
ISSN 1066-5307, Mathematical Methods of Statistics, 2019, Vol. 28, No. 4, pp. 307–318. c© Allerton Press, Inc., 2019.

An Asymptotically Optimal Transform
of Pearson’s Correlation Statistic

I. Pinelis1*

1Dept. Math. Sci., Michigan Technol. Univ., Houghton, Michigan, USA
Received July 28, 2019

Abstract—It is shown that for any correlation-parametrized model of dependence and any given
significance level α ∈ (0, 1), there is an asymptotically optimal transform of Pearson’s correlation
statistic R, for which the generally leading error term for the normal approximation vanishes for all
values ρ ∈ (−1, 1) of the correlation coefficient. This general result is then applied to the bivariate
normal (BVN) model of dependence and to what is referred to in this paper as the SquareV
model. In the BVN model, Pearson’s R turns out to be asymptotically optimal for a rather unusual
significance level α ≈ 0.240, whereas Fisher’s transform RF of R is asymptotically optimal for the
limit significance level α = 0. In the SquareV model, Pearson’s R is asymptotically optimal for a still
rather high significance level α ≈ 0.159, whereas Fisher’s transform RF of R is not asymptotically
optimal for any α ∈ [0, 1]. Moreover, it is shown that in both the BVN model and the SquareV model,
the transform optimal for a given value of α is in fact asymptotically better than R and RF in wide
ranges of values of the significance level, including α itself. Extensive computer simulations for the
BVN and SquareV models of dependence suggest that, for sample sizes n ≥ 100 and significance
levels α ∈ {0.01, 0.05}, the mentioned asymptotically optimal transform of R generally outperforms
both Pearson’s R and Fisher’s transform RF of R, the latter appearing generally much inferior to
both R and the asymptotically optimal transform of R in the SquareV model.
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1. INTRODUCTION

A statistic closely related to Pearson’s R is commonly known as the Fisher z transform, defined by
the formula

RF := tanh−1(R) =
1
2

ln
1 + R

1 − R
. (1.1)

An advantage of using RF (as opposed to R) in making statistical inferences about the true correlation
coefficient ρ is usually ascribed to its variance-stabilizing property in normal populations, see, e.g..
Fisher [4], Gayen [5], and Hotelling [6], that is, n Var RF → 1 for all ρ ∈ (−1, 1) as n → ∞

(
as opposed

to n Var R → (1 − ρ2)2
)

whenever the underlying distribution is bivariate normal. Everywhere here, n
denotes the sample size.

In his discussion of Hotelling’s paper [6], Kendall provides heuristics suggesting that such variance
stabilization of the distribution of a statistic may often result in it being closer to normality. Namely, if an
approximate constancy of the variance of a statistic were the same as an approximate constancy of its
distribution itself, and if the distribution is close to normality at least for one value of the parameter (say,
ρ, as in the present case), then it would be close to normality for all values of ρ. For normal populations
and large enough sample sizes, the Fisher z transform indeed brings the distribution of the correlation
statistic closer to normality, and it is especially effective for values of ρ far from 0. However, it is well
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known (see, e.g., [1, 10]) that the closeness of the distribution of a statistic to normality is usually mainly
determined, not by the variance, but by the third moments of the appropriately standardized statistic.

In this paper, we shall see that for a general and most common class of models of dependence,
including the bivariate normal (BVN) model, and for each given significance level α ∈ (0, 1) there is
a certain transform Ψα(R) of Pearson’s statistic R that assures the vanishing of the generally leading
term of the asymptotics of the probability that an approximately standardized version of the statistic
Ψα(R) exceeds the standard normal critical value

zα := Φ−1(1 − α); (1.2)

here, as usual, Φ is the standard normal cumulative distribution function (cdf) and Φ−1 is its inverse;
unless otherwise specified, all the asymptotics here are for large sample sizes n. Thus, the transform
Ψα(R) of R is asymptotically optimal: its distribution is asymptotically the closest to normality exactly
at the critical value.

Once this optimality result is obtained for the general class of models of dependence, the rest of the
paper is devoted to detailed analysis of the optimal transform Ψα(R) of R in the BVN model and another
specific model of dependence, referred to in this paper as the SquareV model.

We shall see that, in the BVN model, the mentioned family (Ψα(R))α∈(0,1) of transforms of Pearson’s
statistic R includes R itself: namely,

R = ΨαP
(R), (1.3)

where

αP := 1 − Φ(1/
√

2) ≈ 0.240.

