. A version of this
assumption was used originally in the density level set estimation by [27].

Assumption 4. We say that the distribution P of the pair (X, Y ) ∈ R
d × {0, 1} satisfies the

α-margin assumption if there exist constants C0 > 0, and α ≥ 0 such that for every positive
δ ≤ (n−β/(2β+d) ln2 n) ∧ 1 we have

PX(0 < |η(X) − θ∗| ≤ δ) ≤ C0δ
α.

This is a natural adaptation of the classical margin assumption [34] to the Fb-score setup. It allows
to prove more optimistic minimax rates of convergence compared to the case with no assumption.
Intuitively, the margin condition specifies the behavior of the regression function around the decision
threshold θ∗. The case α = 0 and C0 ≥ 1 corresponds to no assumption, and the classification problem
gets statistically easier for high values of α. We require the margin Assumption 4 only in a small strip
around the optimal threshold θ∗ of size (n−β/(2β+d) ln2 n) ∧ 1. This modification is convenient for us as
it simplifies the lower bound construction.

Finally, we are in position to define the family of joint distribution of (X, Y ).

Definition 8. Let P(α, β) be a class of distributions on R
d × {0, 1} such that Assumptions 1–4

are satisfied.
Our goal is to understand the behavior of the minimax risk over P, defined as

inf
ĝ

sup
P∈P(α,β)

{
Fb(g

∗)−E[Fb(ĝ)]
}
,

where the infimum is taken over all estimators ĝ based on labeled DL
n and unlabeled DU

N , not necessary
of the post-processing nature that we discussed above.
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4.2. Lower Bound
Theorem 9. If αβ ≤ d, then there exists constant c > 0, which depends on d,C0, α, p, c0, r0,

μmin, μmax such that for all n satisfying 12 ln2 n ≤ nβ/(2β+d)

inf
ĝ

sup
P∈P(α,β)

{
Fb(g

∗)−E[Fb(ĝ)]
}
≥ cn

− (1+α)β
2β+d , (11)

where the infimum is taken over all estimators ĝ based on n labeled and N independent unlabeled
samples.

The proof of this lower bound relies on [35, Theorem 2.7] and the construction of the distributions
is inspired by both Rigollet et al. [29] and Tsybakov [2]. However, in the classical setups considered
by Rigollet et al. [29] and Audibert and Tsybakov [2] the threshold θ∗ is known and it is independent
from the distribution P, which is the main difficulty in the case of the Fb-score classification.

We stress that this lower bound does not include the size of the unlabeled data. As confirmed by our
upper bound in the next section, this is the correct dependency on both n and N .

4.3. Upper Bound
To derive upper bound on the minimax risk of the proposed classifier ĝ, we need a good estimator η̂

of η. In the nonparametric setup considered in this work, there are various ways to build such estimator.
We require an estimator η̂ based on DL

n which satisfies for all t > 0

P(|η̂(x)− η(x)| ≥ t) ≤ C1 exp(−C2ant
2) a.s. PX (12)

for some constants C1, C2 > 0 independent from n,N and an increasing sequence an : N �→ R+.
For instance, in the case of β-smooth regression function considered here, a typical nonparametric

rate is an = n2β/(2β+d) and it can be achieved by the local polynomial estimator, see [2, Theorem 3.2].
Theorem 10. Assume that η̂ satisfies Eq. (12) and Kmax ≥ �(1 + α) logN� then there exists a

constant C > 0 independent of p and b such that

sup
P∈P(α,β)

(Fb(g
∗)−E[Fb(ĝ)]) ≤ C(1 + b2)

(
A(P, b) ∨ A2+α(P, b)

) (
n− (1+α)β

2β+d +N− 1+α
2

)
,

where ĝ is defined in Eq. (5) and A(P, b) = 1/(b2p).
Strictly speaking the size of unlabeled data N is present in this upper bound. However, for

the minimax perspective the associated rate N−(1+α)/2 is always faster than n−(1+α)β/(2β+d) under
assumption that N ≥ n. Actually, even if the assumption N ≥ n fails to be satisfied, we can artificially
augment unlabeled data by polling out half of the labels from DL

n and augmenting the unlabeled dataset
by this half. Applying Theorem 10 for the same algorithm ĝ that uses �n2 � labeled and N + �n2 � unlabeled
data we get

sup
P∈P(α,β)

