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Abstract—In this note, we provide upper bounds on the expectation of the supremum of empirical
processes indexed by Hölder classes of any smoothness and for any distribution supported on
a bounded set in R

d. These results can alternatively be seen as non-asymptotic risk bounds,
when the unknown distribution is estimated by its empirical counterpart, based on n independent
observations, and the error of estimation is quantified by integral probability metrics (IPM). In
particular, IPM indexed by Hölder classes are considered and the corresponding rates are derived.
These results interpolate between two well-known extreme cases: the rate n−1/d corresponding to
the Wassertein-1 distance (the least smooth case) and the fast rate n−1/2 corresponding to very
smooth functions (for instance, functions from a RKHS defined by a bounded kernel).
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1. INTRODUCTION

In many problems of mathematical statistics and learning theory, a crucial step is to understand
how well the empirical distribution of a sample approximates the underlying true distribution. The
theory of empirical processes is devoted to this question. There are many papers and books treating
this and related problems, both from asymptotic and nonasymptotic points of view; see, for instance, del
Barrio et al. [5], van der Vaart and Wellner [20]. Among many remarkable achievements of the theory of
empirical processes, there are two results that have been particularly often evoked and used in the recent
literature in statistics and machine learning.

To quickly present these two results, let us give some details on the framework. It is assumed that n
independent copies X1, . . . ,Xn of a random variable X taking its values in the d-dimensional hypercube
[0, 1]d are observed. The aforementioned two results characterize the order of magnitude of supremum of
the empirical process Xn(f) =

1
n

∑
i=1 f(Xi)−E[f(X)] over some class of functions F . More precisely,

the first result established by [6] states that supf∈Lip(1) Xn(f) is of order O(n−1/d),where Lip(1) is the
set of all the Lipschitz-continuous functions with Lipschitz constant 1. The second result [3, Lemma 1],
tells us that if F contains functions that are smooth enough, for instance functions that are in a finite ball
of a RKHS defined by a bounded kernel, then supf∈F Xn(f) is of order O(n−1/2), i.e., the same order as
in the case when F contains only one function.

The main result of this note provides an interpolation between the two aforementioned results.
Roughly speaking, it shows that if F is the class of functions defined on [0, 1]d that are Hölder-
continuous for a given constant L and a given order α > 0, then the supremum of the empirical process
over F is of order O(n−(α

d
∧ 1

2
)) with an additional slowly varying factor log n when α = d/2. Clearly,

when α = 1 this coincides with the result from [6], while for α � d/2 we get the fast and dimension-free
rate n−1/2, up to a log factor.

*E-mail: nicolas.schreuder@ensae.fr

76



BOUNDING THE EXPECTATION OF THE SUPREMUM 77

The rest of this note is organized as follows. We complete this introduction by providing all the
important notations used throughout this note. Section 2 is devoted to presenting and formally defining
Hölder classes and Integral Probability Metrics (IPM). In Section 3, we expose some important
concepts and results from empirical process theory needed for our proofs. We end this note by stating
our main theorem in Section 4. Some extensions are mentioned in Section 5. The proofs are postponed
to the Appendix.

Notations

A multi-index k is a vector with integer coordinates (k1, . . . , kd). We write |k| =
∑d

i=1 ki. For a given
multi-index k = (k1, . . . , kd), we define the differential operator

Dk =
∂|k|

∂xk11 . . . ∂xkdd
.

For any positive real number x, �x� denotes the largest integer strictly smaller than x. We let X be a
convex bounded set inR

d with non-empty interior. We assume that all the functions and function classes
considered in this note are supported on the bounded set X . For any integer k, we denote by Ck(X ,R)
the class of real-valued functions with domain X which are k-times differentiable with continuous k-th
differentials. For any real-valued bounded function f on X , we let ||f ||∞ := supx∈X |f(x)| ∈ [0,+∞).
Note that we can consider the essential supremum instead of the supremum over X in which case our
results would hold almost surely. We let || · || denote some norm on R

d. We denote by σ1, . . . , σn i.i.d.
Rademacher random variables, i.e., discrete random variables such that P(σ1 = 1) = P(σ1 = −1) = 1/2
which are independent of any other source of randomness. We use the convention 1/0 = +∞.