Thus, Pearson’s statistic R is asymptotically optimal for a significance level α of about 24%, but such a
significance level is rather unusual in statistical practice.

As for Fisher’s transform RF of R, we shall see that, again in the BVN model,

RF = Ψ0(R) := lim
α↓0

Ψα(R), (1.4)

which means that Fisher’s transform is asymptotically optimal for the significance level

αF := 0.

Now one might explain the fact that for the usually rather small significance levels, such as 0.05 or 0.01,
Fisher’s statistic RF is asymptotically closer to normality than Pearson’s statistic R by noting that the
significance level αF = 0 (for which RF is asymptotically optimal) is closer to 0.05 and especially to 0.01
than the significance level αR ≈ 0.240 (for which R is asymptotically optimal).

As for the SquareV model, there Pearson’s R is asymptotically optimal for a still rather high
significance level α ≈ 0.159, whereas Fisher’s transform RF of R is not asymptotically optimal for any
α ∈ [0, 1].

It should be noted that in both the BVN model and the SquareV model, the transform optimal for a
given value of α is in fact asymptotically better than R and RF in wide ranges of values of the significance
level, including α itself.

We have also conducted extensive computer simulations for the BVN and SquareV models of
dependence, which suggest that, for sample sizes n ≥ 100 and significance levels α ∈ {0.01, 0.05}, the
mentioned asymptotically optimal transform of R generally outperforms both Pearson’s R and Fisher’s
transform RF of R, the latter appearing generally much inferior to both R and the asymptotically optimal
transform of R in the SquareV model.

The rest of the paper is organized as follows.
In Section 2 we present an asymptotic expansion for statistics that are general smooth nonlinear

functions of the sample mean of iid random vectors in R
p. This expansion, which may be viewed as a

far-reaching refinement of the delta method, is a special case of results by Bhattacharya and Ghosh [1].
For Berry–Esseen-type bounds for general nonlinear statistics, see, e.g., [2, 10].

In Section 3, the mentioned asymptotic expansion is specialized for the cases of Pearson’s correlation
statistic R and its smooth enough transforms. A key observation there is that the main term of
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the asymptotic for such a transform of R differs from the corresponding main term for R itself only
by a comparatively simple expression involving the first two derivatives of the transform function ψ.
This allows one to obtain, for any correlation-parametrized model of dependence and for any given
significance level α ∈ (0, 1), a rather simple second-order ordinary differential equation (ODE) for the
optimal transform function ψ that makes the main term of the asymptotic for the asymptotically optimal
transform of R vanish for all values ρ ∈ (−1, 1) of the correlation coefficient. This ODE can be explicitly
solved for a number of models of dependence, including the important BVN model and models with a
linear dependence of the correlation parameter. The mentioned SquareV model is a model with such a
linear dependence.

The BVN model is considered in detail in Section 4.
A similar treatment of the SquareV model is given in Section 5.
Section 6 is a summary of the results of this paper.

2. ASYMPTOTIC EXPANSIONS FOR SMOOTH NONLINEAR STATISTICS

Let

V, V1, V2, . . .

be independent identically distributed (iid) zero-mean random vectors in R
p with E ‖V ‖3 < ∞, where

p is a natural number and ‖ · ‖ is the Euclidean norm in R
p, which latter will be identified, as

usual, with the space of all p × 1 column matrices. Assume also that the Cramér-type condition
lim sup‖t‖→∞ |E exp(itT V )| < 1 is satisfied, where i is the imaginary unit and T denotes the transpo-
sition, in this case of a column matrix t ∈ R

p; for this Cramér-type condition to hold, it is enough that,
for some natural k, the k-fold convolution of the distribution of V have a nonzero absolutely continuous
component. Let Σ stand for the covariance matrix of V :

Σ := EV V T . (2.1)

Let f : R
p → R be a function which is twice continuously differentiable in a neighborhood of 0 ∈ R

p

and such that f(0) = 0. Let L and H denote, respectively, the gradient vector and the Hessian matrix of
the function f at 0, so that

f ′(0)(v) = LT v and f ′′(0)(v, v) = vT Hv (2.2)

for all v ∈ R
p. Since V is assumed to be zero-mean, one has ELT V = 0. Introduce now

σ :=
√

E(LT V )2, (2.3)

which will be assumed to be nonzero, so that

Λ :=
LT V

σ

is a well-defined r.v., with zero mean and unit variance. Consider the r.v.

