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Abstract—The present paper studies density deconvolution in the presence of small Berkson errors,
in particular, when the variances of the errors tend to zero as the sample size grows. It is known that
when the Berkson errors are present, in some cases, the unknown density estimator can be obtained
by simple averaging without using kernels. However, this may not be the case when Berkson errors
are asymptotically small. By treating the former case as a kernel estimator with the zero bandwidth,
we obtain the optimal expressions for the bandwidth. We show that the density of Berkson errors acts
as a regularizer, so that the kernel estimator is unnecessary when the variance of Berkson errors lies
above some threshold that depends on the shapes of the densities in the model and the number of
observations.
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1. INTRODUCTION

In many real life problems one is interested in the distribution of a certain variable which can be
observed only indirectly. Mathematically, this leads to a density deconvolution problem where one needs
to estimate the pdf of a variable X on the basis of observations of a surrogate variable Y = X + ξ
where the pdf fξ of ξ is known. The real life applications of this model arise in econometrics, astronomy,
biometrics, medical statistics, image reconstruction (see, e.g., [2, 18], and also [3, 17] and the references
therein). Density deconvolution problem was extensively studied in the last thirty years (see, e.g., [4, 5,
12, 14] among others and [17] and the references therein).

However, Berkson [1] argued that in many situations it is more appropriate to treat the true unob-
served variable as being contaminated with an error itself and search for the distribution of W = X + η,
where η is the so-called Berkson error with a known pdf fη. Here, X, ξ and η are assumed to be
independent. The objective is to estimate the pdf fW of W on the basis of i.i.d. observations

Yi = Xi + ξi, i = 1, · · · , n, (1.1)

where Xi and ξi are i.i.d. with, respectively, the pdfs fX which is unknown and fξ which is known. The
density fξ is called the error (or the blurring) density.

Estimation with Berkson errors occurs in a variety of statistics fields such as analysis of chemicals,
nutritional, economics or astronomical data (see, e.g., [13, 16, 18, 20, 22] among others). For example,
in occupational medicine, an important problem is the assessment of the health hazard of specific
harmful substances in a working area. A modeling approach usually assumes that there is a threshold
concentration, called the threshold limiting value (TLV), under which there is no risk due to the
substance. Estimating the TLV is of particular interest in the industrial workplace. The classical errors
in this model come from the measures of dust concentration in factories, while the Berkson errors come
from the usual occupational epidemiology construct, wherein no direct measures of dust exposure are
taken on individuals, but instead plant records of where they worked and for how long are used to impute
some version of dust exposure (see [3]). In economics, the household income is usually not precisely
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collected due to the survey design or data sensitivity. It was described by Kim et al. [13] (see also [10]) that
when the income data were collected by asking individuals which salary range categories they belong to,
then the midpoint of the range interval was used in analysis. In this case, it is wise to assume that the
true income fluctuates around the midpoint observation subject to errors.

Estimation with Berkson errors was studied by Carroll et al. [4], Delaigle [6, 7], Du et al. [9], Geng and
Koul [10], Wang [20, 21] among others. It is well known that the presence of Berkson errors improves
precision of estimation of the density function fW in comparison to the case of η = 0. For example,
Delaigle [6, 7] who studied estimation with Berkson errors noted that in the cases when the pdf fη of
Berkson errors has higher degree of smoothness than the error density fξ, one can obtain estimators of
fW with the parametric convergence rate.

However, in some practical situations, the Berkson errors are small. Hence the question arises
whether small Berkson errors improve the estimation accuracy and how much. A similar inquiry has
been recently carried out by Long et al. [16] who considered a somewhat different setting. In particular,
they studied a p-dimensional version of the problem where variable X is directly observed and the
objective is estimation of the pdf fW of W = X + η on the basis of observations X1, . . . ,Xn, where
the pdf fη of η is known and variable η is small. In this formulation, the pdf fW can be written as

fW (x) =
∫

Rp

fX(x − z)fη(z) dz

and can be estimated by

f̂W (x) = n−1
n∑

i=1

fη(x − Xi) (1.2)

with the parametric error rate of Cn−1. However, if Var(η) = σ2 is small, this rate becomes C(σ)n−1

where C(σ) → ∞ when σ → 0, so the error of the estimator (1.2) may be very high.
To resolve this difficulty, in addition to estimator (1.2), Long et al. [16] proposed two alternative kernel

estimators where the bandwidths of the kernels are chosen as h = hW or h = hX , so to minimize the
error of the estimator of fW in the first case and the error of the estimator of fX in the second case.
Subsequently, the authors studied all three estimators by simulations and concluded that overall the
kernel estimator with h = hW outperforms the remaining two. When the error variance σ is small,
the estimator (1.2) leads to sub-optimal error rates. On the other hand, the choice of h = hX leads to
oversmoothing, especially when the error variance is large. The authors do not provide a comprehensive
theoretical study of the bandwidth selection in a general case. In particular, their rule-of-thumb recipe
is based on the case where fX is a Gaussian density. Furthermore, Long et al. [16] did not investigate
when estimator (1.2) that corresponds to the bandwidth h = 0 is preferable and suggested that it is
always suboptimal.

