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Abstract—In this paper, we consider the problem of estimating the d-th order derivative f (d) of a
density f , relying on a sample of n i.i.d. observations X1, . . . , Xn with density f supported on R or
R

+. We propose projection estimators defined in the orthonormal Hermite or Laguerre bases and
study their integrated L

2-risk. For the density f belonging to regularity spaces and for a projection
space chosen with adequate dimension, we obtain rates of convergence for our estimators, which
are optimal in the minimax sense. The optimal choice of the projection space depends on unknown
parameters, so a general data-driven procedure is proposed to reach the bias-variance compromise
automatically. We discuss the assumptions and the estimator is compared to the one obtained by
simply differentiating the density estimator. Simulations are finally performed. They illustrate the
good performances of the procedure and provide numerical comparison of projection and kernel
estimators
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1. INTRODUCTION

1.1. Motivations and Content

Let X1, . . . ,Xn be n i.i.d. random variables with common density f with respect to the Lebesgue
measure. The problem of estimating f in this simple model has been widely studied. In some contexts,
it is also of interest to estimate the dth order derivative f (d) of f , for different values of the integer d.
Density derivatives provide information about the slope of the curves, local extrema or saddle points,
for instance. Several examples of use of derivatives are developed in [33, 39]. The most common cases
are those with d ∈ {1, 2}. The first order density derivative permits to reach information, such as mode
seeking in mixture models and in data analysis, see e.g., [10, 12]. The second order derivative of the
density can be used to estimate one parameter scale of exponential families (see [17]), to develop tests
for mode (see [12]), to select the optimal bandwidth parameter for density estimation (see [37]). Let us
detail two specific contexts.

(1) The question arises when considering regression models. The estimation of the so-called “average
derivative” defined by δ = E[Y ψ(X)], with ψ(x) = f (1)(x)/f(x), and f is the marginal distribution of
X (see [19, 21]) relies on the estimation of the derivative of the density of X. This quantity enables to
quantify the relative impact of X on the variable of interest Y . In an econometric context, the average
derivative is also used to verify empirically the law of demand: it allows to compare two economies
with different price systems (see [19, 20], Section 3). In [7], the study of sea shore water quality leads
the authors to estimate the derivative of the regression function, and the derivative of a Nadaraya–
Watson estimator involves the derivative of a density estimator. Regression curves (see [30]) also involve
derivatives of densities, consider r(x) = E(Y |X = x), [39] (see Eq. (2.1)) establishes that for specific

*E-mail: fabienne.comte@parisdescartes.fr

1
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families of conditional distributions of Y given X, on can express r(x) = ψ(x) as ψ(x) = f (1)(x)/f(x),
where f is a density (see (2.1) in [39]).

(2) Derivatives also appear in the study of diffusion processes. Let (Xt)t�0 be the solution of

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = η,

where Wt is a standard Brownian independent of η. There exists a solution under standard assumptions
on b and σ. The model is widely used, for example in finance and biology. One related statistical problem
is to estimate the drift function b, from discrete time observations of the process X. Under additional
conditions (see [34]), the model is stationary, admits a stationary distribution f and it holds that

f (1)(x)

f(x)
∝ 2b(x)

σ2(x)
− 2

σ′(x)

σ(x)
.

If the variance σ is either a constant or known, estimating f and f (1) lead to an estimator of b.

These examples illustrate the interest of the mathematical question of nonparametric estimation of
derivatives as a general inverse problem.

Most proposals for estimating the derivative of a density are built as derivatives of kernel density
estimators, see [8, 10, 11, 28, 32, 35, 37] or [18], either in independent or in α-mixing settings,
in univariate or in multivariate contexts. A slightly different proposal still based on kernels can be
found in [38]. The question of bandwidth selection is only considered in the more recent papers.
For instance, [10] proposes a general cross-validation method in the multivariate case for a matrix
bandwidth, see also the references therein. Most recently, [27] proposed a general original approach
to bandwidth selection, and applies it to derivative estimation in a multivariate L

p setting and for
anisotropic Nikol’ski regularity classes. This paper is, to the best of our knowledge, the first to study
the risk of an adaptive kernel estimator.

Projection estimators have also been considered for density and derivatives estimation. More
precisely, using trigonometric basis, [15] proposes a complete study of optimality and sharpness of such
estimators, on Sobolev periodic spaces. Lately, [18] proposes a projection estimator and provide an
upper bound for its L

p-risk, p ∈ [1,∞]. In a dependent context, [34] studies projection estimators in
a compactly supported basis constrained on the borders or a non compact multi-resolution basis: she
considers dependent β-mixing variables and a model selection method is proposed and proved to reach
optimal rates on Besov spaces. In most results, the rate obtained for estimating f (d) the dth order
derivative assumed to belong to a regularity space associated to a regularityα, is of order n−2α/(2α+2d+1).
Recently, a bayesian approach has been investigated in [36] relying on a B spline basis expansion, the
procedure requires the knowledge of the regularity of the estimated function.

In the present work, we consider projection estimators on projection spaces generated by Hermite or
Laguerre basis, which have non compact supports, R or R+. When using compactly supported bases,
one has to choose the basis support: it is generally considered as a fixed interval say [a, b], but the bounds
a and b are in fact determined from the data. Hermite and Laguerre bases do not require this preliminary
choice. Moreover, in a recent work, [6] proves that estimators represented in Hermite basis have a low
complexity and that few coefficients are required for a good representation of the functions: therefore, the
computation is numerically fast and the estimate is parsimonious. If the Xi’s are nonnegative, then one
should use the Laguerre basis: thus, this basis is of natural use in survival analysis where most functions
under study are R

+-supported. Lastly, we mention that derivatives of Laguerre or Hermite functions
have interesting mathematical properties: their derivatives are simple and explicit linear combination of
other functions of the bases. This property is fully exploited to construct our estimators.

The integrated L
2-risk of such estimators is classically decomposed into a squared bias and a

variance term. The specificity of our context is threefold.

(1) The bias term is studied on specific regularity spaces, namely Sobolev Hermite and Sobolev
Laguerre spaces, as defined in [9], enabling to consider non compact estimation support R or R+.

(2) The order of the variance term depends on moment assumptions. This explains why, to perform
a data driven selection of the projection space, we propose a random empirical estimator of the variance
term, which has automatically the adequate order.
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(3) In standard settings, the dimension of the projection space is the relevant parameter that needs
to be selected to achieve the bias-variance compromise. In our context, this role is played by the square
root of the dimension.

We also mention that our procedure provides parsimonious estimators, as few coefficients are required
to reconstruct functions accurately. Moreover, our regularity assumptions are naturally set on f and not
on its derivatives, contrary to what is done in several papers. Our random penalty proposal is new, and
most relevant in a context where the representative parameter of the projection space is not necessarily
its dimension, but possibly the square root of the dimension. We compare our estimators with those
defined as derivatives of projection density estimators, which is the strategy usually applied with kernel
methods. Finally, we also propose a numerical comparison between our projection procedure and a
sophisticated kernel method inspired by the recent proposal in density estimation of [25].

The paper is organized as follows. In the remaining of this section, we define the Hermite and
Laguerre bases and associated projection spaces. In Section 2, we define the estimators and establish
general risk bounds, from which rates of convergence are obtained, and lower bounds in the minimax
sense are proved. A model selection procedure is proposed, relying on a general variance estimate;
it leads to a data-driven bias-variance compromise. Further questions are studied in Section 3: the
comparison with the derivatives of the density estimator leads in our setting to different developments
depending on the considered basis: interestingly Hermite and Laguerre cases happen to behave
differently from this point of view. Lastly, a simulation study is conducted in Section 4, in which kernel
and projection strategies are compared.

1.2. Notations and Definition of the Basis

The following notations are used in the remaining of this paper. For a, b two real numbers,
denote a ∨ b = max(a, b) and a+ = max(0, a). For u and v two functions in L

2(R), denote 〈u, v〉 =
∫ +∞
−∞ u(x)v(x)dx the scalar product on L

2(R) and ||u|| =
( ∫ +∞

−∞ u(x)2dx
)1/2 the norm on L

2(R). Note
that these definitions remain consistent if u and v are in L

2(R+).
1.2.1. The Laguerre basis. Define the Laguerre basis by:

�j(x) =
√
2Lj(2x)e

−x, Lj(x) =

j∑

k=0

(
j

k

)

(−1)k
xk

k!
, x � 0, j � 0, (1)

where Lj is the Laguerre polynomial of degree j. It satisfies:
∫ +∞
0 Lk(x)Lj(x)e

−xdx = δk,j (see [1],
22.2.13), where δk,j is the Kronecher symbol. The family (�j)j�0 is an orthonormal basis onL

2(R+) such
that ||�j ||∞ = supx∈R+ |�j(x)| =

√
2. The derivative of �j satisfies a recursive formula (see Lemma 8.1

in [13]) that plays an important role in the sequel:

�′0 = −�0, �′j = −�j − 2

j−1∑

k=0

�k, ∀j � 1. (2)

1.2.2. The Hermite basis. Define the Hermite basis (hj)j�0 from Hermite polynomials (Hj)j�0 :

hj(x) = cjHj(x)e
−x2/2, Hj(x) = (−1)jex

2 dj

dxj
(e−x2

), cj = (2jj!
√
π)−1/2, x ∈ R, j � 0. (3)

The family (Hj)j�0 is orthogonal with respect to the weight function e−x2
:
∫
R
Hj(x)Hk(x)e

−x2
dx =

2jj!
√
πδj,k (see [1], 22.2.14). It follows that (hj)j�0 is an orthonormal basis on R. Moreover, hj is

bounded by

||hj ||∞ = sup
x∈R

|hj(x)| � φ0 with φ0 = π−1/4 (4)

(see [1], Chap. 22.14.17 and [22]). The derivatives of hj also satisfy a recursive formula (see [13], Eq. (52)
in Section 8.2),

h′0 = −h1/
√
2, h′j = (

√
j hj−1 −

√
j + 1hj+1)/

√
2, ∀j � 1. (5)
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In the sequel, we denote by ϕj either for hj in the Hermite case or for �j in the Laguerre case. Let
g ∈ L

2(R) or g ∈ L
2(R+), g develops either in the Hermite basis or the Laguerre basis:

g =
∑

j�0

aj(g)ϕj , aj(g) = 〈g, ϕj〉.

Define, for an integer m � 1, the space

Sm = Span{ϕ0, . . . , ϕm−1}.

The orthogonal projection of g on Sm is given by: gm =
∑m−1

j=0 aj(g)ϕj .

2. ESTIMATION OF THE DERIVATIVES

2.1. Assumptions and Projection Estimator of f (d)

Let X1, . . . ,Xn be n i.i.d. random variables with common density f with respect to the Lebesgue
measure and consider the following assumptions. Let d be an integer, d � 1.

(A1) The density f is d-times differentiable and f (d) belongs to L
2(R+) in the Laguerre case or L2(R)

in the Hermite case.

(A2) For all integer r, 0 � r � d− 1, we have ||f (r)||∞ < +∞.

(A3) For all integer r, 0 � r � d− 1, it holds lim
x→0

f (r)(x) = 0.

Assumption (A3) is specific to the Laguerre case and avoids boundary issue. In particular, it permits
to establish Lemma 2.1 below that is central to define our estimator. This assumption can be removed
at the expense of additional technicalities, see Section 3. Under (A1), we develop f (d) in the Laguerre or
Hermite basis, its orthogonal projection on Sm, m � 1, is

f (d)
m =

m−1∑

j=0

aj(f
(d))ϕj , where, aj(f

(d)) = 〈f (d), ϕj〉. (6)

The estimator is built by using the following result, proved in Appendix A.

Lemma 2.1. Suppose that (A1) and (A2) hold in the Hermite case and that (A1), (A2), and (A3)

hold in the Laguerre case. Then aj(f
(d)) = (−1)dE[ϕ

(d)
j (X1)], ∀j � 0.