Tn :=
√

n

σ
f(V̄ ),

where of course V̄ := 1
n

∑n
1 Vi. Then, by Theorem 2 of the paper [1] by Bhattacharya and Ghosh,

sup
z∈R

|P(Tn ≤ z) − Ψ3,n(z)| = o
( 1√

n

)
, (2.4)

where

Ψ3,n(z) := Φ(z) +
Δ(z)√

n
, (2.5)

Δ(z) := −
[(EΛ3

6
+ a3

)
(z2 − 1) + a1

]
ϕ(z) (2.6)
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= (Az2 + B)ϕ(z), (2.7)

Φ and ϕ denote, as usual, the distribution and density functions of N(0, 1), and a1, a2, A, and B are
constants depending only on L, H , Σ, σ, and EΛ3 (but not on z or n):

a1 :=
1
2σ

tr HΣ, (2.8)

a3 :=
1

4σ3
(LT ΣL − σ2) tr(HΣ) +

1
2σ3

LT ΣHΣL, (2.9)

A := −
(EΛ3

6
+ a3

)
, (2.10)

B := −A − a1, (2.11)

with tr denoting the trace of a matrix.

Remark 2.1. If the condition E ‖V ‖3 < ∞ is strengthened to E ‖V ‖4 < ∞, then o
(

1√
n

)
in (2.4) can be

replaced by O
(

1
n

)
.

3. ASYMPTOTICS FOR THE PEARSON STATISTIC AND ITS TRANSFORMS

Let (Y,Z), (Y1, Z1), . . . , (Yn, Zn) be independent identically distributed random points in R
2 with a

correlation coefficient ρ ∈ (−1, 1) and E(Y 6 + Z6) < ∞. Pearson’s sample correlation coefficient based
on the observations (Y1, Z1), . . . , (Yn, Zn) is defined by the formula

R := Rn :=
¯Y Z − Ȳ Z̄

√
Ȳ 2 − Ȳ 2

√
Z̄2 − Z̄2

, (3.1)

where Ȳ := 1
n

∑n
1 Yi, Z̄ := 1

n

∑n
1 Zi, Ȳ 2 := 1

n

∑n
1 Y 2

i , Z̄2 := 1
n

∑n
1 Z2

i , and ¯Y Z := 1
n

∑n
1 YiZi; let R

take an arbitrarily assigned value in the interval [−1, 1] if the denominator of the ratio in (3.1) is 0.
Let us assume that Y and Z are each standardized, that is, zero-mean and unit-variance. This

assumption does not diminish generality, because R is invariant with respect to affine transformations
Yi 
→ a + b Yi and Zi 
→ c + dZi of the Yi’s and Zi’s, for any real constants a, b, c, d such that b > 0 and
d > 0.

Observe that

R − ρ = f(V̄ ), (3.2)

where

V := (Y,Z, Y 2 − 1, Z2 − 1, Y Z − ρ) (3.3)

and

f(v) := fρ(v) :=
ρ + v5 − v1v2√

1 + v3 − v2
1

√
1 + v4 − v2

4

− ρ (3.4)

if v = (v1, . . . , v5) ∈ R
5 is such that 1 + v3 − v2

1 > 0 and 1 + v4 − v2
4 > 0; otherwise, let f(v) := 0. In

this case, L = (0, 0,−ρ
2 ,−ρ

2 , 1), whence

σ =
√

E
(
Y Z − ρ

2 (Y 2 + Z2)
)2 and Λ =

Y Z − ρ
2 (Y 2 + Z2)

σ
. (3.5)

As noted in [10], the condition σ = 0 is equivalent to the following exceptional situation: there exists
some κ ∈ R such that the random point (Y,Z) lies almost surely on the union of the two straight lines
through the origin with slopes κ and 1/κ (for κ = 0, these two lines should be understood as the two
coordinate axes in the plane R

2).
It will be assumed in what follows that the random point (Y,Z) is such that σ is never 0.
Then it is easy to check that all the conditions on f and V stated in Section 2 are satisfied, with p = 5;

in particular, f(0) = 0.
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Let now ΔR(z) denote Δ(z) defined by (2.6) with f as in (3.4).
Further, letting

μij := E Y iZj, (3.6)

one has

σ =
1
2

√
ρ2 (μ04 + 2μ22 + μ40) − 4ρ (μ13 + μ31) + 4μ22, (3.7)

σ3 E Λ3 = −ρ3

8
(μ06 + 3μ24 + 3μ42 + μ60)