(Fb(g
∗)−E[Fb(ĝ)]) ≤ C ′(1 + b2)

(
A(P, b) ∨ A2+α(P, b)

) (
n− (1+α)β

2β+d + (N + n)−
1+α
2

)

≤ C ′′(1 + b2)
(
A(P, b) ∨ A2+α(P, b)

)
n− (1+α)β

2β+d ,

which matches (up to constant factors) the rate derived in the lower bound.
Theorem 10 indicates that it is statistically more difficult to estimate the regression function η than

the unknown threshold θ∗. Besides, this result improves the rate derived in [38], which is of order
n−(1+α∧1)β/(2β+d) and which is derived under the additional assumption that η(X) does not have atoms.
Finally, there is a direct analogy of the rate in the standard setup derived by [2] and that of Theorem 10.

To prove Theorem 10 let us first recall the following theorem due to [2].
Theorem 11 (Audibert and Tsybakov [2]). Let P be a class of distributions on R

d × {0, 1} such
that the regression function η ∈ Σ(β,L,Rd) and the marginal distribution PX satisfies the strong
density assumption. Then, there exists an estimator η̂ of the regression function satisfying

sup
P∈P

P(|η̂(x)− η(x)| ≥ t) ≤ C1 exp

(
−C2n

2β
2β+d t2

)
a.s. PX
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for come constants C1, C2 depending only on β, d, L, c0, r0.

Proof of Theorem 10. Set an = n−β/(2β+d). Using Lemma 2 and our assumption that P(Y = 1) ≥
p we get

Fb(g
∗)−E[Fb(ĝ)] ≤

1 + b2

b2p
E|η(X)− θ∗|I{g∗(X) �= ĝ(X)}.

Then, since using the definition of ĝ and the form of the Fb-score optimal classifier g∗ we can write

Fb(g
∗)−E[Fb(ĝ)] ≤

1 + b2

b2p

{
E|η(X)− θ∗|I{|η(X) − θ∗| ≤ 2|η(X) − η̂(X)|} (13)

+E|η(X)− θ∗|I{|η(X) − θ∗| ≤ 2|θ∗ − θ̂|}
}
. (14)

For the first term in Eq. (13) we closely follow the peeling argument of Audibert and Tsybakov
[2]. Recall that the margin Assumption 4 is required to hold only for δ ≤ n−β/(2β+d) ln2 n, thus it

requires us to slightly modify the peeling argument to account for this subtlety. For δ = a
−1/2
n and

jn = (1/2) log2 ln
2(n), with C2 from Eq. (12), define the following sets

A =
{
x ∈ R

d : 0 < |η(x) − θ∗| ≤ δ
}
,

Aj =
{
x ∈ R

d : 2j < |η(x) − θ∗| ≤ 2j+1δ
}
, ∀j = 0, . . . jn,

Ā =
{
x ∈ R

d : |η(x)− θ∗| ≥ 2jn+1δ
}
.

Set T = E|η(X)− θ∗|I{|η(X)} − θ∗| ≤ 2|η(X) − η̂(X)|}, then we have thanks to the margin Assump-
tion 4 and Eq. (12) that

T ≤ C0δ
1+α + C0C1δ

1+α
jn∑
j=0

2(j+1)(1+α) exp
(
−C22

2j
)
+

∫
P
(
|η(x) − η̂(x)| ≥ 2jnδ

)
dPX(x)

≤ C0δ
1+α + C0C1δ

1+α
jn∑
j=0

2(j+1)(1+α) exp
(
−C22

2j
)
+C1 exp

(
−C22

2jn
)

≤ C0δ
1+α + C0C1δ

1+α
∞∑
j=0

2(j+1)(1+α) exp
(
−C22

2j
)
+ C1n

−C2 lnn ≤ A

(
a
− 1+α

2
n +n−C2 lnn

)
,

with A being independent from P(Y = 1), b.
We use Eqs. (8), (9) to bound the second term in Eq. (13) by

E|η(X)− θ∗|I{|η(X) − θ∗| ≤ 2b−2(P(Y = 1))−1
(
||Fη̂ − F̂η̂ ||∞ + ||η − η̂||1

)
+ 2−Kmax+1}.