Remark 1. If the support of the density f is a strict compact subset [a, b] of the estimation
support (here R and a < b or R

+ and 0 < a < b), then the regularity condition (A1) implies that
f must be null in a, b, as well as its derivatives up to order d− 1( i.e. f(x0) = f (1)(x0) = · · · =
f (d−1)(x0) = 0 for x0 ∈ {a, b}). On the contrary, Assumption (A3) in the Laguerre case can be
dropped out (see Section 3) and this shows that a specific problem occurs when the density
support coincides with the estimation interval. This point presents a real difficulty and is either
not discussed in the literature, or hidden by periodicity conditions.

We derive the following estimator of f (d) (see also [18] p. 402): let m � 1,

f̂m,(d) =
m−1∑

j=0

â
(d)
j ϕj with â

(d)
j =

(−1)d

n

n∑

i=1

ϕ
(d)
j (Xi). (7)

For d = 0, we recover an estimator of the density f .
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2.2. Risk Bound and Rate of Convergence

We consider the L2-risk of f̂m,(d), defined in (7),

E
[
||f̂m,(d) − f (d)||2

]
= ||f (d)

m − f (d)||2 + E
[
||f̂m,(d) − f (d)

m ||2
]
, (8)

where f
(d)
m :=

∑m−1
k=0 aj(f

(d))ϕj . The study of the second right-hand-side term of the equality (variance
term) leads to the following result.

Theorem 2.1. Suppose that (A1) and (A2) hold in the Hermite case and that (A1), (A2),
and (A3) hold in the Laguerre case. Assume that

E[X
−d−1/2
1 ] < +∞ in the Laguerre case and E[|X1|2/3] < +∞ in the Hermite case. (9)

Then, for sufficiently large m � d, it holds that

E
[
||f̂m,(d) − f (d)||2

]
≤ ||f (d)

m − f (d)||2 +C
md+ 1

2

n
− ||f (d)

m ||2
n

(10)

for a positive constant C depending on the moments in condition (9) (but not on m nor n).

Remark 2. In the Laguerre case, condition (9) is a consequence of (A3) and f (d)(0) < +∞.
Indeed, (A3) imposes that f(x) ∼

x→0
xdf (d)(x) which, under f (d)(0) < +∞, ensures integrability

of x−d−1/2f(x) around 0+ (i.e.,
∫
0 x

−d−1/2f(x)dx < ∞); integrability near ∞ is a consequence of
f ∈ L

1([0,∞)).

The bound obtained for f̂m,(d) in Theorem 2.1 is sharp. Indeed, we can establish the following lower
bound.

Proposition 2.1. Under the assumptions of Theorem 2.1, it holds, for some constant c > 0, that

E

[
||f̂m,(d) − f (d)||2

]
� ||f (d)

m − f (d)||2 + c
md+ 1

2

n
− ||f (d)

m ||2
n

.

2.3. Definition of Regularity Classes and Rate of Convergence

The first two terms in the right hand side of (10) have an antagonistic behavior with respect to m: the

first term, ||f (d)
m − f (d)||2 is a squared bias term which decreases when m increases, while the second

md+1/2/n is a variance term which increases with m. Thus, the optimal choice of m requires a bias-
variance compromise which allows to derive the rate of convergence of f̂m,(d). To evaluate the order of
the bias term, we introduce Sobolev–Hermite and Sobolev–Laguerre regularity classes for f (see [9,
13]).

2.3.1. Sobolev–Hermite classes. Let s > 0 and D > 0, define the Sobolev–Hermite ball of
regularity s

W s
H(D) = {θ ∈ L

2(R),
∑

k�0

ksa2k(θ) � D}, (11)

where a2k(θ) = 〈θ, hk〉 and ks is to be understood as (
√
k)2s, see Remark 3 below. The following Lemma

2.2 relates the regularity of f (d) and the one of f .

Lemma 2.2. Let s � d and D > 0, assume that f belongs to W s
H(D) and (A1), then there exist

a constant Dd > D such that f (d) is in W s−d
H (Dd).

2.3.2. Sobolev–Laguerre classes. Similarly, consider the Sobolev–Laguerre ball of regularity s

W s
L(D) = {θ ∈ L

2(R+), |θ|2s =
∑

k�0

ksa2k(θ) � D}, D > 0, (12)
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where ak(θ) = 〈θ, �k〉. If s � 1 an integer, there is an equivalent norm of |θ|2s (see Section 7.2 of [4])
defined by

|||θ|||2s =
s∑

j=0

||θ||2j , ||θ||2j = ||xj/2
j∑

k=0

(
j

k

)

θ(k)||2. (13)

This inspires the definition, for s ∈ N and D > 0, of the subset W̃ s
L(D) as

W̃ s
L(D) = {θ ∈ L

2(R+), θ(j) ∈ C([0,∞)), x �→ xk/2θ(j)(x) ∈ L
2(R+), 0 � j � k � s, |θ|2s � D}.

(14)

It is straightforward to see that W̃ s
L(D) ⊂ W s

L(D). Moreover, we can relate the regularity of f (d) and the
one of f .

Lemma 2.3. Let s ∈ N, s � d � 1, D > 0 and θ ∈ W̃ s
L(D), then, θ(d) ∈ W̃ s−d

L (Dd) where D �
Dd < ∞.

2.3.3. Rate of convergence of f̂ffm,(d)m,(d)m,(d). Assume that f ∈ W s
H(D) or f ∈ W̃ s

L(D), then Lemmas 2.2
and 2.3 enable a control of the bias term in (10)

||f (d)
m − f (d)||2 =

∑

j�m

(aj(f
(d)))2 =

∑

j�m

js−d(aj(f
(d)))2j−(s−d) � Ddm

−(s−d).

Injecting this in (10) yields

E
[
||f̂m,(d) − f (d)||2

]
� D′m−(s−d) + c

md+ 1
2

n
.

Remark 3. We stress that the squared bias and variance terms have orders specific to the use
of Laguerre or Hermite bases. For instance if d = 0, the latter bound becomes m−s + c

√
m/n

showing that the associated spaces are represented by the square root of their dimension and not
their dimension. Analogously in the context of derivatives, the role of the dimension in [34] is
played in our case by

√
m.

Consequently, selecting mopt = [n2/(2s+1)] gives the rate of convergence

E
[
||f̂mopt,(d) − f (d)||2

]
� C(s, d,D)n− 2(s−d)

2s+1 , (15)

where C(s, d,D) depends only on s, d, and D, not on m. This rate coincides with the one obtained by
[34] in the dependent case and by [18]. Contrary to [32] and [27], we set the regularity conditions on the
function f and not on its derivatives: for a regularity s of f (d), they obtain a quadratic risk n−2(s−d)/(2s+1)

(case p = 2 in [27] and dimension 1). Interestingly, mopt does not depend on d. This is in accordance
with [27]’s strategy, which consists in plugging in the derivative kernel estimator the bandwidth selected
for the direct density estimation problem. Note that, for d = 0 in (15), we recover the optimal rate for
estimation of the density f .

Remark 4. If f is a mixture of Gaussian densities in the Hermite case or a mixture of Gamma
densities in the Laguerre case, it is known from Section 3.2 in [13] that the bias decreases with
exponential rate. The computations therein can be extended to the present setting and imply in
both Hermite and Laguerre cases that mopt is then proportional to log(n). Therefore the risk has

order [log(n)]d+
1
2 /n: for these collections of densities, the estimator converges much faster than

in the general setting.
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2.4. Lower Bound

Contrary to the lower bound given in Proposition 2.1, which ensures that the upper bound derived in
Theorem 2.1 for the specific estimator f̂m,(d) is sharp, we provide a general lower bound that guarantees

that the rate of the estimator f̂m,(d) is minimax optimal. The following assertion states that the rate
obtained in (15) is the optimal rate.

Let s � d be an integer and f̃n,d be any estimator of f (d). Then for n large enough, we have

inf
˜fn,d

sup
f∈W s(D)

E[||f̃n,d − f (d)||2] � cn− 2(s−d)
2s+1 , (16)

where the infimum is taken over all estimator of f (d), c a positive constant depending on s and d, and
W s(D) stands either for W s

L(D) or for W s
H(D).

We provide in Section 5.3 the key elements to establish (16). We emphasize that the proof relies
on compactly supported test functions, implying that the lower bound on usual Sobolev spaces and the
present one coincide, as these functions belong to both. This had to be checked since Hermite Sobolev
spaces are strict subspaces of usual Sobolev spaces. Similar lower bounds were known for this model for
different regularity spaces. We mention e.g., (7.3.3) in[16], which considers perdiodic Lispchitz spaces,
or [27], which examines general Nikol’ski spaces.

2.5. Adaptive Estimator of f (d)

The choice of mopt = [n2/(2s+1)] leading to the optimal rate of convergence is not feasible in practice.
In this section we provide an automatic choice of the dimension m, from the observations (X1, . . . ,Xn),
that realizes the bias-variance compromise in (10). Assume that m belongs to a finite model collection
Mn,d, we look for m that minimizes the bias-variance decomposition (8) rewritten as

E
[
||f̂m,(d) − f (d)||2

]
= ||f (d)

m − f (d)||2 + 1

n

m−1∑

j=0

Var
[
ϕ
(d)
j (X1)

]
.

Note that the bias is such that ||f (d)
m − f (d)||2 = ||f (d)||2 − ||f (d)

m ||2 where ||f (d)||2 is independent of m

and can be dropped out. The remaining quantity −||f (d)
m ||2 is estimated by −||f̂m,(d)||2. The variance

term is replaced by an estimator of a sharp upper bound, given by

V̂m,d =
1

n

n∑

i=1

m−1∑

j=0

(ϕ
(d)
j (Xi))

2. (17)

Finally, we set

m̂n := argmin
m∈Mn,d

{−||f̂m,(d)||2 + p̂end(m)}, where p̂end(m) = κ
V̂m,d

n
, (18)

where κ is a positive numerical constant. If we set Vm,d :=
∑m−1

j=0 E[(ϕ
(d)
j (X1)

2)], it holds E[p̂end(m)] =

κVm,d/n. In the sequel, we write pend(m) := κVm,d/n. To implement the procedure a value for κ has
to be set. Theorem 2.2 below provides a theoretical lower bound for κ, which is however generally too
large. In practice this constant is calibrated by intensive preliminary experiments, see Section 4. General
calibration methods can be found in [3] for theoretical explanations and heuristics, and in the associated
package, for practical implementation.

Remark 5. Note that in the definition of the penalty, instead of (18), we can plug the
deterministic upper bound on the variance and take cmd+ 1

2/n as a penalty (see Theorem 2.1)
as Proposition 2.1 ensures its sharpness. However, this upper bound relies on additional
assumptions given in (9) and depends on non explicit constants (see [2]). This is why we choose
to estimate directly the variance by V̂m,n and use V̂m,n/n as the penalty term.
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Theorem 2.2. Let Mn,d := {d, . . . ,mn(d)}, where mn(d) � d. Assume that (A1) and (A2) hold,
and that (A3) holds in the Laguerre case, and that ||f ||∞ < +∞.

AL. Set mn(d) = �(n/ log3(n))
2

2d+1 �, assume that supx∈R+
f(x)
xd < +∞ in the Laguerre case.

AH. Set mn(d) = �n
2

2d+1 � in the Hermite case.
Then, for any κ � κ0 := 32 it holds that

E

[
||f̂m̂n,(d) − f (d)||2

]
� C inf

m∈Mn,d

(
||f (d)

m − f (d)||2 + pend(m)
)
+

C ′

n
, (19)

where C is a universal constant (C = 3 suits) and C ′ is a constant depending on supx∈R+
f(x)
xd <

+∞ and E[X
−d−1/2
1 ] < +∞ (Laguerre case) or ||f ||∞ (Hermite case).

The constraint on the the largest element mn(d) of the collection Mn,d ensures that the variance

term, which is upper bounded by md+ 1
2/n vanishes asymptotically. The additional log term does not

influence the rate of the optimal estimator: the optimal (and unknown) dimension mopt � n
2

2s+1 , with s

the regularity index of f , is such that mopt � n
2

2d+1 as soon as s > d. For s = d, a log-loss in the rate
would occur in the Laguerre case, but not in the Hermite case.