+ 6ρ2 (μ15 + 2μ33 + μ51) − 12ρ (μ24 + μ42) + 8μ33, (3.8)

and
96σ3

ϕ(z)
ΔR(z) = Δ̃R(z) := 16

[
(z2 − 1)(6μ12μ21 − μ33) + 3σ2z2(μ13 + μ31)

]

− 12ρ
[
(z2 − 1)(4μ03μ21 + 4μ12μ30 + 8μ2

12 − 2μ13μ31 + μ2
13 + 8μ2

21 − 2μ24 + μ2
31 − 2μ42)

+ σ2
(
(2z2 + 1)(μ04 + μ40) + (4z2 − 2)μ22

)]

+ 12ρ2(z2 − 1)
[
2μ03(3μ12 + μ30) + μ04(μ13 − μ31) + 10μ12μ21 − μ13μ40 − μ15

+ 6μ21μ30 + μ31μ40 − 2μ33 − μ51

]

− ρ3(z2 − 1)
[
24μ03μ21 + 12μ2

03 − 6μ04μ40 + 3μ2
04 − 2μ06

+ 24μ12μ30 + 12μ2
12 + 12μ2

21 − 6μ24 + 12μ2
30 + 3μ2

40 − 6μ42 − 2μ60

]
. (3.9)

More generally, let now

ψ : (−1, 1) → R

be a twice continuously differentiable function whose derivative ψ′ does not vanish at any point of the
interval (−1, 1). Let then

g(v) := gρ(v) :=
ψ

(
f(v) + ρ

)
− ψ(ρ)

ψ′(ρ)
(3.10)

for v ∈ R
5, with f as defined in (3.4). Then, in view of (3.2),

ψ(R) − ψ(ρ)
ψ′(ρ)

= g(V̄ ), (3.11)

Note that g(0) = f(0) = 0 and g′(0) = f ′(0), so that σ and Λ for the function g are the same as in (3.5)
(given there for the function f ). Thus, all the conditions stated in Section 2 are satisfied with g in place
of f .

Let now Δψ(R)(z) denote Δ(z) defined by (2.6) with g as in (3.10) in place of f . Then (2.4) will hold
with

τψ,n :=
ψ(R) − ψ(ρ)
ψ′(ρ)σ/

√
n

(3.12)

in place of Tn and Δψ(R)(z) in place of Δ(z). One may note here that τψ,n may be considered an
asymptotically standardized version of ψ(R).

A key observation is that

Δψ(R)(z) = ΔR(z) − ψ′′(ρ)
2ψ′(ρ)

σz2 ϕ(z). (3.13)

To begin using this observation, let us refer to any family (Pρ)ρ∈(−1,1) of distributions of the
random pair (Y,Z) in R

2 parametrized by the correlation coefficient ρ of (Y,Z) as a correlation-
parametrized model (CP) of dependence. The CP condition seems quite natural for parametric
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models of dependence. Indeed, let a real parameter θ represent the strength of the dependence between Y
and Z. Then one should usually expect the correlation coefficient ρ to be a strictly increasing continuous
function g of θ: ρ = g(θ). Replacing then θ by g−1(ρ), one obtains a re-parametrization with ρ as the
new parameter.

In this regard, one may recall the formula

Cov(Y,Z) =
∫∫

R2

aY,Z(y, z) dy dz (3.14)

for the covariance of Y and Z, where aY,Z is the association function of r.v.’s Y and Z, given by the
formula

aY,Z(y, z) := P(Y > y,Z > z) − P(Y > y)P(Z > z)

for all (y, z) ∈ R
2. Since P(Y > y) = P(−Y < −y), formula (3.14) can be rewritten as

Cov(Y,Z) =
∫∫

R2

[FY,Z(y, z) − FY (y)FZ(z)] dy dz, (3.15)

where FY,Z is the joint cdf of the random pair (Y,Z), and FY and FZ are the corresponding marginal
cdf’s.

Suppose now that we have a dependence model (Pθ), where θ is a strength of the associa-
tion/dependence parameter, so that the association function aθ;Y,Z of the pair (Y,Z) with respect to
the probability measure Pθ is increasing in θ on the average in the sense that the integral in (3.14) with
aθ;Y,Z in place of aY,Z is increasing in θ. Suppose also that the Y - and Z-marginals of the distribution
of the pair (Y,Z) with respect to Pθ do not depend on θ. Then the correlation coefficient ρ of (Y,Z) will
be an increasing function of θ.