The application of the margin assumption yields

E|η(X)− θ∗|I{|η(X) − θ∗| ≤ 2|θ∗ − θ̂|} ≤ A1

(
E||Fη̂ − F̂η̂||1+α

∞ +E||η − η̂||1+α
1

)
+ 2−Kmax+3,

where A1 = C0(6/(b
2
P(Y = 1)))1+α. Thanks to the Dvoretzky–Kiefer–Wolfowitz inequality we have

E||Fη̂ − F̂η̂||1+α
∞ ≤ A2N

− 1+α
2

with some unversal A2 > 0.
Since the estimator η̂ satisfies Assumption in Eq. (12), it holds that

E||η − η̂||1+α
1 ≤ A2a

−1+α
2

n ,

with A2 being independent from P(Y = 1), b and n. Finally, in the family P(α, β) it holds uniformly that
P(Y = 1) ≥ p, which concludes the proof of the result. �
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Algorithm 2 Threshold estimation for Fb-score (set-valued classification)

Input: unlabeled data DU
N ; estimators η̂1, . . . , η̂K ; parameter b > 0; number of iterations Kmax

Output: threshold estimator θ̂

1: procedure BISECTION ESTIMATOR

2: R̂(θ) ← b2θ −
∑K

k=1 ÊN (η̂k(X)− θ)+

3: θmin ← 0

4: θmax ← 1
1+b2

5: K ← 1

6: while K ≤ Kmax:

7: if R̂
(
θmin+θmax

2

)
= 0 then return θmin+θmax

2

8: if R̂
(
θmin+θmax

2

)
< 0 then θmin ← θmin+θmax

2 else θmax ← θmin+θmax
2

9: K ← K + 1

10: endwhile

11: return θmin+θmax
2

5. GENERALIZATION FOR SET-VALUED CLASSIFICATION

In this section we generalize the proposed procedure to the setup of set-valued classification [10,
23, 30, 36]. Recall, that in the set-valued classification instead of a binary label we observe a multi-
class variable Y ∈ [K] := {1, . . . ,K}. The K conditional distributions of labels are defined ∀k ∈ [K] as
ηk(X) = P(Y = k|X). The main idea behind the set-valued classification is to replace the single-label
prediction g : Rd → [K] with a set-valued prediction of the form Γ : Rd → 2[K]. In words, a set-valued
classifier Γ outputs a set of possible candidates for a given feature X ∈ R

d. Clearly, each single-labeled
prediction can be seen as a set-valued one which always outputs a singleton.

This framework received a great deal of attention in recent years, with contributions ranging from
more applied to more theoretical [5, 19, 20, 28, 30]. The sudden popularity of this framework is mainly
connected with its ability to tackle complex large-scale multi-class classification problems and provide a
quantification of uncertainty about the provided prediction. On intuitive level a good set-valued classifier
Γ : Rp → 2[K] strikes for the balance between two concurrent notions: the size defined as E|Γ(X)| and
the error rate defined as P(Y /∈ Γ(X)). Set-valued classifiers Γ with large size are less informative, while,
small size implies that Γ is less likely to contain the true class—the error rate is higher. To address this
balance, we follow [7, 23] and define the precision and the recall of Γ as

Pr(Γ) =
P(Y ∈ Γ(X))

E|Γ(X)| , Re(Γ) = P(Y ∈ Γ(X)),

where | · | stands for the cardinality of a finite set. High recall implies that the classifier Γ captures the
correct class with high probability and it is trivially maximized by Γall(X) ≡ {1, . . . ,K}. However, this
classifier yields low values of precision for even moderately large K, since Pr(Γall) = 1

K . We look for a
trade-off in terms of the Fb-score, defined for a fixed b > 0 analogously to the binary case5) as

Fb(Γ) =

(
1

1 + b2

(
Pr(Γ)

)−1
+

b2

1 + b2

(
Re(Γ)

)−1
)−1

,

5)Again it is assumed that the (weighted) harmonic mean of any real number and zero is zero.
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which is again the weighted harmonic mean between the precision and the recall. Consequently, the
optimal set-valued classifier Γ∗ is defined as a maximizer of the Fb-score, that is,

Γ∗ ∈ arg max
Γ

Fb(Γ),

where the maximum is taken over all set-valued classifiers. Our analysis of the binary case can be
generalized to this setup using the following result.

Theorem 12. An optimal set-valued classifier Γ∗ : Rd → 2[K] can be defined point-wise as

Γ∗(x) = {k ∈ [K] : ηk(x) > θ∗} ,
where θ∗ is a unique root of

θ �→ b2θ −
K∑
k=1

E(ηk(x)− θ)+.