Note that, in the Laguerre case, condition supx∈R+
f(x)
xd < +∞ implies E(X

−d−1/2
1 ) < +∞ (see

condition (9)) and is clearly related to (A3). Inequality (19) is a key result and expresses that f̂m̂n,(d)

realizes automatically a bias-variance compromise and is performing as well as the best model in the
collection, up to the multiplicative constant C, since clearly, the last term C ′/n is negligible. Thus,
for f in W̃ s

L(D) or W s
H(D) and under the assumptions of Theorem 2.2, we have E

[
||f̂m̂,(d) − f (d)||2

]
=

O(n−2(s−d)/(2s+1)), which implies that the estimator is adaptive.

3. FURTHER QUESTIONS

We investigate here additional questions, and set for simplicity d = 1. Mainly, we compare our
estimator to the derivative of a density estimator, and discuss condition (A3) in the Laguerre case.

3.1. Derivatives of the Density Estimator

When using kernel strategies, it is classical to build an estimator of the derivative of f by differenti-
ating the kernel density estimator, as already mentioned in the Introduction. For projection estimators,
we find more relevant to proceed differently. Indeed, our aim is to obtain an estimator expressed in an
orthonormal basis; unfortunately, the derivative of an orthonormal basis is a collection of functions but
not an orthonormal basis. So, our proposal (7) is easier to handle. Moreover, our estimator can be seen
as a contrast minimizer, which makes model selection possible to settle up.

However, Laguerre and Hermite cases are somehow different and can be more precisely compared.
Let us recall that the projetion estimator of f on Sm is defined by (see [13] or (7) for d = 0):

f̂m :=

m−1∑

k=0

â
(0)
k ϕk, where â

(0)
k :=

1

n

n∑

j=0

ϕk(Xj).

As the functions (ϕj)j are infinitely differentiable, both in Hermite and Laguerre settings, this leads to
the natural estimator of f (d), d � 1,

(f̂m)(d) =
m−1∑

k=0

â
(0)
k ϕ

(d)
k . (20)

For d = 1, we write (f̂m)(1) = (f̂m)′. We want to compare (f̂m)′ to f̂m,(1). In both Hermite and Laguerre
cases, this estimator is consistent, under adequate regularity assumptions and for adequate choice of m
as a function of n.
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3.2. Comparison of f̂m,(1) with (f̂m)′ in the Hermite Case

Using the recursive formula (5), in (20) and (7), respectively, straightforward computations give

(f̂m)′ =
1√
2
â
(0)
1 h0 +

m−1∑

j=1

(√
j + 1

2
â
(0)
j+1 −

√
j

2
â
(0)
j−1

)

hj −
√

m

2

(
â(0)m hm−1 + â

(0)
m−1hm

)
,

whereas

f̂m,(1) =
1√
2
â
(0)
1 h0 +

m−1∑

j=1

(√
j + 1

2
â
(0)
j+1 −

√
j

2
â
(0)
j−1

)

hj .

Therefore, it holds that E[||(f̂m)′ − f̂m,(1)||2] = m/2
{
E
[
(â

(0)
m )2

]
+ E

[
(â

(0)
m−1)

2
]}

and

E[||(f̂m)′ − f̂m,(1)||2] �
m

2
(a2m−1(f) + a2m(f)) +

m

2n

(∫
h2m(x)f(x)dx+

∫
h2m−1(x)f(x)dx

)

.

Using Lemma 8.5 in [13] under E[|X1|2/3] < +∞ and for f in W s
H(D), s > 1, it follows for some positive

constant C that,

E[||(f̂m)′ − f̂m,(1)||2] �
D

2
m−s+1 + C

√
m

n
.

Under the same assumptions, (10) for d = 1 implies

E[||(f̂m)′ − f ′||2] � D′m−s+1 + c
m3/2

n
.

Therefore, by triangle inequality, this implies that (f̂m)′ reaches the same (optimal) rate as f̂m,(1), under
the same assumptions.

3.3. Comparison of f̂m,(1) with (f̂m)′ in the Laguerre Case

In the Laguerre case, assumption (A3) is required for the estimator f̂m,(1) to be consistent, while it is

not for the estimator (f̂m)′.
Proceeding as previously and taking advantage of the recursive formula (2) in (20) and (7), respec-

tively, straightforward computations give, for m � 1,

(f̂m)′ =
m−1∑

j=0

⎛

⎝â
(0)
j − 2

m−1∑

k=j

â
(0)
k

⎞

⎠ �j, whereas f̂m,(1) =

m−1∑

j=0

(

â
(0)
j + 2

j−1∑

k=0

â
(0)
k

)

�j. (21)

Therefore, in the Laguerre case, the coefficients of f̂m,(1) in the basis (�j)j do not depend on m while

those of (f̂m)′ do. Moreover, computing the difference between the estimators leads to f̂m,(1) − (f̂m)′ =

2
∑m−1

j=0 (
∑m−1

k=0 â
(0)
k )�j and

||f̂m,(1) − (f̂m)′||2 = 4m

(
m−1∑

k=0

â
(0)
k

)2

.

Heuristically, if f(0) = 0, as f(0) =
√
2
∑

j�0 aj(f) = 0, it follows that
∑m−1

j=0 aj(f) should be small for

m large enough. Consequently, its consistent estimator
∑m−1

k=0 â
(0)
k should also be small. This would

imply that, when f(0) = 0, the distance ||f̂m,(1) − (f̂m)′||2 can be small; on the contrary, the distance

should tend to infinity with m if f(0) �= 0. This is due to the fact that f̂m,(1) is not consistent, while (f̂m)′

is. Indeed, in the general case (f(0) �= 0), the risk bound we obtain for (f̂m)′ is the following.
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Proposition 3.1. Assume that (A1) and (A2) hold for d = 1 and that f belongs to W s
L(D). Then,

it holds

E||(f̂m)′ − f ′||2 � Cm−s+2 +
3

n
||f ||∞m2. (22)

Obviously, for suitably chosen m the estimator is consistent and by selecting mopt � n1/s, it reaches

the rate: E[||(f̂mopt)
′ − f ′||2] � C(s,D)n−(s−2)/s. This rate is worse than the one obtained for f̂m,(1)

but it is valid without (A3), and thus f̂m,(1) is consistent to estimate an exponential density, or any
mixture involving exponential densities. Note that both the order of the bias and the variance in (22) are
deteriorated compared to (10), and we believe these orders are sharp.

In the following section, we investigate if the rate can be improved, if (A3) is not satisfied, by
correcting our estimator (6).

3.4. Estimation of f ′ on R
+ with f(0) > 0

Assumption (A3) excludes some classical distribution such as the exponential distribution or Beta
distributions β(a, b) with a = 1. If f(0) > 0, Lemma 2.1 no longer holds, and one has aj(f

′) =
−f(0)�j(0)− E[�′j(X1)] instead. Therefore, f(0) has to be estimated and we consider

â
(1)
j,K = −�j(0)f̂K(0)− 1

n

n∑

i=1

�′j(Xi), with f̂K =
K−1∑

j=0

â
(0)
j �j , â

(0)
j =

1

n

n∑

i=1

�j(Xi). (23)

We estimate f ′ as follows

f̃ ′
m,K =

m−1∑

j=0

â
(1)
j,K�j, with â

(1)
j,K = − 1

n

n∑

i=1

�′j(Xi)− f̂K(0)�j(0). (24)

Obviously, â(1)j,K is a biased estimator of aj(f ′), implying that f̃ ′
m,K is a biased estimator of f ′

m. Now
there are two dimensions m and K to be optimized. We can establish the following upper bound.

Proposition 3.2. Suppose (A1) is satisfied for d = 1, then it holds that

E
[
||f̃ ′

m,K − f ′||2
]
≤ ||f ′ − f ′

m||2 + 2

n

m−1∑

j=0

E
[(
�′j(X1)

)2]
+ 4m(Var(f̂K(0)) + (f(0)− fK(0))2), (25)

where fK is the orthogonal projection of f on SK defined by: fK =
∑K−1

j=0 aj(f)�j .

The first two terms of the upper bound seem similar to the ones obtained under (A3), but as we no
longer assume f(0) = 0, Assumption (9) for d = 1 cannot hold and the tools used to bound the variance
term Vm,1 by m3/2 no longer apply: we only get an order m2 for this term, under ||f ||∞ < +∞.

The last two terms of (25) correspond to m times the pointwise risk of f̂K(0). Then, using ||�j ||∞ �√
2, we obtain Var(f̂K(x)) � 4K2/n. If ||f ||∞ < ∞, this can be improved in Var(f̂K(x)) � ||f ||∞K/n,

using the orthonormality of (�j)j .

To sum up, if f ∈ W̃ s
L(D), and ||f ||∞ < ∞, then

E
[
||f̃ ′

m,K − f ′||2
]
� C(s,D, ||f ||∞)

{

m−s+2 +
m2

n
+m

(

K−s+1 +
K

n

)}

.

Choosing Kopt = cn1/s and mopt = cn1/s gives the rate E
[
||f̃ ′

mopt,Kopt
− f ′||2

]
� Cn−(s−2)/s, that is the

same rate as the one obtained for (f̂mopt)
′. Then, renouncing to Assumption (A3) has a cost, it renders

the procedure burdensome and leads to slower rates.
We propose a model selection procedure adapted to this new estimator. Let

f̂ ′
m,K = arg min

t∈Sm

γn(t), (26)
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where γn(t) = ||t||2 + 2
n

∑n
i=1 t

′(Xi) + 2t(0)f̂K(0). Here, we consider that K = Kn is chosen so that

f̂Kn satisfies
[
E(f̂Kn(0)) − f(0)

]2
� Kn log(n)

n
. (27)

This assumption is likely to be fulfilled for a K selected in order to provide a squared bias/variance
compromise, see the pointwise adaptive procedure for density estimation in [31]; however therein, the
choice of K is random while we set Kn as fixed, here. Then, we select m as follows:

m̂K = arg min
m∈Mn

{
γn(f̂ ′

m,K) + penK(m)
}
, Mn = {1, . . . , [

√
n]} (28)

with

penK(m) = c1||f ||∞
m2 log(n)

n
+ c2(||f ||∞ ∨ 1)

mK log(n)

n
:= pen1(m) + pen2,K(m). (29)

It is easy to ckeck that γn(f̂ ′
m,K) = −||f̂ ′

m,K ||2. We prove the following result.

Theorem 3.1. Let f̂ ′
m,Kn

be defined by (26) with m = m̂Kn selected by (28), (29) and Kn such
that (27) holds. Then for c1 and c2 larger than fixed constants c0,1, c0,2, we have

E

(
||f ′ − f̂ ′

m̂,Kn
||2
)
� C

(

||f ′ − f ′
m||2 +m2 log(n)

n
+m

Kn log(n)

n

)

+
C ′

n
,

where C is a numerical constant and C ′ depends on f .

Theorem 3.1 implies that the adaptive estimator f̂ ′
m,Kn

provides the adequate compromise, up to log
terms.

4. NUMERICAL EXAMPLES

In this section, we provide a nonexhaustive illustration of our theoretical results.

4.1. Simulation Setting and Implementation

We illustrate the performances of the adaptive estimator f̂m̂n,(d) defined in (7), with m̂ selected by
(17), (18), for different distributions and values of d (d = 1, 2). In the Hermite case we consider the
following distributions which are estimated on the interval I, which we fix to ensure reproducibility of
our experiments:

(i) Gaussian standard N (0, 1), I = [−4, 4],

(ii) Mixed Gaussian 0.4N (−1, 1/4) + 0.6N (1, 1/4), I = [−2.5, 2.5],

(iii) Cauchy standard, density: f(x) = (π(1 + x2))−1, I = [−6, 6],

(iv) Gamma Γ(5, 5)/10, I = [0, 7],

(v) Beta 5β(4, 5), I = [0, 5].
In the Laguerre case we consider densities (iv), (v) and the two following additional distributions
(vi) Weibull W (4, 1), I = [0, 1.5],

(vii) Maxwell with density
√
2x2e−x2/(2σ2)/(σ3√π), with σ = 2 and I = [0, 8].