2. A PRIMER ON HÖLDER CLASSES AND INTEGRAL PROBABILITY METRICS

In this section we define Hölder classes of functions and integral probability metrics. We then discuss
some properties of these notions and highlight their role in statistics and statistical learning theory.

2.1. Hölder Classes

A central problem in nonparametric statistics is to estimate a function belonging to an infinite-
dimensional space (e.g., density estimation, regression function estimation, hazard function estimation),
see Tsybakov [19] for an introduction to the topic of nonparametric estimation. To obtain nontrivial rates
of convergence, some kind of regularity is assumed on the function of interest. It can be expressed as
conditions on the function itself, on its derivatives, on the coefficients of the function in a given basis,
etc. Hölder classes are one of the most common classes considered in the nonparametric estimation
literature, they form a natural extension of Lipschitz-continuous functions and can be formalised with
the following simple conditions. For any real number α > 0, we define the Hölder norm of smoothness
α of a �α�-times differentiable function f as

||f ||Hα := max
|k|��α�

||Dkf ||∞ + max
|k|=�α�

sup
x �=y

|Dkf(x)−Dkf(y)|
||x− y||α−�α� .

The Hölder ball of smoothness α and radius L > 0, denoted by Hα(L), is then defined as the class of
�α�-times continuously differentiable functions with Hölder norm bounded by the radius L:

Hα(L) =
{
f ∈ C�α�(X ,R) | ||f ||Hα � L

}
.
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78 SCHREUDER

2.2. Integral Probability Metrics

The class H1(1) of 1-Lipschitz functions has received a lot of attention in the optimal transport
literature; see [13] for an overview of the topic of mathematical optimal transport. This interest comes
from the Kantorovitch duality, which implies that the Wasserstein-1 distance (also known as the
earth mover’s distance) can be expressed, for any probability measures P,Q, as a supremum of some
functional over 1-Lipschitz functions:

W1(P,Q) = sup
f∈H1(1)

|EX∼P f(X)− EY∼Qf(Y )|.

More generally, for a given class F of bounded functions, one can define a pseudo-metric on the space
of probability measures, the integral probability metric (IPM) induced by the class F , as

dF (P,Q) = sup
f∈F

|EX∼Pf(X)− EY∼Qf(Y )|.

The literature on IPM has recently been boosted by the advent of adversarial generative models [1, 8]. A
reason for this is that an IPM can be seen as an adversarial loss: to compare two probability distributions,
it seeks for the function which discriminates the most the two distributions in expectation. Initially
studied by the deep learning community, impressive empirical results obtained by adversarial generative
models on several tasks such as image generation led statisticians to study it theoretically [3, 4, 10]
(see also Sriperumbudur et al. [18] for statistical results on IPM in a general framework). Since, as
pointed out earlier, Lipschitz functions are also Hölder, one can wonder what happens for IPM indexed
by general Hölder classes. Such IPM already appeared in the literature: Scetbon et al. [14] showed
that α-Hölder IPM with smoothness α � 1 correspond to the cost of a generalized optimal transport
problem.

To further motivate our study, let us consider the abstract problem of minimum distance estimation:
for a given probability measure P , find a distribution Q in a given set of probability measures Q such that
Q is close to P under the metric dF :

min
Q∈Q

dF (Q,P ). (1)

For example, when F is taken to be the class of 1-Lipschitz function, this problem is known as minimum
Kantorovitch estimation [2]. In statistics, the probability P is usually unknown and one is only given
i.i.d. samples X1, . . . ,Xn from the probability distribution P . A natural strategy is then to employ the
empirical distribution Pn = 1/n

∑n
i=1 δXi as a proxy for the theoretical distribution and instead of (1)

solve the problem:

min
Q∈Q

dF (Q,Pn). (2)

Since the triangle inequality yields

|dF (Q,P )− dF (Q,Pn)| � dF (P,Pn) = sup
f∈F

∣
∣
∣
∣
∣

1

n

n∑

i=1

f(Xi)− Ef(X)

∣
∣
∣
∣
∣
,

one question of interest is to measure how fast the empirical measure approximates the true measure
under the IPM dF . If the rates are fast, we do not loose much by considering the empirical problem (2)
instead of the theoretical one of (1). However if the rates are slow, one cannot expect the distances
of the solutions to the measure P to be close. We will see in the next section that the latter expression
corresponds to the supremum of the empirical process indexed by the class F , it will enable us to leverage
the rich literature on empirical processes to obtain rates of convergence for dF (P,Pn).