Moreover, for any set-valued classifier Γ : Rp → [K] it holds that

Fb(Γ
∗)− Fb(Γ) =

1 + b2

b2 + E|Γ(X)|E

⎡
⎣ ∑
k∈Γ(X)�Γ∗(X)

|ηk(X)− θ∗|

⎤
⎦ ,

where � stands for the symmetric difference of two sets.
After this result Algorithm 1 is extended in a straightforward way to the set-valued classification

framework. As before, assume that we have two i.i.d. datasets: labeled DL
n and unlabeled DU

N . Given
estimators η̂1, . . . , η̂K of η1, . . . , ηK , the only required modification to Algorithm 1 is the definition of the
function R̂(θ). This modification is summarized in Algorithm 2, where we used the empirical version of
the condition imposed on θ∗ in the context of set-valued classification. Similar guarantees can be derived
on this estimator exploiting that form of the excess score provided by Theorem 12 note, however, that
the role of P(ĝ(X) = 1) in this case is played by the expected size E|Γ(X)| of the set-valued classifier.

6. CONCLUSION

A new post-processing algorithm for Fb-score maximization, which is able to leverage the unlabeled
data is proposed. This algorithm enjoys a general post-processing finite-sample bound, which leads
to a universally consistent approach. Under nonparametric assumptions the algorithm yields minimax
optimal rate of convergence, improving upon previously known results. Finally, the extension to the
set-valued classification is discussed. An interesting open question is to understand the dependency
of the excess score on the marginal probability of the positive class. Besides, it would be valuable to
derive classification procedures under parametric assumptions on the joint distribution, such as the logit
model.

7. OMITTED PROOFS

Lemma 13. Assume that P(Y = 1) �= 0, then there exists θ∗ ∈ [0, 1] which is a unique solu-
tion of

b2P(Y = 1)θ = E(η(X)− θ)+.

Proof. The mapping θ �→ b2P(Y = 1)θ is continuous and strictly increasing on [0, 1] and the
mapping θ �→ E(η(X)− θ)+ is non-increasing on [0, 1]. Moreover, if P(Y = 1) �= 0, then for R∗(θ) =
b2P(Y = 1)θ − E(η(X)− θ)+ it holds that

R∗(0) < 0, R∗(1) > 0.

Thus, it is sufficient to demonstrate that R∗ is continuous. Let θ, θ′ ∈ [0, 1], then, due to the Lipschitz
continuity of (·)+ we can write

|E(η(X) − θ)+ − E(η(X)− θ′)+| ≤ E|(η(X) − θ)+ − (η(X) − θ′)+| ≤ |θ − θ′|.
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This implies that the mapping θ �→ E(η(X)− θ)+ is a contraction and thus is continuous, hence R∗ is
continuous and the threshold θ∗ is well-defined, that is, it exists and is unique. �

Proof of Theorem 9. For simplicity, we provide the proof for b = 1 and will write E(ĝ) instead of
E1(ĝ). The construction is inspired by lower bounds derived in [2, 29]. We define the regular grid on R

d

as

Gq :=

{(
2k1 + 1

2q
, . . . ,

2kd + 1

2q

)	
: ki ∈ {0, . . . , q − 1}, i = 1, . . . , d

}
,

and denote by nq(x) ∈ Gq as the closest point to the grid Gq to the point x ∈ R
d. Such a grid defines

a partition of the unit cube [0, 1]d ⊂ R
d denoted by X ′

1, . . . ,X ′
qd

. Besides, denote by X ′
−j := {x ∈ R

d :

−x ∈ X ′
j} for all j = 1, . . . , qd. For a fixed integer m ≤ qd and for any j ∈ {1, . . . ,m} define Xj := X ′

j ,

X−j := X ′
−j . For every ω = (ω1, . . . , ωm)	 ∈ {−1, 1}m we define a regression function ηω as

ηω(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
4 + ωjϕ(x), if x ∈ Xj
1
4 − ωjϕ(x), if x ∈ X−j

1
4 , if x ∈ B(0,

√
d) \

(
∪m
j=−m,j 
=0Xj

)
τ, if x ∈ R

d \ B(0,
√
d+ ρ)