All these distributions satisfy Assumptions (A1), (A2) and densities (iv)-(vii) satisfy (A3). The
moment conditions given in (9) are fulfilled for d = 1, 2, even by the Cauchy distribution (iii) which
has finite moments of order 2/3 < 1. For the adaptive procedure, the model collection considered
is Mn,d = {d, . . . ,mn(d)}, where the maximal dimension is mn(d) = 50 in the Laguerre case and
mn(d) = 40 in the Hermite case, for all values of n and d (smaller values may be sufficient and spare
computation time). In practice, the adaptive procedure follows the steps.

• For m in Mn,d, compute −
∑m−1

j=0 (â
(d)
j )2 + p̂end(m), with â

(d)
j given in (7) and p̂end(m) in (18).
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Table 1. Mean of selected dimensions m̂n presented in Figs. 1 and 2

f Hermite case Laguerre case

density (ii) (vi)

n 500 2000 500 2000

Mean of mopt

d = 0 7.65 9.45 5.85 7.65

d = 1 8.15 9.70 6.15 6.80

d = 2 7.85 8.95 5.15 5.65

• Choose m̂n via m̂n = argmin
m∈Mn,d

{−
∑m−1

j=0 (â
(d)
j )2 + p̂end(m)}.

• Compute f̂m̂n,(d) =
∑m̂−1

j=0 â
(d)
j ϕj .

Then, we compute the empirical mean integrated squared errors (MISE) of f̂m̂n,(d). For that, we first

compute the ISE by Riemann discretization in 100 points: for the jth path, and the jth estimate ĝ
(j)
m̂ of

g, where g stands either for the density f or for its derivative f ′, we set

||g − ĝ
(j)
m̂ ||2 ≈ length(I)

K

K∑

k=1

(ĝ
(j)
m̂ (xk))− g(xk))

2, xk = min(I) + k
length(I)

K
, k = 1, . . . ,K,

for j = 1, . . . R. To get the MISE, we average over j of these R values of ISEs.
The constant κ in the penalty is calibrated by preliminary experiments. A comparison of the MISEs
for different values of κ and different distributions (distinct from the previous ones to avoid overfitting)
allows to choose a relevant value. We take κ = 3.5 for the density and its first derivative and κ = 5 for the
second order derivative in the Laguerre case or κ = 4 for the density and its first derivative and κ = 6.5
for the second order derivative in the Hermite case.

Comparison with kernel estimators. We compare the performances of our method with those of
kernel estimators, and start by density estimation (d = 0). The density kernel estimator is defined as
follows

f̂h(x) =
1

nh

n∑

i=1

K

(
Xi − x

h

)

, x ∈ R,

where h > 0 is the bandwidth and K a kernel such that
∫
K(x)dx = 1. These two quantities (h and K)

are user-chosen. For density estimation, we use the function implemented in the statistical software R
called density, where the kernel is chosen Gaussian and the bandwidth selected by plug-in (R-function
bw.SJ), see Tables 2 and 4.

For the estimation of the derivative, the kernel estimator we compare with (see Tables 3 and 5) is
defined by:

f̂ ′
h(x) = − 1

nh2

n∑

i=1

K ′
(
Xi − x

h

)

.

In that latter case there is no ready-to-use procedure implemented in R; therefore, we generalize the
adaptive procedure of [25] from density to derivative estimation. To that aim, we consider a kernel of
order 7 (i.e.

∫
xjK(x)dx = 0, for j = 1, . . . , 7) built as a Gaussian mixture defined by:

K(x) = 4n1(x)− 6n2(x) + 4n3(x)− n4(x), (30)

where nj(x) is the density of a centered Gaussian with a variance equal to j: the higher the order, the
better the results, in theory (see [42]) and in practice (see [14]). By analogy with the proposal of [25] for
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Table 2. Empirical MISE 100×E||f̂m̂,(0)− f ||2 (left) and 100×E||f̂
̂h − f ||2 (right, Kernel Estimator) forR = 100

in the Hermite case

Our method Kernel method

f
n n

100 500 1000 2000 100 500 1000 2000

Gaussian (i) 0.12 0.03 0.02 4× 10−3 0.74 0.23 0.13 0.07

Mixed Gaussian (ii) 1.01 0.26 0.13 0.07 1.46 0.44 0.22 0.14

Cauchy (iii) 0.63 0.38 0.19 0.10 4.26 3.42 1.75 0.89

Gamma (iv) 1.46 0.36 0.18 0.09 0.99 0.26 0.14 0.08

Beta (v) 1.09 0.18 0.10 0.05 0.96 0.26 0.151 0.09

density estimation, we select h by:

ĥ = argmin
h∈H

{||f̂ ′
h − f̂ ′

hmin
||2 + pen(h)} with pen(h) =

4

n
〈K ′

h,Kh′
min
〉,

where hmin = minH, for H the collection of bandwidths chosen in [c/n, 1] and Kh(x) =
1
hK(xh). Note

that

pen(h) =
4

n
〈K ′

h,Kh′
min
〉 = 4

nh2h2min

∫
K ′

(u
h

)
K ′

(
u

hmin

)

du

and this term can be explicitely computed with the definition of K in (30).

4.2. Results and Discussion
Figures 1 and 2 show 20 estimated f , f ′, f ′′ in case (ii), for two values of n, 500 and 2000. These

plots can be read as variability bands illustrating the performance and the stability of the estimator. We
observe that increasing n improves the estimation and, on the contrary, that increasing the order of
the derivative makes the problem more difficult. The means of the dimensions selected by the adaptive
procedure are given in Table 1. Unsurprisingly, this dimension increases with the sample size n. In
average, these dimensions are comparable for d ∈ {0, 1, 2}, this is in accordance with the theory: the
optimal value mopt does not depend on d.

Tables 2 and 4 for d = 0 and Tables 3 and 5 for d = 1 allow to compare the MISEs obtained with
our method and the kernel method for different sample sizes and densities.The error decreases when
the sample size increases for both methods. For density estimation (d = 0), the results obtained with
our Hermite projection method in Table 2 are better in most cases than the kernel competitor, except
for smallest sample size n = 100 and Gamma (iv) and Beta (v) distributions. Table 3 gives the risks
obtained for derivative estimation in the Hermite basis: our method is better for densities (i)–(iii) (except
for n = 100 for Gaussian distribution (i)), but the kernel method is often better for densities (iv) and (v);
they correspond to Gamma and beta densities which are in fact with support included in R

+.
In Table 4, we compare the errors obtained for densities (iv)–(vii) with support in R

+. Our method is
always better than the R-kernel estimate. For the derivatives, in Table 5, our method and the kernel
estimator seem equivalent. Lastly, Table 6 allows to compare Laguerre and Hermite bases for the
estimation of the second order derivatives of functions (iv) and (v), for larger sample sizes. As expected,
the risks are larger, because the degree of ill posedness increases and thus the rate deteriorates. For
these R

+-supported functions, the Laguerre basis is clearly better. It is possible that scale of the
functions themselves also increase (multiplicative factors appearing by derivation). Note that the same
phenomenon is observed for the L1-risk computed in [36], see their Table 1.

5. PROOFS
In the sequel C denotes a generic constant whose value may change from line to line and whose

dependency is sometimes given in indexes.
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Fig. 1. 20 estimates ̂fm̂n,(d) in the Hermite basis of a Mixed Gaussian distribution (ii), with n = 500 (first line) and
n = 2000 (second line). The true quantity is in bold red and the estimate in dotted lines (left d = 0, middle d = 1, and
right d = 2).
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Fig. 2. 20 estimates ̂fm̂n,(d) in the Laguerre basis of a Gamma distribution (iv), with n = 500 (first line) and n = 2000
(second line). The true quantity is in bold red and the estimate in dotted lines (left d = 0, middle d = 1, and right
d = 2).

5.1. Proof of Theorem 2.1

Following (8) we study the variance term, notice that E
[
||f̂m,(d) − f

(d)
m ||2

]
=
∑m−1

j=0 Var(â(d)j ). By

definition of â(d)j given in (7), we have

Var(â(d)j ) = Var

(
(−1)d

n

n∑

i=1

ϕ
(d)
j (Xi)

)

=
1

n
Var(ϕ(d)

j (X1)) =
1

n
E[(ϕ

(d)
j (X1))

2]−
a2j (f

(d))

n
. (31)

Clearly,
∑m−1

j=0 a2j (f
(d)) = ||f (d)

m ||2. In the sequel we denote by Vm,d the quantity

Vm,d =

m−1∑

j=0

E[(ϕ
(d)
j (X1))

2]. (32)
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Table 3. Empirical MISE 100× E||f̂m̂,(1) − f ′||2 (left) and 100× E||f̂ ′
̂h
− f ′||2 (right) for R = 100 in the Hermite

case

Our method Kernel method

f
n n

100 500 1000 2000 100 500 1000 2000

Gaussian (i) 1.21 0.30 0.15 0.10 1.16 0.81 0.53 0.25

Mixed Gaussian (ii) 10.08 2.39 1.89 1.07 14.13 3.56 2.00 1.2

Cauchy (iii) 2.91 1.28 0.87 0.56 4.14 1.58 1.19 0.88

Gamma (iv) 5.88 1.89 1.43 0.60 2.45 1.25 0.75 0.63

Beta (v) 5.84 1.76 0.91 0.87 5.62 3.19 0.59 0.33

Table 4. Empirical MISE (100× E||f̂m̂,(0) − f ||2 (left) and 100× E||f̂
̂h − f ||2 (right) for R = 100 in the Laguerre

case

Our method Kernel method

f
n n

100 500 1000 2000 100 500 1000 2000

Gamma (iv) 0.54 0.16 0.08 0.04 0.99 0.26 0.14 0.08

Beta (v) 0.86 0.20 0.10 0.06 0.96 0.26 0.15 0.09

Weibull (vi) 2.61 0.60 0.33 0.17 3.55 0.80 0.46 0.29

Maxwell (vii) 0.64 0.11 0.06 0.04 0.59 0.16 0.10 0.06

Table 5. Empirical MISE 100×E||f̂m̂,(1) − f ′′||2 (left) and 100×E||f̂ ′
̂h
− f ′′||2 (right) forR = 100 in the Laguerre

case

Our method Kernel method

f
n n

100 500 1000 2000 100 500 1000 2000

Gamma (iv) 5.21 0.95 0.48 0.17 2.45 1.25 0.75 0.63

Beta (v) 4.55 1.55 0.95 0.45 5.62 3.19 0.59 0.33

Weibull (vi) 126.95 34.54 22.31 14.10 127.38 38.60 35.47 11.36

Maxwell (vii) 1.46 0.60 0.24 0.13 0.87 0.21 0.18 0.10

The remaining of the proof consists in showing that under (9) we have Vm,d � cmd+1/2. For that, write

Vm,d =

m−1∑

j=0

∫
(ϕ

(d)
j (x))2f(x)dx =

⎛

⎝
d−1∑

j=0

∫
(ϕ

(d)
j (x))2f(x)dx+

m−1∑

j=d

∫
(ϕ

(d)
j (x))2f(x)dx

⎞

⎠ , (33)

where
d−1∑

j=0

∫
(ϕ

(d)
j (x))2f(x)dx �

d−1∑

j=0

||ϕ(d)
j ||2∞ := c(d). (34)

To bound the second term in (33), we consider separately Hermite and Laguerre cases.
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Table 6. Empirical MISE 100× E||f̂ (2)
m̂,(2) − f (2)||2 for R = 100

Hermite case Laguerre case

f
n n

1000 2000 5000 10000 1000 2000 5000 10000

Gamma (iv) 6.40 4.20 3.39 2.91 3.98 3.70 1.92 1.00

Beta (v) 11.32 9.45 4.14 1.42 7.60 5.05 2.43 1.99

5.1.1. The Laguerre case. We derive from (1) that

�
(d)
j (x) =

√
2

d∑

k=0

(−1)d−k

(
d

k

)

L
(k)
j (2x)e−x.