The objective of the present paper is to study the situation where both the blurring and the Berkson
errors are present and, in addition, the Berkson errors ηi, i = 1, · · · , n, are small. To quantify this
phenomenon, we assume that the pdf fη is of the form

fη(x) = σ−1g(σ−1x), (1.3)

where σ is small, specifically, σ = σn → 0 as n → ∞, while the variable X has a non-asymptotic scale.
Specifically, we shall provide a full theoretical study of the bandwidth selection in a density deconvolution
with small Berkson errors.

The setting of Long et al. [16] corresponds to the multivariate version of the problem in this paper
where ξi = 0 and f∗

ξ = 1. We provide full theoretical treatment of the problem. In particular, we prove
that one should always choose the bandwidth to minimize the error of the estimator of fW , but in some
cases this optimal bandwidth can be zero if σ lies above some threshold that depends on the shapes of
the densities fξ, fX and g and the sample size. In the particular case studied in [16], the latter situation
would lead to the estimator of the form (1.2).

Since the setting (1.3) leads to three asymptotic parameters, n, σ and h, in order to keep the paper
clear and readable, we consider a one-dimensional version of the problem. Extensions of our results to
the situation of multivariate densities is a matter of future work.
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In what follows, we are using the following notation. For any function f , f∗ denotes its Fourier
transform defined by f∗(x) =

∫ ∞
−∞ eixtf(t) dt. If f is a pdf, then f∗ is the characteristic function of f .

We use the symbol C for a generic positive constant, which takes different values at different places
and is independent of n. Also, for any positive functions a(n) and b(n), we write a(n) � b(n) if the ratio
a(n)/b(n) is bounded above and below by finite positive constants independent of n, and a(n) � b(n) if
the ratio a(n)/b(n) is bounded above by finite positive constants independent of n.

The rest of the paper is organized as follows. Section 2 presents an estimator of fW in the case of
small Berkson errors. Section 3 provides an expression for the error of this estimator and also derives the
optimal value of the bandwidth that depends on the shapes of the densities in the model and on the values
of parameters n and σ. For some combinations of parameters, the optimal value of the bandwidth cannot
be used since it depends on the unknown smoothness of the density fX . Hence, in Section 4 we present
construction of adaptive estimators using modification of the Lepski method. Section 5 is devoted to the
discussion of the results of the paper. The proofs of all statements can be found in Section 6.

2. CONSTRUCTION OF THE DECONVOLUTION ESTIMATOR

Since (1.1) and W = X + η imply that

f∗
Y (w) = f∗

X(w)f∗
ξ (w), f∗

W (w) = f∗
X(w)f∗

η (w) (2.1)

and also, due to (1.3), f∗
η (w) = g∗(σw), one obtains

f∗
W (w) = f∗

X(w)g∗(σw) =
f∗

Y (w)g∗(σw)
f∗

ξ (w)
.

Note that the unbiased estimator of f∗
Y (w) is given by the empirical characteristic function

f̂∗
Y (w) = n−1

n∑
j=1

exp(iwYj). (2.2)

If g∗(σw)/f∗
ξ (w) is square integrable, i.e.,

ρ2(σ) =
∫ ∞

−∞

∣∣∣∣g
∗(σw)
f∗

ξ (w)

∣∣∣∣
2

dw < ∞, (2.3)

then the inverse Fourier transform of f∗
Y (w)g∗(σw)/f∗

ξ (w) exists and fW (x) can be estimated by

f̂W (x) =
1
2π

∫ ∞

−∞
exp(−iwx)

f̂∗
Y (w)g∗(σw)

f∗
ξ (w)

dw. (2.4)

If g∗(σw)/f∗
ξ (w) is not square integrable, one needs to obtain a kernel estimator of fW . Construct

approximations fW,h and f∗
W,h of fW and f∗

W , respectively,

fW,h(x) =
∫ ∞

−∞

1
h

K
(x − w

h

)
fW (w) dw, f∗

W,h(s) = K∗(sh)
f∗

Y (s)g∗(σs)
f∗

ξ (s)
(2.5)

and arrive at the estimator f̂∗
W,h(s) of f∗

W,h(s) of the form

f̂∗
W,h(s) = K∗(sh)f̂∗

Y (s)g∗(σs)/f∗
ξ (s)

where f̂∗
Y is defined in (2.2).