A more specific, but still rather general way to construct a CP model is as follows. By Sklar’s theorem
(see, e.g., [7], Theorem 2.3.3.),

FY,Z(y, z) = C(FY (y), FZ(z))

for some copula C and all (y, z) ∈ R
2; recall that a copula can be defined as the joint cdf of a random

pair with values in the unit square [0, 1]2 whose marginals are uniform on the interval [0, 1]. Let now
(Cθ) be any family of copulas increasing in θ; a large number of such families can be found in [7]. Fix the
marginal cdf’s FY and FZ , and for each value of the parameter θ let Fθ;Y,Z(y, z) := Cθ(FY (y), FZ(z)),
again for all (y, z) ∈ R

2. Then the correlation coefficient ρ corresponding to the joint cdf Fθ;Y,Z will be
an increasing function of θ.

In view of (3.6), in any correlation-parametrized model of dependence and for any given real z �= 0,
the expressions in (3.7) and (3.9) for σ and Δ̃R(z) will depend on ρ only. Then, by the key observation
(3.13), the condition Δψ(R)(z) = 0 can be rewritten as the second-order ordinary differential equation
(ODE)

ψ′′(ρ)
ψ′(ρ)

= hz(ρ) (3.16)

for the function ψ, where

hz(ρ) :=
Δ̃R(z)
48σ4z2

. (3.17)

Solving now ODE (3.16) with the natural initial conditions

ψ(0) = 0 and ψ′(0) = 1, (3.18)

we have

ψ′(ρ) = exp
∫ ρ

0
dr hz(r) (3.19)
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and

ψ(ρ) = ψz(ρ) :=
∫ ρ

0
dr exp

∫ r

0
ds hz(s) (3.20)

for ρ ∈ (−1, 1); in (3.19) and (3.20), we use the common convention
∫ s
0 := −

∫ 0
s for s < 0. Thus, we

obtain

Theorem 3.1. In any correlation-parametrized model of dependence and for any given real z �= 0,
the generally leading error term for the normal approximation for ψz(R) vanishes:

Δψz(R)(z) = 0 (3.21)

for all ρ ∈ (−1, 1).

Letting now

Ψα := ψzα , (3.22)

we can rewrite (3.21) as

ΔΨα(R)(zα) = 0

for all α ∈ (0, 1), with zα = Φ−1(1 − α), as defined in (1.2).
One may note here that for a rather large class of models of dependence the functions hz will be

rational, and hence, according to (4.3), ψ′
z will be an elementary, closed-form function. This class of

models with rational functions hz includes the bivariate normal model and models with linear dependence
of the joint cdf Fθ;Y,Z on θ. In particular, the class of models with linear dependence of Fθ;Y,Z on θ
contains Farlie’s model [3].

We shall consider the bivariate normal model and a particular simple model with linear dependence
of Fθ;Y,Z on θ in the following sections, to compare the performance of Pearson’s R itself, its Fisher
transform RF , and the asymptotically optimal transform Ψα(R) of R in non-asymptotic settings, for
specific sample sizes.

4. BIVARIATE NORMAL MODEL (BVN)

4.1. Asymptotically Optimal Transform Ψα(R) in the BVN Model

Here it is assumed that the random point (Y,Z) has the bivariate normal (BVN) distribution with
zero means, unit variances, and an arbitrary correlation coefficient ρ ∈ (−1, 1). Then the expressions for
Δ̃R and σ, and thus for hz(ρ), in formulas (3.9), (3.7), and (3.17) can be greatly simplified.

Indeed, in this case the pair (Y,Z) equals (Y, ρ Y +
√

1 − ρ2 Y1) in distribution, whence, by (3.6),

μij =
j∑

k=0

(
j

k

)
ρk(1 − ρ2)(j−k)/2m(i + k)m(j − k)

for all i, j = 0, 1, . . . and

mj := E Y j,

so that (m0, . . . ,m6) = (1, 0, 1, 0, 3, 0, 15). As the result, ODE (3.16) becomes

ψ′′(ρ)
ψ′(ρ)

= pz
−2ρ

1 − ρ2
, (4.1)

where

pz :=
1

2z2
− 1. (4.2)
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ODE (4.1) is easily solved, yielding

ψ′(ρ) = (1 − ρ2)pz (4.3)

and

ψ(ρ) = ψz(ρ) :=
∫ ρ

0
(1 − r2)pz dr = ρ 2F1

(
1
2 ,−pz; 3

2 ; ρ2
)
, (4.4)

where 2F1 is the ordinary hypergeometric function, given by the formula

2F1(a, b; c;x) =
∞∑

k=0

(a)k(b)k
(c)k

xk

k!

for x with |x| < 1, where (q)k :=
∏k−1

i=0 (q + i) is the Pochhammer symbol. The last equality in (4.4) can
be obtained by expanding the integrand (1 − r2)pz into the Maclaurin series in powers of r and then
integrating the series term-wise.