Using [24], Eq. (2.10), we derive

L
(k)
j (x) =

dk

dxk
Lj(x) = (−1)kLj−k,(k)(x), where Lp,(δ)(x) =

1

p!
exx−δ dp

dxp

(
xδ+pe−x

)
1δ�p.

Moreover, introduce the orthonormal basis on L
2(R+) (�k,(δ))0�k<∞ by

�k,(δ)(x) = 2
δ+1
2

(
k!

Γ(k + δ + 1)

)1/2

Lk,(δ)(2x)x
δ
2 e−x. (35)

Therefore, (Lj(2x))
(k) = 2kLj−k,(k)(2x)1j�k, so that

�
(d)
j (x) = (−1)d

d∑

k=0

(
d

k

)

2
k
2x−k/2

(
j!

(j − k)!

) 1
2

�j−k,(k)(x), (36)

where �j,(δ) is defined in (35). Using the Cauchy Schwarz inequality in (36), we derive that

m−1∑

j=d

∞∫

0

[�
(d)
j (x)]2f(x)dx � 3d

m−1∑

j=d

d∑

k=0

(
d

k

)
j!

(j − k)!

+∞∫

0

x−k[�j−k,(k)(x)]
2f(x)dx

� Cd

m−1∑

j=d

d∑

k=0

jd
+∞∫

0

x−k(�j−k,(k)(x/2))
2f(x/2)dx.

Now we rely on the following Lemma, proved in Appendix A.

Lemma 5.1. Let j � k � 0 and suppose thatE[X−k−1/2] < +∞, it holds, for a positive constant
C depending only on k, that

+∞∫

0

x−k
[
�j−k,(k)(x/2)

]2
f(x/2)dx � C√

j
.

From Lemma 5.1, we obtain
m−1∑

j=d

∫
(�

(d)
j (x))2f(x)dx � C

m−1∑

j=d

d∑

k=0

jd−1/2 � Cmd+1/2.

Plugging this and (34) in (33), gives the result (10) and Theorem 2.1 in the Laguerre case.
5.1.2. The Hermite case. We first introduce a useful technical result, its proof is given in

Appendix A.
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Lemma 5.2. Let hj given in (3), the dth derivative of hj is such that

h
(d)
j =

d∑

k=−d

b
(d)
k,jhj+k, where b

(d)
k,j = O(jd/2), j � d � |k|. (37)

Using successively Lemma 5.2, the Cauchy Schwarz inequality and Lemma 8.5 in [13] (using that
E[|X1|2/3] < ∞), we obtain, for k + j large enough,
m−1∑

j=d

∫
(h

(d)
j (x))2f(x)dx � (2d + 1)

m−1∑

j=d

d∑

k=−d

(b
(d)
k,j)

2

∫
hj+k(x)

2f(x)dx � d(2d+ 1)2
d∑

k=−d

m−1∑

j=d

cjd−
1
2

� c′(d)md+ 1
2 . (38)

Plugging (38) and (34) in (33) leads to inequality (10) and Theorem 2.1 in the Hermite case.

5.2. Proof of Proposition 2.1

We build a lower bound for (8). Recalling (31) and notation Vm,d =
∑m−1

j=0 E[(ϕ
(d)
j (X1))

2], to
establish Proposition 2.1, we have to build a minorant for Vm,d. We consider separately the Laguerre
and Hermite cases.

5.2.1. The Laguerre case. Using (36), we have

�
(d)
j (x) = (−1)d2d/2x−d/2

( j!

(j − d)!

)1/2
�j−d,(d)(x) + (−1)d

d−1∑

k=0

(
d

k

)

2
k
2x−k/2

(
j!

(j − k)!

) 1
2

�j−k,(k)(x)

:= T1(x) + T2(x).

It follows that
+∞∫

0

(�
(d)
j )2(x)f(x)dx �

+∞∫

0

T1(x)
2f(x)dx+ 2

+∞∫

0

T1(x)T2(x)f(x)dx := E1 + E2.

For the first term, as (A1) ensures that f is a continuous density, there exist 0 � a < b and c > 0, such
that infa�x�b f(x) � c > 0. We derive

E1 � 2d
j!

(j − d)!

+∞∫

0

x−d�2j−d,(d)(x)f(x)dx � c2d(j − d)db−d

b∫

a

�2j−d,(d)(x)dx.

By Theorem 8.22.5 in [40], for δ > −1 an integer, and for b/j � x � b̄, where b, b̄ are arbitrary positive
constants, it holds

�j,(δ)(x) = d(jx)−
1
4

(

cos

(

2
√
2
√

jx− δπ

2
− π

4

)

+ (jx)−
1
2O(1)

)

, (39)

where O(1) is uniform on [b/j, b̄] and d = 21/4/
√
π. It follows that,

�2j,(δ)(x) =
d2

2
(jx)−

1
2

[
1 + cos

(
4
√
2
√

jx− δπ − π

2

)]
+ (jx)−1O(1).

We derive that
∫ b
a �2j−d,(d)(x)dx � C(j − d)−1/2, after a change of variable y =

√
x, for some positive

constant C depending on a, b, and d. Consequently, it holds

E1 � C(j − d)d−
1
2 � C ′jd−

1
2 , ∀j � 2d, (40)

where C ′ depends on a, b, c, and d. For the second term, we have

|E2| � 2

+∞∫

0

|T1(x)T2(x)|f(x)dx
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� 2j
d
2 j

d−1
2

d−1∑

k=0

(
d

k

)

2
k+d
2

⎡

⎣
+∞∫

0

x−d�2j−d,(d)(x)f(x)dx+

+∞∫

0

x−k�2j−k,(k)(x)f(x)dx

⎤

⎦ .

By Lemma 5.1, it follows that

|E2| � Cj
d
2 j

d−1
2 j−

1
2

d−1∑

k=0

(
d

k

)

2
k+d
2 � Cjd−1.

This together with (40), lead to
∫ +∞
0 (�

(d)
j )2(x)f(x)dx � C ′jd−

1
2 , j � 2d where C depends on a, b, c,

and d. We derive

Vm,d � Cmd+ 1
2 , (41)

which ends the proof in the Laguerre case.
5.2.2. The Hermite case. The proof is similar to the Laguerre case. Consider the following

expression of hj (see [40], p. 248):

hj(x) = λj cos

(

(2j + 1)
1
2x− jπ

2

)

+
1

(2j + 1)
1
2

ξj(x), ∀x ∈ R, (42)

where λj = |hj(0)| for j even or λj = |h′j(0)|/(2j + 1)1/2 for j odd and

ξj(x) =

x∫

0

sin
(
(2j + 1)

1
2 (x− t)

)
t2hj(t)dt.

By Stirling formula, it holds

λ2j =
(2j)!

1
2

2jj!π1/4
∼ π−1/2j−1/4 and λ2j+1 = λ2j

√
2j + 1

√
2j + 3/2

∼ π−1/2j−1/4. (43)

Differentiating (42), we get

h
(d)
j (x) = λj(2j + 1)

d
2 cos

(

(2j + 1)
1
2x− jπ

2
+

dπ

2

)

+
1√

2j + 1
ξ
(d)
j (x).

Note that if d = 2 it holds

ξ
(2)
j (x) =

√
2j + 1x2hj(x)− (2j + 1)ξj(x). (44)

From (A1), there exists a < b and c > 0 such that infa�x�b f(x) � c > 0. It follows

∫

R

h
(d)
j (x)2f(x)dx � c(2j + 1)dλ2

j

b∫

a

cos2
(
(2j + 1)

1
2x− (j + d)

π

2

)
dx

+ 2cλj(2j + 1)
d−1
2

b∫

a

cos
(
(2j + 1)

1
2x− (j + d)

π

2

)
ξ
(d)
j (x)dx := E1 +E2.

For the first term, using cos2(x) = (1 + cos(2x))/2 and (43), we get

E1 = c(2j + 1)dλ2
j

(
b− a

2
+O(

1√
j
)

)

� c′jd−
1
2

(
b− a

2
+O(

1√
j
)

)

.

For the second term we first show that

∀x ∈ [a, b], ∀j � 0, ∀d � 0, ξ
(d)
j (x) = O(jd/2). (45)

To establish (45) we first note, using (44), that for d � 2, ∀x ∈ R,

ξ
(d)
j (x) + (2j + 1)ξ

(d−2)
j (x) = (ξ

(2)
j (x) + (2j + 1)ξj(x))

(d−2) =
√

2j + 1(x2hj(x))
(d−2) =: Ψj,d(x).
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Together with Lemma 5.2, one easily obtains by induction that ∀x ∈ [a, b], ∀j � 0, Ψj,d(x) = O(j
d−1
2 ).

The latter result gives ξ
(d)
j = −jξ

(d−2)
j +Ψj,d and an immediate induction on d leads to (45). Injecting

this in E2 gives, together with (43), |E2| � Cjd−
3
4 , for a positive constant C depending on a, b, c, and d.

Gathering the bound on E1 and E2 lead to
∫

R

h
(d)
j (x)2f(x)dx � c′jd−

1
2

(
b− a

2
+O(

1√
j
)

)

−O(jd−
3
4 ) � C ′

dj
d− 1

2

and

Vm,d � cdm
d+ 1

2 , (46)

which ends the proof of the Hermite case.

5.3. Proof of (16)

We apply Theorem 2.7 in [42]. We start by the construction of a family of hypotheses (fθ)θ. The
construction is inspired by [5]. Define f0 by

f0(x) = P (x)1]0,1[(x) +
1

2
x1[1,2](x) +Q(x)1]2,3](x), (47)

where P and Q are positive polynomials, for 0 � k � s, P (k)(0) = Q(k)(3) = 0, P (k)(1) =

limx↓1(x/2)
(k), Q(k)(2) = limx↑2(x/2)

(k) and finally
∫ 1
0 P (x)dx =

∫ 3
2 Q(x)dx = 1

8 . Consider fθ defined
as a perturbation of f0

fθ(x) = f0(x) + δK−(γ+d)
K−1∑

k=0

θk+1ψ
(
(x− 1)(K + 1)− k

)
with K ∈ N (48)

for some δ > 0, θ = (θ1, . . . , θK) ∈ {0, 1}K , γ > 0 and ψ which is supported on [1, 2], admits bounded
derivatives up to order s and is such that

∫ 2
1 ψ(x)dx = 0. The lower bound (16) is a consequence of the

following Lemma 5.3.

Lemma 5.3. (i). Let s � d, ∀ θ ∈ {0, 1}K , there exist δ small enough and γ > 0 such that fθ is
density. There exists D > 0 such that fθ belongs to W s

H(D). If in addition γ � s− d, fθ belongs to
W s

L(D).

(ii). Let M an integer, for all j < l � M , ∀θ(j), θ(l) in {0, 1}K , it holds ||f (d)

θ(j)
− f

(d)

θ(l)
||2 �

Cδ2K−2γ .

(iii). For δ small enough, K = n1/(2γ+2d+1) and for all (θ(j))1�j�M ∈ ({0, 1}K )M , it holds

1

M

M∑

j=1

χ2
(
fθ(j)

⊗n, f0
⊗n
)
� αM,

where 0 < α < 1/8 and χ2(g, h) denotes the χ2 divergence between the distributions g and h.

Choosing γ = s− d, K = n1/(2γ+2d+1) and δ small enough, we derive from Lemma 5.3 that,

||f (d)

θ(j)
− f

(d)

θ(l)
||2 � Cδ2n−2

(s−d)
2s+1 , ∀θ(j), θ(l) ∈ {0, 1}K .

The announced result is then a consequence of Theorem 2.7 in [42]. Proof of Lemma 5.3 is omitted,
but can be found in the hal-preprint version of the paper.
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5.4. Proof of Theorem 2.2
Consider the contrast function defined as follows:

γn,d(t) = ||t||2 − 2

n

n∑

i=1

(−1)dt(d)(Xi), t ∈ L
2(R),

for which f̂m,(d) = argmin
t∈Sm

γn,d(t) (see (7)) and γn(f̂m,(d)) = −||f̂m,(d)||2. For two functions t, s ∈ L
2(R),

consider the decomposition:

γn,d(t)− γn,d(s) = ||t− f (d)||2 − ||s− f (d)||2 − 2νn,d(t− s), (49)

where

νn,d(t) =
1

n

n∑

i=1

(
(−1)dt(d)(Xi)− 〈t, f (d)〉

)
.