ξ(x), if x ∈ B(0,
√
d+ ρ) \ B(0,

√
d),

where ρ, ϕ, ξ, τ are to be specified and B(0,
√
d+ ρ),B(0,

√
d) are Euclidean balls of radius

√
d+

ρ and
√
d, respectively. Set ϕ(x) := Cϕq

−βu(q||x− nq(x)||2) with some non-increasing infinitely
differentiable function such that u(x) = 1 for x ∈ [0, 1/4] and u(x) = 0 for x ≥ 1/2. The function ξ is
defined as ξ(x) = (τ − 1/4)v([||x||2 −

√
d]/ρ) + 1/4, where v is non-decreasing infinitely differentiable

function such that v(x) = 0 for x ≤ 0 and v(x) = 1 for x ≥ 1. The constant ρ is chosen big enough to
ensure that |ξ(x)− ξx(x

′)| ≤ L||x− x′||β2 for any x, x′ ∈ R
d.

For any ω ∈ {−1, 1}m we construct a marginal distribution PX which is independent from ω and
has a density μ w.r.t. to the Lebesgue measure on R

d. Fix some 0 < w ≤ m−1 and set A0 a Euclidean
ball in R

d that has an empty intersection with B(0,
√
d+ ρ) and whose Lebesgue measure is Leb(A0) =

1−mq−d. The density μ is constructed as

• μ(x) = w
Leb(B(0,(4q)−1))

for every z ∈ Gq and every x ∈ B(z, (4q)−1)) or x ∈ B(−z, (4q)−1)),

• μ(x) = 1−2mw
Leb(A0)

for every x ∈ A0,

• μ(x) = 0 for every other x ∈ R
d.

To complete the construction it remains to specify the value of τ ∈ [0, 1]. The idea here is to force the
optimal threshold θ∗ to be equal to some predefined constant using the additional degree of freedom
provided by the parameter τ . To achieve this we would like to set θ∗ = 1/4 and we would like to
demonstrate that there exists an appropriate choice of τ which ensures that such a choice is valid. First,
recall that the optimal threshold θ∗ for the classification with the Fb-score must satisfy the equation

θ∗Eη(X) = E(η(X)− θ∗)+.

Define b′ =
∫
X1

ϕ(x)μ(x)d{x
/∫

X1
μ(x)dx and put θ∗ = 1/4, notice that the left hand side of the last

equality for every ω ∈ {−1, 1}m is given by

Eμηω(X) =

∫
Rd

ηω(x)dμ(x)
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=

m∑
j=1

∫
Xj

(1/4 + ωjξ(x))dμ(x) +

m∑
j=1

∫
X−j

(1/4 − ωjξ(x))dμ(x) +

∫
A0

τdμ(x)

=
mw

2
+ τ(1− 2mw).

For the right hand side Eμ(ηω(X)− 1/4)+, there are two cases τ > 1/4 and 0 < τ ≤ 1/4, one can easily
show that as long as b′ ≤ 1/8 no value of τ ∈ (1, 1/4] allows to fix θ∗ = 1/4. Therefore, τ > 1/4 and we
can write for every ω ∈ {−1, 1}m

Eμ(ηω(X)− 1/4)+ =

m∑
j=1

∫
Xj

(ωjξ(x))+dμ(x) +

m∑
j=1

∫
X−j

(−ωjξ(x))+dμ(x) +

∫
A0

(τ − 1/4)dμ(x)

= mwb′ + (τ − 1/4)(1 − 2mw).

Finally, the parameter τ must satisfy the following equality
1

4

(mw

2
+ τ(1− 2mw)

)
= mwb′ + (τ − 1/4)(1 − 2mw),

solving for τ we get

τ =
1

3
+

(
1

12
− 2b′

3

)(
2mw

1− 2mw

)
.

Notice that this choice of τ implies that for all ω ∈ {−1, 1}m the optimal threshold is given by θ∗ = 1/4.
Moreover, if mw ≤ 1/2 we can ensure that the value of τ ∈ [0, 1], that is, it is a valid choice for the
regression function. Let us demonstrate that (the margin) Assumption 4 holds for an appropriate
choice of m and w. Define x0 = (1/(2q), . . . , 1/(2q))	, then for every ω ∈ {−1, 1}m we have that
PX(0 < |ηω(X)− 1/4| ≤ δ) is equal to

2mw

Leb(B(0, (4q)−1))

∫
B(x0,(4q)−1)

I{Cϕq
−βu(q||x− nq(x)||2) ≤ δ}dx

+
1− 2mw

Leb(A0)

∫
A0

I

{
1

3
+

(
1

12
− 2b′

3

)(
2mw

1− 2mw

)
− 1

4
≤ δ

}
dx

=
1− 2mw

Leb(A0)

∫
A0

I

{
1

12
+

(
1

12
− 2b′

3

)(
2mw

1− 2mw

)
≤ δ

}
dx

+ 2mwI{δ ≥ Cϕq
−β}.