3. EMPIRICAL PROCESSES, METRIC ENTROPY AND DUDLEY’S BOUNDS

This section provides a short account of the notions and tools from the theory of empirical processes
which are necessary for stating and establishing the main result.
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BOUNDING THE EXPECTATION OF THE SUPREMUM 79

3.1. Empirical Processes

Empirical process are ubiquitous in statistical learning theory, we refer the reader to [7, 9] for a general
presentation of results on empirical processes and their link with statistics and learning theory. For
clarity, we begin by recalling the definition of an empirical process.

Definition 1. Let F be a class of real-valued functions f : X → R, where (X ,A, P ) is a
probability space. Let X be a random point in X distributed according to the distribution P

and let X1, . . . ,Xn be independent copies of X. The random process
(
Xn(f)

)
f∈F defined by

Xn(f) :=
1

n

n∑

i=1

f(Xi)− Ef(X),

is called an empirical process indexed by F .

In our case, we are interested in controlling the (expectation of the) supremum of an empirical
process, a common case in the literature. Most of the time, the first step to apply for achieving this
goal is to “symmetrize” the empirical process as allowed by the following lemma. Let R̂n(F) be the
empirical Rademacher complexity of function class F , defined as

R̂n(F) = E

[

sup
f∈F

1

n

n∑

i=1

σif(Xi)
∣
∣
∣X1, . . . ,Xn

]

.

Lemma 1 (Symmetrization). For any class F of P -integrable functions,

E

[

sup
f∈F

|Xn(f)|
]

� 2E
[
R̂n(F)

]
.

The advantage of Rademacher processes is that, regardless of the distribution of the random variable
X and the function class F , for a fixed sample X1, . . . ,Xn, the random variable

∑n
i=1 σif(Xi) has a

sub-Gaussian behavior, in the following sense.

Definition 2 (Sub-Gaussian behavior). A centered random variable Y has a sub-Gaussian
behavior if there exists a positive constant σ such that

EeλY � eλ
2σ2/2, ∀λ ∈ R.

In that case, we define the sub-Gaussian norm1) of Y as

||Y ||ψ2 = inf
{
t > 0 : EeY

2/t2 � 2
}
.

Having a sub-Gaussian behavior essentially means to be at least as concentrated as a Gaussian
random variable around its mean. Our definition is equivalent to the tail inequalities

P(|Y | > t) � 2e−t2/(2σ2), ∀t > 0.

This type of behavior will be crucial to obtain the main result of this note. Indeed, as we will see, the
behavior of the supremum of an empirical process (and more generally a stochastic process) which has
sub-Gaussian increments exclusively depends on the topology of the space by which the process is
indexed.

1)See [21, Section 2.5] for the link between definitions of sub-Gaussian random variables (bound on moment-generating
function, tail inequalities, ...) and the Orlicz norm ψ2.
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3.2. Metric Entropy

Let (T, d) be a totally bounded metric space, i.e., for every real number ε > 0, there exists a finite
collection of open balls of radius ε whose union contains T . We give a formal definition of such finite
collections.

Definition 3. Given ε > 0, a subset Tε ⊂ T is called an ε-cover of T if for every t ∈ T , there
exists s ∈ Tε such that d(s, t) � ε.

Note that adding any point to an ε-cover still yields an ε-cover. Thus we can look for ε-covers of a
set with smallest cardinality, which we call covering number.

Definition 4. The ε-covering number of T , denoted by N (T, d, ε), is the cardinality of the
smallest ε-cover of T , that is

N (T, d, ε) := min
{
|Tε| : Tε is an ε-cover of T

}
.