Thus, recalling (3.22), we see that in the bivariate normal case the transform Ψα(R) = ψzα(R) of
Pearson’s R with ψz as in (4.4) is asymptotically optimal for any given significance level α ∈ (0, 1).

In particular, choosing

z = 1/
√

2 ≈ 0.707,

we have pz = 0. Hence, in view of the integral expression in (4.4), ψz(ρ) = ρ, so that we have (1.3),
confirming that the family (Ψα(R))α∈(0,1) of transforms of Pearson’s statistic R includes R itself.

On the other hand, letting z → ∞, we have pz → −1, so that, using again the integral expression in
(4.4) (and, say, the dominated convergence theorem), we see

ψz(ρ) −→
z→∞

ψ∞(ρ) :=
1
2

ln
1 + ρ

1 − ρ
(4.5)

for all ρ ∈ (−1, 1), thus confirming (1.4).

In view of formula (4.4), the calculation of values of the functions ψz or, equivalently, of the functions
Ψα mainly reduces to the calculation of values of the hypergeometric function 2F1. In general, this
hypergeometric function is not elementary. However, there are a number of highly efficient ways to
compute values of 2F1. It takes only about 1.7 × 10−5 sec on an average to compute a value of ψ2(ρ)
(on a standard computer), which may be compared with the corresponding execution time of about
0.45 × 10−5 sec for Fisher’s ψ∞(ρ) = 1

2 ln 1+ρ
1−ρ . Therefore and because usually in statistical practice the

value of the transform Ψα(R) = ψzα(R) of the statistic R needs to be computed only once, the use of the
hypergeometric function 2F1 should not cause any complications.

Also, according to (4.3), the derivarive ψ′ of the function ψ = ψz is a simple elementary expression,
which makes it easy to obtain various analytical properties of ψz . For instance, using the special
l’Hospital-type rule for monotonicity (see, e.g, [8], Proposition 4.1), we can immediately see that the
ratio ψz1(ρ)/ψz2(ρ) is decreasing in ρ2 for any real z1 and z2 such that 0 < |z1| < |z2|. In particular, it
follows that the ratio of ψz(ρ) to Fisher’s ψ∞(ρ) = 1

2 ln 1+ρ
1−ρ is decreasing in ρ2 for any real z �= 0. One

may also note that the values

ψz(±1) = ±
√

π Γ(pz + 1)
2Γ(pz + 3/2)

at the endpoints of the interval [−1, 1] are finite for all real z �= 0, in contrast with Fisher’s limit values
ψ∞(±(1−)) = ±∞; here pz is as defined in (4.2). It is also clear that ψz(ρ) is odd in ρ, for each z �= 0.
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4.2. The Transform Ψα(R) in the BVN model is Asymptotically Better than R and RF

in Wide Ranges of Values of the Significance Level Including α Itself

According to Theorem 3.1, for any given correlation-parametrized model of dependence and any
given significance level α ∈ (0, 1), the transform Ψα(R) of R is asymptotically optimal for all ρ ∈ (−1, 1)
as the sample size n goes to ∞. In particular, for any given significance level α ∈ (0, 1), the transform
Ψα(R) of R is asymptotically better than both R itself and its Fisher transform RF . In fact, Ψα(R) is
asymptotically better than R and RF for rather wide ranges of values (say β) of the significance level; of
course, these ranges include the value α itself. Indeed, one can see that in the BVN model

Δψ(R)(z) =
ρ

2
(2z2 − 1) − z2

2
(1 − ρ2)ψ′′(ρ)

ψ′(ρ)
.

In particular,

ΔR(z) =
ρ

2
(2z2 − 1),

ΔRF
(z) = Δψ∞(R)(z) = −ρ

2
,

where ψ∞ is as defined in (4.5), and

ΔΨα(R)(z) = Δψzα(R)(z) =
ρ

2

( z2

z2
α

− 1
)
.