As long as b′ ≤ 3/24 we can continue as

PX(0 < |ηω(X)− 1/4| ≤ δ) ≤ 2mwI{δ ≥ Cϕq
−β}+ I

{
δ ≥ 1

12

}

≤ 2mwI{δ ≥ Cϕq
−β}+ 12αδα.

Therefore, if mw is of order q−αβ the margin assumption is satisfied as long as n−β/2β+d ln2 n ≤ 1/12.
The strong density assumption can be checked similarly to [2]. To finish the proof, for every ω ∈
{−1, 1}m we denote by Pω the distribution of (X, Y ) with the marginal PX and the regression function
ηω . Thus, one can write for any ĝ

sup
P∈P(α,β)

E[E(ĝ)] ≥ sup
ω∈{−1,1}m

1

2
Eω

m∑
i=−m,i 
=0

EPX
|ϕ(X)|I{(1 + sgn(i)ωi)/2 �= ĝ(X)}I{X ∈ Xi}

≥ sup
ω∈{−1,1}m

1

2
Eω

m∑
i=1

EPX
|ϕ(X)|I

{
1 + ωi

2
�= ĝ(X)

}
I{X ∈ Xi}, (15)
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where Eω is the expectation taken w.r.t. to the i.i.d. realizations of DL
n and DU

N from Pω and PX

respectively, sgn(i) = 1 if i > 0 and sgn(i) = −1 if i < 0, and to derive the last inequality we have
dropped the summation over negative indices. Define the following pseudo-distance between two
classifiers g, g′:

d(g, g′) =
1

2

m∑
i=1

EPX
|ϕ(X)|I{g(X) �= g′(X)}I{X ∈ Xi}.

For each ω ∈ Ω define a classifier gω as

gω(x) =

{
1+ωi
2 if ∃i = 1, . . . ,m s.t. x ∈ Xi

1 otherwise.

Hence, Eq. (15) implies that

inf
ĝ

sup
P∈P(α,β)

E[E(ĝ)] ≥ inf
ĝ

sup
ω∈{−1,1}m

Eω[d(gω , ĝ)]. (16)

Our goal is to apply [35, Theorem 2.7]. First, let Ω be the set provided by Varshamov–Gilbert bound [35,

Lemma 2.9] with |Ω| ≥ 2
m
8 and δ(ω,ω′) ≥ m

4 for all ω,ω′ ∈ Ω. We note that for all ω,ω′ ∈ Ω with
ω �= ω′ we have

d(gω , gω′) ≥ 2
Cϕq

−βm

16
item (i) in [35, Theorem 2.7].

To apply [35, Theorem 2.7] it remains to upper-bound the KL-divergence between any two fixed
ω, ω̄ ∈ Ω. Since the marginal distribution PX is independent from ω, we can write for product measures

KL
(
P⊗N
X ⊗ (Pω)⊗n, P⊗N

X ⊗ (P ω̄)⊗n
)
≤ nKL(Pω, P ω̄).

Furthermore, for some universal constant C > 0

KL(Pω, P ω̄) ≤ 2

m∑
i=−m,i 
=0

μ

(
ϕ(X) log

(
1/4 + ϕ(X)

1/4− ϕ(X)

)
,X ∈ Xi

)
≤ Cq−2βwm.

Fixing arbitrary ω̄ ∈ Ω we arrive for some universal C ′′ at
1

|Ω| − 1

∑
ω∈Ω,ω 
=ω̄

KL
(
P⊗N
X ⊗ (Pω)⊗n, P⊗N

X ⊗ (P ω̄)⊗n
)
≤ Cnq−βwm = C ′′nq−βw log(|Ω| − 1).