By (18), it holds for allm ∈ Mn,d, that γn,d(f̂m̂n,(d)) + p̂end(m̂n) � γn,d(f
(d)
m ) + p̂end(m). Plugging this

in (49) yields, for all m ∈ Mn,d,

||f̂m̂n,(d) − f (d)||2 ≤ ||f (d)
m − f (d)||2 + p̂end(m) + 2νn,d

(
f̂m̂n,(d) − f (d)

m

)
− p̂end(m̂n). (50)

Note that for t ∈ L
2(R), νn,d(t) = ||t||νn,d

(
t/||t||

)
≤ ||t|| sups∈Sm+Sm̂,||s||=1 |νn,d(s)|. Consequently, us-

ing 2xy � x2/4 + 4y2, we obtain

2νn,d

(
f̂m̂n,(d) − f (d)

m

)
� 1

2
||f̂m̂n,(d) − f (d)||2 + 1

2
||f (d)

m − f (d)||2 + 4 sup
t∈Sm+Sm̂,||t||=1

|νn,d(t)|2. (51)

It follows from (50) and (51) that:
1

2
||f̂m̂n,(d) − f (d)||2 � 3

2
||f (d)

m − f (d)||2 + p̂end(m) + 4 sup
t∈Sm+Sm̂,||t||=1

|νn,d(t)|2 − p̂end(m̂n).

Introduce the function p(m,m′) = 4
Vm∨m′,d

n , we get, after taking the expectation,
1

2
E

[
||f̂m̂n,(d) − f (d)||2

]
� 3

2
||f (d)

m − f (d)||2 + pend(m)

+ 4E

[(

sup
t∈Sm+Sm̂,||t||=1

|νn,d(t)|2 − p(m, m̂n)

)

+

]

+ E[4p(m, m̂n)− pend(m̂n)] + E
[
(pend(m̂n)− p̂end(m̂n))+

]
.

The remaining of the proof is a consequence of the following Lemma 5.4.
Lemma 5.4. Under the assumptions of Theorem 2.2, the following hold.
(i) There exists a constant Σ1 such that:

E

[(

sup
t∈Sm+Sm̂,||t||=1

|νn,d(t)|2 − p(m, m̂n)

)

+

]

� Σ1

n
.

(ii) There exists a constant Σ2 such that:

E
[
(pend(m̂n)− p̂end(m̂n))+

]
� 1

2
E[pend(m̂n)] +

Σ2

n
.

Lemma 5.4 yields
1

2
E

[
||f̂m̂n,(d) − f (d)||2

]
� 3

2
||f (d)

m − f (d)||2 + pend(m) + 4
Σ1

n
+ E[4p(m, m̂n)−

1

2
pend(m̂n)] +

Σ2

n
.

Next, for κ � 32 =: κ0, we have, 4p(m, m̂n) ≤ pend(m̂n)/2 + pend(m)/2. Therefore, we derive

E

[
||f̂m̂n,(d) − f (d)||2

]
� 3||f (d)

m − f (d)||2 + 3pend(m) + 2
4Σ1 +Σ2

n
, ∀m ∈ Mn,d.

Taking the infimum on Mn,d, C = 3 and C ′ = 2(4Σ1 +Σ2)/n completes the proof.
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5.5. Proof of Proposition 3.1
First, it holds that

E

[
||(f̂m)′ − f ′||2

]
� 2

[
||(fm)′ − f ′||2 + E[||(f̂m)′ − (fm)′||2]

]

= 2

+∞∫

0

⎛

⎝
∑

j�m

aj(f)�
′
j(x)

⎞

⎠

2

dx+ 2E

⎡

⎣

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

m−1∑

j=0

(â
(0)
j − aj(f))�

′
j

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2⎤

⎦ .

For the first bias term, we derive from (2) that 〈�′j , �′k〉 = 2 + 4j ∧ k for j �= k and 〈�′j , �′j〉 = 1 + 4j, and
we derive that

+∞∫

0

⎛

⎝
∑

j�m

aj(f)�
′
j(x)

⎞

⎠

2

dx =
∑

j�m

aj(f)
2(1 + 4j) + 2

∑

m�j<k

aj(f)ak(f)(2 + 4j).

First, for f in W s
L(D), we have

∑

j�m

aj(f)
2(1 + 4j) � m−s

∑

j�m

jsaj(f)
2 + 4m−s+1

∑

j�m

jsaj(f)
2 ≤ 5Dm−s+1,

and by the Cauchy–Schwarz inequality, it holds for a positive constant C,

∑

m�j<k

aj(f)ak(f) �

⎛

⎝
∑

m�j<k

jsaj(f)
2ksak(f)

2

⎞

⎠

1
2
⎛

⎝
∑

m�j<k

j−sk−s

⎞

⎠

1
2

�
∑

j�m

jsaj(f)
2
∑

j�m

j−s � DCm−s+1

∑

m�j<k

j|aj(f)ak(f)| �
∑

j�m

j|aj(f)|

⎛

⎝
∑

k�j

ksak(f)
2
∑

k�j

k−s

⎞

⎠

1
2

�
√
DC

∑

j�m

j
s
2
−s+ 3

2 |aj(f)| � DCm−s+2.

Thus, it comes

2||(fm)′ − f ′||2 � Cm−(s−2), (52)

where C > 0 depends on D. Second, for the variance term, straightforward computations lead to

E

⎡

⎣

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

m−1∑

j=0

(â
(0)
j − aj(f))�

′
j

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2⎤

⎦

=
1

n

+∞∫

0

Var

⎛

⎝
m−1∑

j=0

�j(X1)�
′
j(x)

⎞

⎠ dx � 1

n

+∞∫

0

E

⎡

⎣

⎛

⎝
m−1∑

j=0

�j(X1)�
′
j(x)

⎞

⎠

2⎤

⎦ dx.

By the orthonormality of (�j)j and (A2), we obtain
+∞∫

0

E

⎡

⎣(
m−1∑

j=0

�j(X1)�
′
j(x))

2

⎤

⎦ dx � ||f ||∞
m−1∑

j,k=0

+∞∫

0

+∞∫

0

�j(u)�
′
j(x)�k(u)�

′
k(x)dudx

= ||f ||∞
m−1∑

j=0

(1 + 4j) � 3||f ||∞m2.

From this and (52), the result follows.
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5.6. Proof of Proposition 3.2

By the Pythagoras Theorem, we have the bias-variance decomposition E
[
||f̃ ′

m,K − f ′||2
]
= ||f ′ −

f ′
m||2 + E

[
||f̃ ′

m,K − f ′
m||2

]
. As �j(0) =

√
2, it follows that

f̃ ′
m,K − f ′

m =

m−1∑

j=0

[

−
√
2(f̂K(0) − f(0))− 1

n

n∑

i=1

(�′j(Xi)− E[�′j(Xi)])

]

�j.

From the orthonormality of (�j)j , it follows

E
[
||f̃ ′

m,K − f ′
m||2

]
=

m−1∑

j=0

E

[

−
√
2(f̂K(0)− f(0))− 1

n

n∑

i=1

(�′j(Xi)− E[�′j(Xi)])

]2

� 4mE

[
(f̂K(0)− f(0))2

]
+ 2

m−1∑

j=0

E

⎡

⎣

(
1

n

n∑

i=1

(�′j(Xi)− E[�′j(Xi)])

)2
⎤

⎦ .

Finally, using that the (Xi)i are i.i.d. lead to the result in the second variance term.

5.7. Proof of Theorem 3.1

We have the decomposition:

γn(t)− γn(s) = ||t− f ′||2 − ||s− f ′||2 − 2〈s− t, f ′〉 − 2

n

n∑

i=1

(s′ − t′)(Xi)− 2(s(0) − t(0))f̂K(0)

and as 〈t, f ′〉 = −t(0)f(0)−
∫
t′f, we get

γn(t)− γn(s) = ||t− f ′||2 − ||s− f ′||2 − 2νn(s− t)− 2(s(0)− t(0))(f̂K(0)− f(0))

with νn(t) =
1

n

n∑

i=1

t′(Xi)− 〈t′, f〉. (53)

First note that for

f ′
m,K =

m−1∑

j=0

a
(1)
j,K�j , a

(1)
j,K = E[â

(1)
j,K] = 〈f ′, �j〉+ �j(0)(f(0) − E[f̂K(0)]

it holds that

||f ′ − f ′
m,K ||2 =

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

∞∑

j=0

〈f ′, �j〉�j −
m−1∑

j=0

〈f ′, �j〉�j −
m−1∑

j=0

�j(0)
(
f(0)− E[f̂K(0)]

)
�j

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

=
∑

j�m

〈f ′, �j〉2 + 2

m−1∑

j=0

(
f(0)− E[f̂K(0)]

)2
= ||f ′ − f ′

m||2 + 2m
(
f(0)− E[f̂K(0)]

)2
.

Let us start by writing that, by definition of m̂K , it holds, ∀m ∈ Mn,

γn(f̂ ′
m̂K ,K) + penK(m̂K) � γn(f

′
m,K) + penK(m),

which yields, with (53) and notations introduced in (29),

||f̂ ′
m̂K ,K − f ′||2 � ||f ′

m,K − f ′||2 + penK(m) + 2νn(f
′
m,K − f̂ ′

m̂K ,K)− pen1(m̂K)

+ 2(f ′
m,K(0)− f̂ ′

m̂K ,K(0))(f̂K(0)− f(0))− pen2,K(m̂K)

� ||f ′
m,K − f ′||2 + penK(m) +

1

4
||f ′

m,K − f̂ ′
m̂K ,K ||2 + 8 sup

t∈Sm∨m̂K

ν2n(t)− pen1(m̂K)
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+ 16(m ∨ m̂K)[f̂K(0)− f(0)]2 − pen2,K(m̂K).

To get the last line, we write that, for any t ∈ Sm,

|t(0)| =
√
2

∣
∣
∣
∣
∣
∣

m−1∑

j=0

aj(t)

∣
∣
∣
∣
∣
∣
�

√
√
√
√2m

m∑

j=0

a2j(t) �
√
2m||t||,

and we use that 2xy � x2/8 + 8y2 for all real x, y. We obtain

1

2
||f̂ ′

m̂K ,K − f ′||2 � 3

2
||f ′

m,K − f ′||2 + penK(m) + 16m(f̂K(0)− f(0))2

+ 8

(

sup
t∈Sm∨m̂K

,||t||=1
ν2n(t)− p1(m ∨ m̂K)

)

+

+ 8p1(m ∨ m̂K)− pen1(m̂K)

+ 16m̂K

[

(f̂K(0)− f(0))2 − c2(||f ||∞ ∨ 1)K
log(n)

n

]

, (54)

where

p1(m) = b(1 + 2 log(n))||f ||∞
m2

n
, b > 0.

The following Lemma 5.5 can be proved using the Talagrand inequality (see Appendix B.2).
Lemma 5.5. Under the assumptions of Theorem 3.1, and b � 6,

∑

m∈Mn

E

[

sup
t∈Sm,||t||=1

ν2n(t)− p1(m)

]

+

� c

n
.