The metric entropy of T is given by the logarithm of the ε-covering number.
Remark 1. A totally bounded metric space (T, d) is pre-compact in the sense that its closure is

compact. The metric entropy (or entropic numbers) of (T, d) can then be seen as some measure of
compactness of the space. Indeed, N (T, d, ε) quantifies precisely how many balls of radius ε are
needed to cover the whole space T .

Entropic numbers for Hölder classes are known and can be found in e.g., Shiryayev [15], van der
Vaart and Wellner [20].

Theorem 1 (Theorem 2.7.3 in [20]). Let X be a bounded, convex subset of Rd with nonempty
interior. There exists a constant Kα,d depending only on α and d such that, for every ε > 0,

logN (Hα(1), || · ||∞, ε) � Kα,dλd(X 1)ε−d/α,

where λd is the d-dimensional Lebesgue measure and X 1 is the 1-blowup of X : X 1 = {y :
infx∈X ||y − x|| < 1}.

3.3. Dudley’s Bound and Its Refined Version

We now present classic results which show the link between the topology of the indexing set and
the behavior of the supremum of the corresponding empirical process. Following [21, Definition 8.1.1],
for K � 0, we say that a random process (Xt)t∈T on a metric space (T, d) has K-sub-Gaussian
increments if

||Xt −Xs||ψ2 � Kd(t, s), for all t, s ∈ T.

Theorem 2 (Dudley’s inequality). Let (Xt)t∈T be a mean-zero random process on a metric space
(T, d) with K-sub-Gaussian increments. Then

E

[
sup
t∈T

Xt

]
� CK

+∞∫

0

√
logN (T, d, ε)dε

for some universal constant C > 0.
One drawback of Dudley’s bound is that the integral on the right hand side may diverge if the metric

entropy of T tends to infinity at a very fast rate when ε → 0. For example, when the metric entropy
is upper bounded by ε−γ , as it was seen to be the case with γ = d/α for α-Hölder-smooth d-variate
functions, the integral converges if and only if γ < 2.

An improvement of Dudley’s bound in the case where the process Xt is a Rademacher average
indexed by a class of functions F—circumventing the problem of divergence of the integral—was
proposed by [17, Lemma A.3] (see also Srebro and Sridharan [16]). Before stating the theorem, let
us recall the definition of the L2(Pn) norm of a function f :

||f ||2L2(Pn)
=

∫

X

f2dPn =
1

n

n∑

i=1

f(Xi)
2.
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Theorem 3. Let F ⊂ {f : X → R} be any class of measurable functions containing the
uniformly zero function and let Sn(F) = supf∈F ||f ||L2(Pn). We have

R̂n(F) � inf
τ>0

⎧
⎪⎨

⎪⎩
4τ +

12√
n

Sn(F)∫

τ

√
logN (F , L2(Pn), ε)dε

⎫
⎪⎬

⎪⎭
.

Note that the refined Dudley bound gives an upper bound on the empirical Rademacher process and
depends on the metric entropy with respect to the empirical norm L2(Pn). The following simple lemma
shows that the L2(Pn)-norm can be replaced by the supremum-norm in the refined Dudley bound.

Lemma 2. Let F be any class of bounded functions defined on X . For any sample X1, . . . ,Xn,
let F|X1,...,Xn

be the subset of Rn defined by

F|X1,...,Xn
=
{
u ∈ R

n : ∃f ∈ F such that ui = f(Xi) for all i = 1, . . . , n
}
.

For any ε > 0, we have

N (F , L2(Pn), ε) � N (F|X1,...,Xn
, || · ||∞, ε) � N (F , || · ||∞, ε).

Proof. Let {u1, . . . , uM} be a minimal ε-net for F|X1,...,Xn
with respect to the supremum norm. Let

f1, . . . , fM ∈ F be such that
(
fj(X1), . . . , fj(Xn)) = uj for every j = 1, . . . ,M . Then, for any f ∈ F ,

there exists an index j ∈ [M ] such that maxi |f(Xi)− (uj)i| = maxi |f(Xi)− fj(Xi)| � ε. Since for
any function f in F ,

||f − fj||2L2(Pn)
=

1

n

n∑

i=1

(f(Xi)− fj(Xi))
2 � ||f − fj||2∞,

{f1, . . . , fM} is an ε-net for F with respect to the empirical L2 norm. This proves the first inequality.
Let now f1, . . . , fM be an ε-net of (F , || · ||∞). One readily checks that u1, . . . , uM defined by uj =
(fj(X1), . . . , fj(Xn)) is an ε-net of F|X1,...,Xn

. This completes the proof. �

4. MAIN RESULT

We are now in a position to state the main theorem which gives, for an IPM defined by a Hölder class,
the rate of convergence of the empirical measure towards its theoretical counterpart.