So, |ΔΨα(R)(zβ)| < |ΔRF
(zβ)| for ρ �= 0 if 0 < zβ < zα

√
2. That is, the transform Ψα(R), which is

asymptotically optimal for the given significance level α ∈ (0, 1), will still be asymptotically better than
Fisher’s transform RF for any significance level β ∈ (0, 1) such that 0 < zβ < zα

√
2. For instance, if

α = 0.05, then Ψα(R) will be asymptotically better than RF , not just for the significance level α = 0.05,
but for any significance level β ∈ (0.01000, 0.5) – because 0 < zβ < z0.05

√
2 for all β ∈ (0.01000, 0.5).

Similarly, if α = 0.01, then Ψα(R) will be asymptotically better than RF for any significance level
β ∈ (0.00050, 0.5).

As for the comparison of the asymptotically optimal transform Ψα(R) with R itself, we can similarly
see that, for instance, if α = 0.05, then Ψα(R) will be asymptotically better than R, not just for the
significance level α = 0.05, but for any significance level β ∈ (0, 0.17912); if α = 0.01, then Ψα(R) will
be asymptotically better than R for any significance level β ∈ (0, 0.16933).

5. SQUAREV MODEL

Here we shall consider the dependence model that is the family (Pρ)−1<ρ<1 of distributions of the
random pair (Y,Z) on the vertices of the square [−1, 1] × [−1, 1] given by the following formulas:

Pρ

(
(Y,Z) = (1, 1)

)
= Pρ

(
(Y,Z) = (−1,−1)

)
= 1+ρ

4 ,

Pρ

(
(Y,Z) = (1,−1)

)
= Pρ

(
(Y,Z) = (−1, 1)

)
= 1−ρ

4 .
(5.1)

In other words, the distribution PY,Z = Pρ;Y,Z of (Y,Z) under Pρ is the mixture
{

(1 − ρ)Pε1,ε2 + ρPε1,ε1 if ρ ≥ 0,
(1 + ρ)Pε1,ε2 − ρPε1,−ε1 if ρ < 0,

(5.2)

where ε1, ε2 are independent Rademacher r.v.’s, with P(εj = ±1) = 1/2 for j = 1, 2. Then Cov(Y,Z) =
ρ under Pρ, so that the use of the symbol ρ to denote the parameter is consistent.

The just described model of dependence will be referred to as the SquareV model, where “V” stands
for “vertices”.

In view of the previously mentioned symmetry Cov(Y,−Z) = −Cov(Y,Z), negative values of ρ will
not be further considered in this section.
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5.1. Asymptotically Optimal Transform Ψα(R) in the SquareV Model

Using (5.1) and (5.2), we obtain the following expressions for the joint moments of (Y,Z) as defined
in (3.6):

μij =
1 + ρ

4
(
1 + (−1)i+j

)
+

1 − ρ

4
(
(−1)i + (−1)j

)
(5.3)

= (1 − ρ)
1 + (−1)i

2
1 + (−1)j

2
+ ρ

1 + (−1)i+j

2
(5.4)

for all i, j = 0, 1, . . . and all ρ ∈ [0, 1).

As the result, ODE (3.16) becomes

ψ′′(ρ)
ψ′(ρ)

= qz
−2ρ

1 − ρ2
, (5.5)

where

qz :=
1

3z2
− 1

3
. (5.6)

We see that formulas (5.5)–(5.6) are rather similar to (4.1)–(4.2). Hence, quite similarly to (4.3) and
(4.4), here we have

ψ′(ρ) = (1 − ρ2)qz (5.7)

and

ψ(ρ) = ψ4;z(ρ) :=
∫ ρ

0
(1 − r2)qz dr = ρ 2F1

(
1
2 ,−qz; 3

2 ; ρ2
)
. (5.8)

Here the subscript 4 in ψ4;z refers to the four points of the distribution of the random point (Y,Z) in the
SquareV model, currently under consideration; thus, one can distinguish between the function ψ4;z in
(5.8) and the function ψz in (4.4).

Accordingly, recalling again (3.22), we see that in the SquareV model the transform

Ψ4;α(R) = ψ4;zα(R)

of Pearson’s R is asymptotically optimal for any given significance level α ∈ (0, 1).

In particular, choosing

z = 1,

we have qz = 0. Hence, in view of the integral expression in (5.8), ψ4;z(ρ) = ρ, so that the family
(Ψ4;α(R))α∈(0,1) of transforms of Pearson’s statistic R includes R itself. More specifically,

R = Ψ4;α(R) for α = 1 − Φ(1) ≈ 0.159.