It follows that

E

(

sup
t∈Sm∨m̂K

,||t||=1
ν2n(t)− p1(m ∨ m̂K)

)

+

�
∑

m′∈Mn

E

(

sup
t∈Sm′∨m,||t||=1

ν2n(t)− p1(m ∨m′)

)

+

� c

n
. (55)

This implies that 8p1(m ∨ m̂K) � pen1(m) + pen1(m̂K) for c1–defined in (29)–large enough.
Moreover, let a > 0 and

ΩK :=

{∣
∣
∣
∣
∣
1

n

n∑

i=1

(ZK
i − E(ZK

i ))

∣
∣
∣
∣
∣
�
√

a(||f ||∞ ∨ 1)
K log(n)

n

}

,

where ZK
i :=

∑K−1
j=0 �j(Xi). To apply the Bernstein Inequality (see Appendix B.3), we compute s2 =

||f ||∞K and b =
√
2K and note that K log(n)/n � 1. Thus, we get that there exist constants c0, c such

that

for a > c0, P(Ωc
K) � c

n4
. (56)

On ΩK , it holds that

(f̂K(0) − fK(0))2 =

(
1

n

n∑

i=1

(ZK
i − E(ZK

i ))

)2

� 2a(||f ||∞ ∨ 1)K
log(n)

n
. (57)

For any Kn � [n/ log(n)] satisfying condition (27), we have

E

{

m̂Kn

[

(f̂Kn(0)− f(0))2 − c2(||f ||∞ ∨ 1)Kn
log(n)

n

]}
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� E

{

m̂Kn

[

(f̂Kn(0)− fKn(0))
2 − (c2 − 2)(||f ||∞ ∨ 1)Kn

log(n)

n

]}

.

Now we note that |f̂K(x)| � 2K for all x ∈ R
+ and any integer K and by using the definition of (57),

provided that c2 > 2a+ 2, we obtain

E

{

m̂Kn

[

(f̂Kn(0)− fKn(0))
2 − (c2 − 2)(||f ||∞ ∨ 1)Kn

log(n)

n

]}

� E

{

m̂Kn

[

(f̂Kn(0)− fKn(0))
2 − (c2 − 2)(||f ||∞ ∨ 1)Kn

log(n)

n

]

1ΩKn

}

+ E

{

m̂Kn

[

(f̂Kn(0) − fKn(0))
2 − (c2 − 2)(||f ||∞ ∨ 1)Kn

log(n)

n

]

1Ωc
Kn

}

� Cn5/2
P(Ωc

Kn
) � 1

n
,

the term on ΩKn being less than or equal to 0. Plugging this and (55) into (54), we get

E

(
||f̂ ′

m̂K ,K − f ′||2
)
� 3||f ′

m,K − f ′||2 + 4penK(m) + 32m(f̂K(0) − f(0))2 +
c

n
,

which gives the result of Theorem 3.1. �

APPENDIX A

PROOFS OF AUXILIARY RESULTS

A.1. Proof of Lemma 2.1

In the Hermite case ϕj = hj and f : R �→ [0,∞), allowing d successive integration by parts, it holds
that

aj(f
(d)) =

∫

R

f (d)(x)hj(x)dx =

[
d−1∑

k=0

(−1)kf (d−1−k)(x)h
(k)
j (x)

]+∞

−∞

+ (−1)d
∫

R

h
(d)
j (x)f(x)dx. (A.1)

By definition for all j � 0, hj(x) = cjHj(x)e
−x2

2 where Hj is a polynomial. Then, its kth derivative,

0 � k � d− 1, is a polynomial multiplied by e−x2/2 and lim|x|→+∞ h
(k)
j (x) = 0. This together with (A2),

gives that the bracket in (A.1) is null and the result follows.
Similarly in the Laguerre case, (A.1) holds integrating on [0,∞) instead of R and replacing hj by

�j . The term in the bracket is null at 0 from (A3). It is also null at infinity using (A2) together with

the fact that �j are polynomials multiplied by e−x leading similarly to limx→∞ f (d−1−k)(x)�
(k)
j (x) = 0,

0 � k � d− 1, j � 0. The result follows.

A.2. Proof of Lemma 2.2

We control the quantity

∑

j�0

js−d〈f (d), hj〉2 =
d−1∑

j=0

js−d〈f (d), hj〉2 +
∑

j�d

js−d〈f (d), hj〉2. (A.2)

The first term is a constant which depending on d. For the second term using Lemma 5.2, we obtain

∑

j�d

js−d〈f (d), hj〉2 =
∑

j�d

js−d

(
d∑

k=−d

b
(d)
k,j

∫
hj+k(x)f(x)dx

)2
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� Cd

∑

j�d

js
d∑

k=−d

(∫
hj+k(x)f(x)dx

)2

= Cd

d∑

k=−d

∑

j�d

js〈hj+k, f〉2

= Cd

d∑

k=−d

⎛

⎝
∑

j�d+k

|j − k|s〈hj , f〉2
⎞

⎠ � Cd

d∑

k=−d

⎛

⎝
∑

j�0

2sjs〈hj , f〉2
⎞

⎠ = (2d+ 1)2sDCd.

Inserting this in (59), we obtain the announced result.

A.3. Proof of Lemma 2.3

We establish the result for d = 1, the general case is an immediate consequence. It follows
from the definition of W̃ s

L(D) that (θ′)(j), 0 � j � s− 1 are in C([0,∞)). Moreover, it holds that
x �→ xk/2(θ′)(j)(x) ∈ L

2(R+) for all 0 � j < k � s− 1. The case k = j is obtained using that θ(j) is
continuous on C([0,∞)) and that x �→ x(j+1)/2(θ′)(j)(x) ∈ L

2(R+). It follows that

|||θ′|||2s =

s−1∑

j=0

∣
∣
∣
∣
∣
∣xj/2

j∑

k=0

(
j

k

)

(θ′)(k)
∣
∣
∣
∣
∣
∣
2
� 2

s−1∑

j=0

∣
∣
∣
∣
∣
∣xj/2

j−1∑

k=0

(
j

k

)

(θ′)(k)
∣
∣
∣
∣
∣
∣
2
+ 2

s−1∑

j=0

∣
∣
∣
∣
∣
∣xj/2(θ′)(j)

∣
∣
∣
∣
∣
∣
2

� C + 2

s−1∑

j=0

||x(j+1)/2(θ′)(j)(x)||2 < ∞,

where C depends on D. Finally, using the equivalence of the norms |.|s and |||.|||s, the value of D′ follows
from the latter inequality.

A.4. Proof of Lemma 5.1

Consider the decomposition
+∞∫

0

x−k(�j−k,(k)(x/2))
2f(x/2)dx =

6∑

i=1

Ii,

where for ν = 4j − 2k + 2, j � k, we used the decomposition (0,∞) = (0, 1
ν ] ∪ ( 1ν ,

ν
2 ] ∪ (ν2 , ν − ν1/3] ∪

(ν − ν1/3, ν + ν/13] ∪ (ν + ν1/3, 3ν/2] ∪ (3ν/2,∞). Using [2] (see Appendix B.1) and straightforward
inequalities give

I1 �

1
ν∫

0

x−k(xν)kf(x/2)dx �

1
ν∫

0

x−k(xν)−1/2f(x/2)dx � ν−1/2
E[X−k−1/2],

I2 �

ν
2∫

1/ν

x−k((xν)−1/4)2f(x/2)dx = ν−1/2

ν
2∫

1/ν

x−k−1/2f(x/2)dx � ν−1/2
E[X−k−1/2],

I3 �
ν−ν1/3∫

ν
2

x−k(ν−1/4(ν − x)−1/4)2f(x/2)dx = ν−1/2

ν−ν1/3∫

ν
2

x−k(ν − x)−1/2f(x/2)dx � ν−1/2,

I4 �
ν+ν1/3∫

ν−ν1/3

x−k(ν−1/3)2f(x/2)dx � ν−2/3

ν+ν1/3∫

ν
2

x−kf(x/2)dx � ν−1/2ν−k � ν−1/2,
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I5 �
3ν/2∫

ν+ν1/3

x−kν−1/2(x− ν)−1/2e−2γ1ν−1/2(x−ν)3/2f(x/2)dx � ν−1/2ν−1/6ν−k

∫
f(x/2)dx � ν−1/2,

I6 �
+∞∫

3ν/2

x−ke−2γ2xf(x/2)dx � e−3γ2ν/2 = O(ν−1/2).

Gathering these inequalities give the announced result.

A.5. Proof of Lemma 5.2

The result is obtained by induction on d. If d = 1, h′j is given by (5), with b
(1)
−1,j−1 = j1/2/

√
2, b0,j = 0

and b
(1)
1,j = (j + 1)1/2/

√
2, ∀j � 1. Thus, it holds b(1)k,j = O(j1/2) and (37) is satisfied for d = 1. Let P(d)

the proposition given by Eq. (37) and assume P(d) holds and we establish P(d+ 1). It holds using
successively P(d) and (5) that

h
(d+1)
j (x) =

d∑

k=−d

b
(d)
k,j

[√
j + k√
2

hj+k−1 −
√
j + k + 1√

2
hj+k+1

]

=
d−1∑

k′=−d−1

b
(d)
k′+1,j

√
j + k′ + 1√

2
hj+k′ −

d+1∑

k′=−d+1

b
(d)
k′−1,j

√
j + k′√

2
hj+k′ :=

d+1∑

k=−d−1

b
(d+1)
k,j hj+k′ ,

where b
(d)
k,j = O(jd/2), ∀j � d � |k| and b

(d+1)
k,j = b

(d)
k+1,j

√
j+k+1√

2
1|k|�d−1 − b

(d)
k−1,j

√
j+k√
2

1|k|�d+1. It fol-

lows that |b(d+1)
k,j | � 2

√
(j + d+ 1)/2j

d
2 � Cdj

d+1
2 , |k| � d � j, which completes the proof.

Proof of Lemma 5.4
A.6.1. Proof of part (i). First, it holds that

E

[(

sup
t∈Sm+Sm̂,||t||=1

|νn,d(t)|2 − p(m, m̂n)

)

+

]

�
∑

m′∈Mn,d

E

[(

sup
t∈Sm+Sm′ ,||t||=1

|νn,d(t)|2 − p(m,m′)

)

+

]

, (A.3)

which we bound applying a Talagrand Inequality (see Appendix B.2). Following notations of Appendix
B.2, we have three terms H2, v, and M1 to compute. Let us denote by m∗ = m ∨m′, for t ∈ Sm + Sm′ ,
||t|| = 1, it holds

||t||2 =

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

m∗−1∑

j=0

ajϕj

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

=
m∗−1∑

j=0

a2j = 1.

ComputingHHH2. By the linearity of νn,d and the Cauchy–Schwarz inequality, we have

νn,d(t)
2 =

⎛

⎝
m∗−1∑

j=0

ajνn,d(ϕj)

⎞

⎠

2

�
m∗−1∑

j=0

a2j

m∗−1∑

j=0

ν2n,d(ϕj) =

m∗−1∑

j=0

ν2n,d(ϕj).

One can check that the latter is an equality for aj = νn,d(ϕj). Therefore, taking expectation, it follows

E

[

sup
t∈S∗

m,||t||=1
ν2n,d(t)

]

=

m∗−1∑

j=0

Var(νn,d(ϕj)) =
1

n

m∗−1∑

j=0

Var(ϕ(d)
j (X1))
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� 1

n

m∗−1∑

j=0

E

[
ϕ
(d)
j (X1)

2
]
=

Vm∗,d

n
=: H2.

Computing vvv. It holds for t ∈ Sm + Sm′ , ||t|| = 1,

Var
(
(−1)dt(d)(X1)

)
�
∫

t(d)(x)2f(x)dx =

∫
⎛

⎝
m∗−1∑

j=0

ajϕ
(d)
j (x)

⎞

⎠

2

f(x)dx

� 2

∫
⎛

⎝
d−1∑

j=0

ajϕ
(d)
j (x)

⎞

⎠

2

f(x)dx+ 2

∫
⎛

⎝
m∗−1∑

j=d

ajϕ
(d)
j (x)

⎞

⎠

2

f(x)dx. (A.4)

The first term of the previous inequality is a constant depending only on d. For the second term, we
consider separately the Laguerre and Hermite cases.

The Laguerre case (ϕj = �j). Using (36) and the Cauchy–Schwarz inequality, it holds that

∫
⎛

⎝
m∗−1∑

j=d

aj�
(d)
j (x)

⎞

⎠

2

f(x)dx � 3d
d∑

k=0

(
d

k

)∫
⎛

⎝
m∗−1∑

j=d

aj

(
j!

(j − k)!