Theorem 4. Let X ⊂ R
d be a convex bounded set with non-empty interior. Let Hα(L) be

the Hölder class of α-smooth functions supported on the set X and with Hölder norm bounded
by L. For any probability distribution P supported on X , denoting by Pn the empirical measure
associated to i.i.d. samples X1, . . . ,Xn ∼ P , we have,

E
[
dHα(L)(Pn, P )

]
= E

[

sup
h∈Hα(L)

∣
∣Xn(h)

∣
∣
]

� cL

⎧
⎪⎨

⎪⎩

n−α/d if α < d/2

n−1/2 ln(n) if α = d/2

n−1/2 if α > d/2,

where c is a constant depending only on d, λd(X 1) and α.
We notice two different regimes: for highly smooth functions (α > d/2), the rate of convergence

does not depend on the smoothness α nor on the dimension d and corresponds to the usual parametric
rate of convergence (note that it also matches the rate known for the Maximum Mean Discrepancy
metric, which is an IPM indexed by the unit ball of a RKHS with bounded kernel [3]). For less
regular Hölder functions (α < d/2), the rate of convergence depends both on the smoothness and
on the dimension in a typical curse of dimensionality behavior. These two regimes coincide, up to a
logarithmic factor, at their smoothness boundary α = d/2: we have a continuous transition in terms of
the exponent of the sample size. Interestingly the rates we obtain interpolate between the n−1/d rate
known for Wasserstein-1 distance [22] when considering H1(1) and the n−1/2 rate for Maximum Mean
Discrepancy when considering Hölder classes with enough smoothness.
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Finally, let us mention that the formulation of Theorem 4 given above aims at characterizing the
behaviour of the expected error in the asymptotic setting of large samples. This result follows from the
following finite sample upper bound (proved in Section 6.2):

E
[
dHα(L)(Pn, P )

]
� 12L

⎧
⎨

⎩

(
Kλ
n

)α/d
[

d
d−2α ∧ (1 + 0.5 log( n

9Kλ))
]

if α < d/2
(
Kλ
n

)1/2 [ 2α
2α−d ∧ (1 + α

d log(
n

9Kλ))
]

if α � d/2,

where λ := λd(X 1) and K = Kα,d is the constant depending only on α and d borrowed from Theorem 1.

5. SOME EXTENSIONS

A slightly less precise but more general result can be obtained for any bounded class whose entropy
grows polynomially in 1/ε; see also Rakhlin et al. [12, Theorem 2], where this condition naturally arises.
Such an extension can be stated as follows.

Theorem 5. Let X ⊂ R
d be a convex bounded set with non-empty interior. Let H be a

bounded class of functions supported on the set X . Assume that the entropy of the class grows
polynomially, i.e., there exist positive real numbers p and A such that

∀ε > 0, logN (H, || · ||∞, ε) � Aε−p.

Then, for any probability distribution P supported on X , denoting by Pn the empirical measure
associated to i.i.d. samples X1, . . . ,Xn ∼ P , we have,

E
[
dH(Pn, P )

]
= E

[

sup
h∈H

∣
∣Xn(h)

∣
∣
]

� c

⎧
⎪⎨

⎪⎩

n−1/p if p > 2

n−1/2 ln(n) if p = 2

n−1/2 if p < 2,

where c is a constant.
The proof of the extension is exactly the same as the proof of Theorem 4 up to constants. In this note

we have seen Hölder classes as examples of classes with polynomial growth of the entropy but there are
many other such classes. To illustrate this we give the example of Sobolev classes which, in some cases,
are more general than Hölder classes. For a positive integer s and a real number 1 � p � +∞, define
the Sobolev space Ws

p(r) with radius r > 0 as

Ws
p(r) :=

⎧
⎨

⎩
f ∈ Cs(X ,R) :

∑

|k|�s

||Dkf ||p � r

⎫
⎬

⎭
.