Consider the kernel function K(x) = sin(x)/(πx), so that K∗(s) = I(|s| ≤ 1), where I(A) denotes
the indicator function of a set A. Since K∗(s) is bounded and compactly supported, the inverse Fourier
transform of f̂∗

W,h always exists and

f̂W,h(x) =
1
2π

∫ ∞

−∞
exp(−ixs)

f̂∗
Y (s)K∗(sh)g∗(σs)

f∗
ξ (s)

ds. (2.6)
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We set f̂W,0(x) ≡ f̂W (x).

In order to obtain an expression for the bandwidth h we introduce the following assumptions:

(A1). There exist positive numbers cξ and Cξ and nonnegative numbers a, b, and d such that for any s

cξ(s2 + 1)−
a
2 exp(−d|s|b) ≤ |f∗

ξ (s)| ≤ Cξ(s2 + 1)−
a
2 exp(−d|s|b), (2.7)

where b = 0 iff d = 0 and a > 0 whenever d = 0.

(A2). There exist positive numbers cg and Cg and nonnegative numbers ϑ, β, and γ such that for any s

cg(s2 + 1)−
ϑ
2 exp(−γ|s|β) ≤ |g∗(s)| ≤ Cg(s2 + 1)−

ϑ
2 exp(−γ|s|β), (2.8)

where β = 0 iff γ = 0 and ϑ > 0 whenever γ = 0.

(A3). fX(s) belongs to the Sobolev ball

S(k,B) =
{
f :

∫ ∞

−∞
|f∗

X(s)|2(s2 + 1)k ds ≤ B2, k ≥ 1/2
}

. (2.9)

Also, since density deconvolution with Berkson errors of relatively large size has been fairly well
studied, below we only study the case where σ is small, in particular, if γ > 0, d > 0, one has

σ < 0.5 (d/γ)1/b . (2.10)

3. ESTIMATION ERROR

Table 1. The asymptotic expressions for Δ2 ≡ Δ2(σ, h)

Case Δ2

(I) b = β = 0, ϑ > a + 1
2 , min(h−(2a+1), σ−(2a+1))

(II) b = β = 0, ϑ = a + 1
2 min(h−(2a+1), σ−(2a+1))max

{
log

(
σ
h

)
, 1

}

(III) b = β = 0, ϑ < a + 1
2 , h−(2a+1) min

{(
h
σ

)2ϑ
, 1

}

(IV) b = 0, β > 0 min(h−(2a+1), σ−(2a+1))

(V) β > b > 0, h >
(

γβ
db σβ

) 1
β−b h−(2a+1)+bexp(2dh−b)min

{(
h
σ

)2ϑ
, 1

}
β > b > 0, h <

(
γβ
db σβ

) 1
β−b × exp

(
κσ− βb

β−b
)
σ

β
β−b ·

b−2
2 −2ϑ

(VI) b = β > 0 h−(2a+1)+b exp(2h−b(d − γσb))min
{(

h
σ

)2ϑ
, 1

}

(VII) b > 0, β = 0 h−(2a+1)+bexp(2dh−b)min
{(

h
σ

)2ϑ
, 1

}

(VIII) b > β > 0 h−(2a+1)+bexp(2dh−b)min
{(

h
σ

)2ϑ
, 1

}
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We characterize the accuracy of the estimator f̂W,h of fW by its Mean Integrated Squared Error
(MISE)

MISE(f̂W,h, fW ) = E

∫ ∞

−∞
|f̂W,h(x) − fW (x)|2 dx.

Since, under Assumptions (2.7)–(2.9), both f̂∗
W,h and f∗

W are square integrable, by the Plancherel
theorem, derive that

MISE(f̂W,h, fW ) =
1
2π

E

∫ ∞

−∞

|g∗(σs)|2
|f∗

ξ (s)|2 |K∗(sh)f̂∗
Y (s) − f∗

Y (s)|2 ds.

Therefore

MISE(f̂W,h, fW ) = R1(f̂W,h, fW ) + n−1 R2(f̂W,h, fW ), (3.1)

where

R1(f̂W,h, fW ) = ‖Ef̂W,h − fW‖2 =
1
2π

∫ ∞

−∞
|g∗(σs)|2 |f∗

X(s)|2 I(|s| > h−1) ds (3.2)

is the integrated squared bias of the estimator f̂W,h and

R2(f̂W,h, fW ) = n E‖f̂W,h − Ef̂W,h‖2 ≤ I(σ, h), (3.3)

where

I(σ, h) =
1
2π

∫ 1/h

−1/h

|g∗(σs)|2
|f∗

ξ (s)|2 ds. (3.4)

We shall be interested in the maximum value of MISE(f̂W,h, fW ) over all fX ∈ S(k,B) where
S(k,B) is defined in (2.9). In particular, we denote Ef̂W,h = fW,h and define

Δ ≡ Δ(n, σ, h) = max
fX∈S(k,B)

MISE(f̂W,h, fW ) subject to f∗
W (w) = f∗

X(w)f∗
η (w). (3.5)

It is easy to see that

Δ ≤ Δ1 + n−1 Δ2, (3.6)

where

Δ1 ≡ Δ1(n, σ, h) = max
fX∈S(k,B)

R1(f̂W,h, fW ), Δ2 ≡ Δ2(n, σ, h) = max
fX∈S(k,B)

R2(f̂W,h, fW ). (3.7)

Then the following statements hold.