)1
2

x−
k
2 �j−k,(k)(x)

⎞

⎠

2

f(x)dx

� 3d
d∑

k=0

(
d

k

)

sup
x∈R+

f(x)

xk

m∗−1∑

j=d

a2j
j!

(j − k)!
� C(d)(m∗)d, (A.5)

where we used the orthonormality of (�j,(k))j�0 and where C(d) is a constant depending only on d and

supx∈R+
f(x)
xk .

The Hermite case (ϕj = hj). Similarly, using Lemma 5.2 and the orthonormality of hj , it follows

∫
⎛

⎝
m∗−1∑

j=d

ajh
(d)
j (x)

⎞

⎠

2

f(x)dx � (2d + 1)

d∑

k=−d

∫
⎛

⎝
m∗−1∑

j=d

ajbk,jhj+k(x)

⎞

⎠

2

f(x)dx

� C(d)||f ||∞(m∗)d. (A.6)

Plugging (A.5) or (A.6) in (A.4), we set in the two cases v := c1(m
∗)d where c1 depends on d and

either on supx∈R+
f(x)
xk (Laguerre case) or ||f ||∞ (Hermite case).

ComputingMMM1. The Cauchy Schwarz Inequality and ||t|| = 1 give

||(−1)dt(d)||∞ =

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

m∗−1∑

j=0

(−1)dajϕ
(d)
j

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∞

� sup
x∈R

√
√
√
√

m∗−1∑

j=0

ϕ
(d)
j (x)2. (A.7)

The Laguerre case. We use the following Lemma whose proof is a consequence of (2) and an
induction on d.

Lemma A.1. For �j given in (1), the dth derivative of �j is such that ||�(d)j ||∞ � Cd(j +1)d, ∀j � 0

and where Cd is a positive constant depending on d.
Using Lemma A.1, we obtain

m∗−1∑

j=0

�
(d)
j (x)2 � C2

d(m
∗)2d+1. (A.8)

The Hermite case. The d first terms in the sum in (A.7) can be bounded by a constant depending
only on d. For the remaining terms, Lemma 5.2 and ||hj ||∞ � φ0 (see (4)) give

m∗−1∑

j=d

[h
(d)
j (x)]2 � C2

dφ
2
0

d∑

k=−d

m∗−1∑

j=d

jd � C(m∗)d+1, (A.9)
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where C is a positive constant depending on d and φ0.

Injecting either (A.8) or (A.9) in (A.7), we set M1 = O(md+ 1
2 ) in the Laguerre case or M1 =

O(m
d
2
+ 1

2 ) in the Hermite case.
Now, we apply the Talagrand inequality see Appendix B.2 with ε = 1/2, it follows

E

[(

sup
t∈Sm+Sm′ ,||t||=1

|νn,d(t)|2 − 4H2

)

+

]

� C1

n

(

v exp

(

−C2
nH2

v

)

+ C3
M2

1

n
exp

(

−C4
nH

M1

))

:=
C1

n
(Ud(m

∗) + Vd(m
∗)) .

The Laguerre case. We have

Ud(m
∗) = c1(m

∗)d exp

(

−C2
Vm∗,d

c1(m∗)d

)

and Vd(m
∗) = C3c2

(m∗)2d+1

n
exp

(

−C4

√
n

√
Vm∗,d

c2(m∗)d+
1
2

)

.

From (41) and the value of mn(d), we obtain

Ud(m
∗) � c1(m

∗)d exp(−C ′
2m

∗ 1
2 ) and Vd(m

∗) � C3c2(m
∗)d+

1
2 exp(−C ′

4

√
n(m∗)−

d
2
− 1

4 ).

Using the value mn(d), it holds (m∗)d+1/2 � n/log3(n), which implies (recall m∗ = m ∨m′)
∑

m′∈Mn,d

Vd(m
∗) � C

∑

m′∈Mn,d

(m∗)d+
1
2 exp

(
−C4 log

2(n)
)
� Σd,2,

where Σd,2 is a constant depending only on d. Next, it follows
n∑

m′=1

Ud(m
∗) =

m∑

m′=1

Ud(m
∗) +

n∑

m′=m

Ud(m
∗) = c1m

d+1 exp(−C ′
2m

1
2 ) +

n∑

m′=m

c1(m
′)d exp(−C ′

2m
′ 1
2 ).

The function m �→ md+1 exp(−C ′
2m

1
2 ) is bounded and the sum is finite on m′, it holds

C1

n∑

m′=1

Ud(m
∗) � Σd,1, where Σd,1 depends only on d.

The Hermite case. Only the second term Vd(m
∗) changes. Here, it is given by

Vd(m
∗) = C3c2

(m∗)d+1

n
exp

(

−C3

√
n

√
Vm∗,d

c2(m∗)
d
2
+ 1

2

)

� C3c2(m
∗)1/2 exp(−C ′

4

√
n(m∗)−

1
4 )

� C3c2(m
∗)1/2 exp(−C ′

4(m
∗)

d
2 ),

where we used (46) and the value of mn(d). We derive that
∑

m′∈Mn,d
Vd(m

∗) � Σd,2.

Gathering all terms, it follows

E

[(

sup
t∈Sm+Sm′ ,||t||=1

|νn,d(t)|2 − 4H2

)

+

]

� Σ

n
, where Σ = Σd,1 +Σd,2.

Plugging this in (A.3) gives the announced result.
A.6.2. Proof of part (ii). We use the Bernstein Inequality (see Appendix B.3) to prove the result.

Define

Z
(m)
i =

m−1∑

j=0

(ϕ
(d)
j (Xi))

2, then, V̂m,d =
1

n

n∑

i=1

Z
(m)
i
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We select s2 and b such that Var(Z(m)
i ) � s2 and |Z(m)

i | � b. By the computation of M1 (see proof of
part (i)), we set b := C∗mα, with α = 2d+ 1 (Laguerre case) or α = d+ 1 (Hermite case), where C∗

depends on d. For s2, using that Var(Z(m)
i ) � E[(Z

(m)
i )2] � b

∑m−1
j=0 E

[
(ϕ

(d)
j (Xi))

2
]
= C∗mαVm,d =:

s2. Applying the Bernstein inequality, we have for Sn = n(V̂m,d − Vm,d)

P

(∣
∣
∣
∣
Sn

n

∣
∣
∣
∣ �

√
2xC∗mαVm,d

n
+

C∗mαx

3n

)

� 2e−x, ∀x > 0. (A.10)

Choose x = 2 log(n) and define the set

Ω :=

{

m ∈ Mn,d,
1

n
|Sn| ≤ 2

√
C∗mα log(n)Vm,d

n
+

2C∗mα log(n)

3n

}

.

Consider the decomposition,

E
[
(pend(m̂n)− p̂end(m̂n))+

]
� E

[
(pend(m̂n)− p̂end(m̂n))+ 1Ω

]

+ E
[
(pend(m̂n)− p̂end(m̂n))+ 1Ωc

]
.

Using 2xy � x2 + y2, we have on Ω

|V̂m̂,d − Vm̂,d| �
Vm̂,d

2
+

2C∗m̂α log(n)

n
+

2C∗m̂α log(n)

3n
=

Vm̂,d

2
+

8

3

C∗m̂α log(n)

n
.

The constraint on mn gives m̂d+1/2 � Cn/(log(n))2 together with (41) giving Vm̂,d � c∗m̂d+1/2 give for

α = 2d+ 1 (Laguerre case) that 8C∗

3
m̂α log(n)

n � 8CC∗

3c∗
Vm̂,d

log(n) �
Vm̂,d

4 , for n large enough and

E
[
(pend(m̂n)− p̂end(m̂n))+ 1Ω

]
� 3

4
E[pend(m̂n)]. (A.11)

In the Hermite case (α = d+ 1) computations are similar as m̂d+1 � m̂2d+1. For the control on Ωc, we
write, using (A.10),

E
[
(pend(m̂n)− p̂end(m̂n))+ 1Ωc

]
� 2κP(Ωc) � 2κ

∑

m∈Mn,d

2e−2 log(n) :=
Σ2

n
. (A.12)

Gathering (A.11) and (A.12), we get the desired result.

APPENDIX B

SOME INEQUALITIES

B.2. Asymptotic Askey and Wainger Formula

From [2], we have for ν = 4k + 2δ + 2, and k large enough

|�k,(δ)(x/2)| � C

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a) (xν)δ/2 if 0 � x � 1/ν

b) (xν)−1/4 if 1/ν � x � ν/2

c) ν−1/4(ν − x)−1/4 if ν/2 � x � ν − ν1/3

d) ν−1/3 if ν − ν1/3 � x � ν + ν1/3

e) ν−1/4(x− ν)−1/4e−γ1ν−1/2(x−ν)3/2 if ν + ν1/3 � x � 3ν/2

f) e−γ2x if x � 3ν/2,

where γ1 and γ2 are positive and fixed constants.
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B.2. A Talagrand Inequality

The Talagrand inequalities have been proven in [41] and reworked by [26]. This version is given in [23].
Let (Xi)1�i�n be independent real random variables and

νn(t) =
1

n

n∑

i=1

(t(Xi)− E[t(Xi)])

for t in F a class of measurable functions. If there exist M1, H , and v such that:

sup
t∈F

||t||∞ � M1, E[sup
t∈F

| νn(t) |] � H, sup
t∈F

1

n

n∑

i=1

Var(t(Xi)) � v,

then, for ε > 0,

E

[(

sup
t∈F

|ν2n(t)| − 2(1 + 2ε)H2

)

+

]

� 4

K1

(
v

n
exp

(

−K1ε
nH2

v

)

+
49M2

1

K1C2(ε)n2
exp

(

−K ′
1C(ε)

√
ε
nH

M1

))

,

where C(ε) = (
√
1 + ε− 1) ∧ 1, K1 = 1/6 and K ′

1 a universal constant.

B.3. Bernstein Inequality ([29])

Let X1, . . . Xn, n independent real random variables. Assume there exist two constants s2 and b,
such that Var(Xi) � s2 and |Xi| � b. Then, for all x positive, we have

P

(

|Sn| �
√
2ns2x+

bx

3

)

� 2e−x with Sn =

n∑

i=1

(Xi − E[Xi]).
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Journal of Statistics, Series A, 373–382 (1967).

9. B. Bongioanni and J. L. Torrea, “What is a Sobolev space for the Laguerre function systems?” Studia Math.
192 (2), 147–172 (2009).

10. J. E. Chacón and T. Duong, “Data-driven density derivative estimation, with applications to nonparametric
clustering and bump hunting,” Electronic Journal of Statistics 7, 499–532 (2013).

11. J. E. Chacón, T. Duong, and M. Wand, “Asymptotics for general multivariate kernel density derivative
estimators,” Statistica Sinica, 807–840 (2011).

12. Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE transactions on pattern analysis and machine
intelligence 17 (8), 790–799 (1995).

MATHEMATICAL METHODS OF STATISTICS Vol. 29 No. 1 2020



OPTIMAL ADAPTIVE ESTIMATION 31

13. F. Comte and V. Genon-Catalot, “Laguerre and Hermite bases for inverse problems,” J. Korean Statist. Soc.
47 (3), 273–296 (2018).

14. F. Comte and N. Marie, “Bandwidth selection for the Wolverton–Wagner estimator,” J. Statist. Plann.
Inference 207, 198–214 (2020).

15. S. Efromovich, “Simultaneous sharp estimation of functions and their derivatives,” Ann. Statist. 26 (1),
273–278 (1998).

16. S. Efromovich, “Nonparametric curve estimation: methods, theory, and applications,” Springer Series in
Statistics (1999).

17. C. R. Genovese, M. Perone-Pacifico, I. Verdinelli, and L. Wasserman, “Non-parametric inference for density
modes,” J. R. Stat. Soc. Ser. B. Stat. Methodol. 78 (1), 99–126 (2016).
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19. W. Härdle, J. Hart, J. S. Marron, and A. B. Tsybakov, “Bandwidth choice for average derivative estimation,”
Journal of the American Statistical Association 87 (417), 218–226 (1992).
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