Note that for any positive integer s and for any positive radius L, there exist radii r and r′ such that

Ws
∞(r) ⊂ Hs(L) ⊂ Ws−1

∞ (r′).

A consequence of [11, Corollary 1] is that for any positive integer s > 0, and real number p such that
d/s < p � +∞, the entropy of a Sobolev class grows polynomially as

logN (Ws
p(L), || · ||∞, ε) � Aε−d/s

for some positive constant A. Thus Theorem 5 holds for this class. Finally we point out that such bounds
on the entropy hold for more general spaces such as some Besov spaces. We refer the reader to Nickl
and Pötscher [11] for more details.

APPENDIX

PROOFS

This section contains the proofs of the main results, Theorems 3 and 4, stated in the main body of the
note.
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A.1. Proof of Theorem 3

The proof of Theorem 3 can be found in [16]. We add it here for completeness.

Let γ0 = Sn(F) = supf∈F ||f ||L2(Pn). Define γj = 2−jγ0, for every integer j ∈ N, and let Tj be a

minimal γj-cover of F with respect to L2(Pn). For any function f ∈ F , we denote by f̂j an element of
Tj which is an γj approximation of f . For any positive integer N we can decompose the function f as

f = f − f̂N +

N∑

j=1

(f̂j − f̂j−1),

where f̂0 = 0 ∈ F . Hence, for any positive integer N , we have

R̂n(F) =
1

n
Eσ

⎡

⎣sup
f∈F

n∑

i=1

σi

⎛

⎝f(Xi)− f̂N (Xi) +

N∑

j=1

(f̂j(Xi)− f̂j−1(Xi))

⎞

⎠

⎤

⎦

� 1

n
Eσ

[

sup
f∈F

n∑

i=1

σi(f(Xi)− f̂N (Xi))

]

+
N∑

j=1

1

n
Eσ

[

sup
f∈F

n∑

i=1

σi(f̂j(Xi)− f̂j−1(Xi))

]

� 1

n
sup
f∈F

n∑

i=1

|(f(Xi)− f̂N (Xi))|+
N∑

j=1

1

n
Eσ

[

sup
f∈F

n∑

i=1

σi(f̂j(Xi)− f̂j−1(Xi))

]

= sup
f∈F

||f − f̂N ||L2(Pn) +
N∑

j=1

1

n
Eσ

[

sup
f∈F

n∑

i=1

σi(f̂j(Xi)− f̂j−1(Xi))

]

� γN +

N∑

j=1

1

n
Eσ

[

sup
f∈F

n∑

i=1

σi(f̂j(Xi)− f̂j−1(Xi))

]

.

For any positive integer j, the triangle inequality gives

||f̂j − f̂j−1||L2(Pn) � ||f̂j − f ||L2(Pn) + ||f − f̂j−1||L2(Pn) � γj + γj−1 = 3γj . (A.1)

We need the following classic lemma which controls the expectation of a Rademacher average over a
finite set.2)

Lemma A.1 (Massart’s finite class lemma). Let X be a finite subset of Rn and let σ1, . . . , σn be
independent Rademacher random variables. Denote the radius of X by R = supx∈X ||x||. Then,
we have,

E

[

sup
x∈X

1

n

n∑

i=1

σixi

]

� R

√
2 log |X |
n

.

Applying this lemma to Xj =
{
(f̂j(Xi)− f̂j−1(Xi))

n
i=1 ∈ R

n : f ∈ F
}

for any j = 1, . . . , n and

using (3), we get

N∑

j=1

1

n
Eσ

[

sup
f∈F

n∑

i=1

σi(f̂j(Xi)− f̂j−1(Xi))

]

�
N∑

j=1

3γj

√
2 log(|Tj | · |Tj−1|)

n

Therefore we have

R̂n(F) � γN +
N∑

j=1

3γj

√
2 log(|Tj | · |Tj−1|)

n
� γN +

6

n

N∑

j=1

γj

√
log |Tj |

2)We refer the reader to https://ttic.uchicago.edu/t̃ewari/lectures/lecture10.pdf for a simple proof of this lemma.
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= γN +
12

n

N∑

j=1

(γj − γj+1)
√

log |Tj | = γN +
12

n

N∑

j=1

(γj − γj+1)
√

logN (F , L2(Pn), γj)

� γN +
12

n

γ0∫

γN+1

√
logN (F , L2(Pn), ε)dε.