Setting q = �C̄n
1

2β+d �, w = C ′q−d for appropriately chosen C̄, C ′ > 0 independent from n, we deduce
that

1

|Ω| − 1

∑
ω∈Ω,ω 
=ω̄

KL
(
P⊗N
X ⊗ (Pω)⊗n, P⊗N

X ⊗ (P ω̄)⊗n
)
≤ 1

16
log(|Ω| − 1),

which corresponds to item (ii) in [35, Theorem 2.7]. Applying Theorem 2.7 from [35] with s =
Cϕq−βm

16
we get for some universal c > 0

inf
ĝ

sup
ω∈{−1,1}m

Eω[d(gω, ĝ)] ≥ cCϕq
−βm.

The proof is concluded after setting m = �C ′′′qd−αβ�. Note that this choice of m is valid since we
assumed that αβ ≤ d. �

Proof of Theorem 12. The proof of this result follows similar scheme as that of the binary case.
First of all observe that for all b > 0 the function R(θ) := b2θ −

∑K
k=1 E(ηk(x)− θ)+ is 1) continuous;

2) R(0) = −1 < 0, R(1) = b2 > 0; 3) strictly increasing.6) Hence, by the mean-value theorem there

6)Indeed note that R(θ) = H1(θ)+H2(θ) withH1(θ) = b2θ being strictly increasing andH2(θ) = −
∑K

k=1 E(ηk(x)− θ)+
being non-decreasing.
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is a θ∗ such that R(θ∗) = 0. Moreover, since R is increasing, such θ∗ is unique, implying that Γ∗ is
well-defined.

Furthermore, for the Fb-score of Γ∗ we can write

Fb(Γ
∗) =

1 + b2

b2 + E|Γ∗(X)|P(Y ∈ Γ∗(X)) =
1 + b2

b2 + E|Γ∗(X)|

K∑
k=1

E[ηk(X)I{k ∈ Γ∗(X)}]

(a)
=

1 + b2

b2 + E|Γ∗(X)|

K∑
k=1

E[(ηk(X)− θ∗)I{k ∈ Γ∗(X)}] + θ∗E|Γ∗(X)| 1 + b2

b2 + E|Γ∗(X)|

(b)
=

1 + b2

b2 + E|Γ∗(X)|

K∑
k=1

(ηk(X)− θ∗)+ + θ∗E|Γ∗(X)| 1 + b2

b2 + E|Γ∗(X)|

(c)
=

1 + b2

b2 + E|Γ∗(X)|b
2θ∗ + θ∗E|Γ∗(X)| 1 + b2

b2 + E|Γ∗(X)| = (1 + b2)θ∗,

where (a) is a consequence of E[
∑K

k=1 I{k ∈ Γ(X)}] = E|Γ(X)|, (b) uses the definition of Γ∗, and (c)
uses the definition of θ∗.

Finally, for any Γ : Rd → 2[K] we can write

Fb(Γ
∗)− Fb(Γ)

1 + b2
=

∑K
k=1 E[ηk(X)I{k ∈ Γ∗(X)}]

b2 + E|Γ∗(X)| −
∑K

k=1 E[ηk(X)I{k ∈ Γ(X)}]
b2 + E|Γ(X)|

=

∑K
k=1 E[ηk(X)(I{k ∈ Γ∗(X)} − I{k ∈ Γ(X)})]

b2 + E|Γ∗(X)|

+

K∑
k=1

E[ηk(X)I{k ∈ Γ(X)}]
(

1

b2 + E|Γ∗(X)| −
1

b2 + E|Γ(X)|

)

=

∑K
k=1 E[(ηk(X)− θ∗)+I{k ∈ Γ∗(X)�Γ(X)}]

b2 + E|Γ∗(X)|

+ θ∗
E|Γ∗(X)| − E|Γ(X)|

b2 + E|Γ∗(X)| +
Fb(Γ)

1 + b2
E|Γ(X)| − E|Γ∗(X)|

b2 + E|Γ∗(X)| .

We have already shown that θ∗ = Fb(Γ
∗)/(1 + b2), hence

Fb(Γ
∗)− Fb(Γ)

1 + b2
=

∑K
k=1 E[(ηk(X)− θ∗)+I{k ∈ Γ∗(X)�Γ(X)}]

b2 + E|Γ∗(X)|

+
Fb(Γ

∗)− Fb(Γ)

1 + b2

(
E|Γ∗(X)| − E|Γ(X)|

b2 + E|Γ∗(X)|

)
.

Solving previous equation for (Fb(Γ
∗)− Fb(Γ))/(1 + b2), we conclude. �
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