However, in order for Fisher’s transform RF of R to belong to the family (Ψ4;α(R))α∈(0,1) of
asymptotically optimal transforms of R in the SquareV model, one would have to have qz = −1 for some
real z, which is impossible, because, in view of (5.6), qz is always greater than −1

3 . So, in contrast with
the BVN model

(
where, according to (1.4), RF is asymptotically optimal in the limit case with α = 0 and

zα = ∞
)
, in the SquareV model Fisher’s transform RF is not asymptotically optimal for any significance

level α ∈ [0, 1], even if the endpoints α = 0 and α = 1 are included as limit cases.
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5.2. The Transform Ψα(R) in the SquareV Model is Asymptotically Better than R and RF

in Wide Ranges of Values of the Significance Level Including α Itself
This subsection is similar to Subsection 4.4.2. One can see that in the SquareV model

Δψ(R)(z) =
ρ

3
√

1 − ρ2
(z2 − 1) − z2

2

√
1 − ρ2 ψ′′(ρ)

ψ′(ρ)
.

In particular,

ΔR(z) =
ρ

3
√

1 − ρ2
(z2 − 1),

ΔRF
(z) = Δψ∞(R)(z) = − ρ

3
√

1 − ρ2
(2z2 + 1),

where ψ∞ is as defined in (4.5), and

ΔΨ4;α(R)(z) = Δψ4;zα(R)(z) =
ρ

3
√

1 − ρ2

( z2

z2
α

− 1
)
.

So, we have |ΔΨ4;α(R)(zβ)| < |ΔRF
(zβ)| for ρ �= 0 whenever zα ≥ 1/

√
2 or, equivalently, α ∈ (0, 1 −

Φ(1/
√

2)), with 1 − Φ(1/
√

2) = 0.2397 . . .. Therefore, the transform Ψ4;α, which is asymptotically
optimal for the given significance level α ∈ (0, 1), will still be asymptotically better than Fisher’s
transform RF for any significance level β ∈ (0, 0.5) provided that α ∈ (0, 0.2397).

As for the comparison of the asymptotically optimal transform Ψα(R) with R itself, we can similarly
see that, for instance, if α = 0.05, then Ψα(R) will be asymptotically better than R, not just for the
significance level α = 0.05, but for any significance level β ∈ (0, 0.11344); if α = 0.01, then Ψα(R) will
be asymptotically better than R for any significance level β ∈ (0, 0.096927).

We see that the advantage of the asymptotically optimal transform of R over R itself is substantially
less in the SquareV model than in the BVN model. Vice versa, the advantage of the asymptotically
optimal transform of R over the Fisher transform RF of R is much greater in the SquareV model than in
the BVN model.

6. CONCLUSION
The main result of this paper is Theorem 3.1, which shows for any correlation-parametrized model of

dependence and for any given significance level α ∈ (0, 1), there is an asymptotically optimal transform of
Pearson’s correlation statistic R, for which the generally leading error term for the normal approximation
vanishes for all values ρ ∈ (−1, 1) of the correlation coefficient.

It is also shown that in the BVN model Pearson’s R turns out to be asymptotically optimal for a rather
unusual significance level α ≈ 0.240, whereas Fisher’s transform RF of R is asymptotically optimal for
the limit significance level α = 0. In the other specific model of dependence considered in this paper – the
SquareV model, Pearson’s R is asymptotically optimal for a still rather high significance level α ≈ 0.159,
whereas Fisher’s transform RF of R is not asymptotically optimal for any α ∈ [0, 1].

Moreover, we saw that in both the BVN model and the SquareV model, the transform Ψα(R),
asymptotically optimal for a given value of α, is in fact asymptotically better than R and RF in wide
ranges of values of the significance level, including α itself.

Recall that Fisher’s transform RF of R was designed for the BVN case, with the purpose of making
the asymptotic variance constant with respect to the correlation coefficient ρ. That RF usually turns
out to be asymptotically closer to normality than R in the BVN model might now be explained by the
observation that the significance level α = 0 (for which RF is asymptotically optimal in the BVN case) is
closer to such usual in statistical practice values of the significance level as 0.05 than to the significance
level αR ≈ 0.240 (for which R is asymptotically optimal in the BVN case).

Extensive computer simulations for the BVN and SquareV models of dependence presented in the
detailed, arXiv version of this paper [9] suggest that, for sample sizes n ≥ 100 and significance levels
α ∈ {0.01, 0.05}, the mentioned asymptotically optimal transform of R generally outperforms both
Pearson’s R and Fisher’s transform RF of R, the latter appearing generally much inferior to both R
and the asymptotically optimal transform of R in the SquareV model.
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