For any τ > 0, pick N = sup{j : γj > 2τ}. Then γN = 2γN+1 � 4τ and γN+1 = γN/2 � τ . Hence, we
conclude that

R̂n(F) � 4τ +
12√
n

γ0∫

τ

√
logN (F , L2(Pn), ε)dε.

Since τ can take any positive value we can take the infimum over all positive τ and this concludes the
proof.

A.2. Proof of Theorem 4

Without loss of generality, we prove the theorem in the case L = 1. The general case will follow by
homogeneity. For simplicity we write Hα = Hα(1), Ph =

∫
X hdP and Pnh =

∫
X hdPn. A symmetriza-

tion argument (Lemma 1) gives

E

[

sup
h∈Hα

|Ph− Pnh|
]

� 2E
[
R̂n(Hα)

]
,

where the empirical Rademacher process R̂n(Hα) is given by

R̂n(Hα) =
1

n
E

[

sup
h∈Hα

n∑

i=1

σih(Xi)

∣
∣
∣
∣X1, . . . ,Xn

]

.

Noting that, for any h ∈ Hα,

Pnh
2 :=

1

n

n∑

i=1

h2(Xi) � ||h2||∞ � 1,

the improved Dudley bound (Theorem 3) coupled with Lemma 2 yields,

E

[

sup
h∈Hα

|Pnh− Ph|
]

� inf
τ>0

⎛

⎝4τ +
12√
n

1∫

τ

√
logN (Hα, || · ||∞, ε)dε

⎞

⎠

� inf
τ>0

⎛

⎝4τ +
12
√

Kλd(X 1)√
n

1∫

τ

ε−d/2αdε

⎞

⎠ .

Applying Lemma A.2 with β = d
2α and a = 3

√
Kλ
n where K = Kα,d is the constant depending only on

α and d borrowed from Theorem 1 and λ := λd(X 1), we get

E

[

sup
h∈Hα

|Pnh− Ph|
]

� 12

⎧
⎨

⎩

(
Kλ
n

)α/d [ d
d−2α ∧ (1 + 0.5 log( n

9Kλ))
]

if α < d/2
(
Kλ
n

)1/2
[

2α
2α−d ∧ (1 + α

d log(
n

9Kλ))
]

if α � d/2.
(A.2)

The proof is finished since the upper bound stated in Theorem 4 is a direct consequence of (A.2)
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A.3. Additional Lemma

The following lemma enables to obtain an upper bound on Dudley’s refined bound (Theorem 3) for
any bounded class whose entropy grows polynomially in 1/ε.

Lemma A.2. For any real positive numbers a and β, it holds

min
0�τ�1

⎛

⎝τ + a

1∫

τ

ε−βdε

⎞

⎠ � (a1/β ∨ a)

[(
β ∨ 1

|β − 1|

)

) ∧
(

1 +
log(1/a)

β ∨ 1

)]

.

Proof. Let a and β be real positive numbers. Define the function

f : [0, 1] → R,

τ �→ τ + a

1∫

τ

ε−βdε.

One can easily check that

f∗ := min
0�τ�1

f(τ) =

{
1 if a > 1

a1/β + a
1−β (1− a1/β−1) if a < 1 .

(A.3)

In the case a < 1, using the fact that 1− xα � log(x−α) for any α > 0 and x ∈ (0, 1], we have

f∗ � (a1/β ∨ a)

[(
β ∨ 1

|β − 1|

)

) ∧
(

1 +
log(1/a)

β ∨ 1

)]

. (3)

Finally, since the RHS of (A.3) is greater than 1 for any a > 1, (A.3) holds for any positive real a and this
concludes the proof. �
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