Lemma 1. Under the assumptions (2.7)–(2.10), for Δ1 in (3.7), one has

Δ1 �

⎧⎨
⎩

σ−2ϑh2ϑ+2k exp
(
− 2γ(σ/h)β

)
if h < σ,

h2k if h ≥ σ.
(3.8)

Lemma 2. If β > b > 0, denote

κ =
( db

γβ

) b
β−b

[d(β − b)
b

]
> 0. (3.9)

Then, under the assumptions (2.7)–(2.10), the expressions for Δ2 defined in (3.7), are given in
Table 1.
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Table 2. The optimal values hopt of the bandwidth h and the corresponding expressions for Δ(n, σ, h) defined in
(3.6). Here, μ1 and μ2 are given by (3.10)

Case Δ(n, σ, hopt) condition hopt

(I) b = β = 0, n−1σ−(2a+1) σ > n− 1
2k+2a+1 0

ϑ > a + 1
2 n− 2k

2k+2a+1 σ ≤ n− 1
2k+2a+1 n− 1

2k+2a+1

(II) b = β = 0 n−1σ−(2a+1) log n σ > n− 1
2k+2a+1 n− 1

2k+2a+1

ϑ = a + 1
2 n− 2k

2k+2a+1 σ ≤ n− 1
2k+2a+1 n− 1

2k+2a+1

(III) b = β = 0, σ−2ϑn− 2ϑ+2k
2k+2a+1 σ > n− 1

2k+2a+1 n− 1
2k+2a+1

ϑ < a + 1
2 n− 2k

2k+2a+1 σ ≤ n− 1
2k+2a+1 n− 1

2k+2a+1

(IV) b = 0, β > 0 n−1σ−(2a+1) σ > n− 1
2k+2a+1 0

n− 2k
2k+2a+1 σ ≤ n− 1

2k+2a+1 n− 1
2k+2a+1

(V) β > b > 0 n−1 exp
(
κσ

−βb
β−b

)
σ

β(b−2)
2(β−b)−2ϑ σ > μ1 0

(log n)−
2k
b σ ≤ μ1 μ1

(VI) b = β > 0 σ−2ϑ(log n)−
2ϑ+2k

b exp
(
− 2γσβ(log n)

β
b

)
σ > μ1 μ1

(log n)−
2k
b σ ≤ μ1 μ2

(VII) b > 0, β = 0 (log n)−
(2ϑ+2k)

b σ−2ϑ σ > μ1 μ1

(log n)−
2k
b σ ≤ μ1 μ1

(VIII) b > β > 0 σ−2ϑ(log n)
(1+2a−2ϑ)

b −1 σ > μ1 μ1

(log n)−
2k
b σ ≤ μ1 μ1

Observe that in every case, the expression for the variance depends not only on the values of h, σ
and n but also on their mutual relationship. Also, the bias term Δ1(σ, h) is an increasing function of h
while the variance term Δ2(σ, h) is a decreasing function of h, so the optimal value h = hopt is such that
Δ1(σ, h) � n−1 Δ2(σ, h). Theorem 1 below presents the optimal expressions hopt for the bandwidth h
as well as the corresponding values for the risk Δ(n, σ, hopt), where Δ(n, σ, h) is defined in (3.5).

Theorem 1. Let conditions (2.7)–(2.10) hold. Then, the asymptotic values of

hopt = arg min
h

[Δ(n, σ, h)]

and also of Δ(n, σ, hopt) are provided in Table 2. Here,

μ1 = μ1(n) =
[

1
2d

(
log n +

(b − 2a − 1
b

)
log log n

)]− 1
b

,

(3.10)

μ2 = μ2(n) =
[

1
2(d − γσb)

(
log n +

(b − 2a − 1
b

)
log log n

)]− 1
b

.

4. ADAPTIVE ESTIMATION USING LEPSKI’S METHOD

Note that although Theorem 1 provides the optimal values for the bandwidth and the corresponding
convergence rates, in practice, we can use those values only in cases V–VIII, since in cases I–IV the
value of the optimal bandwidth hopt depends on the smoothness parameter k of the unknown density fX .

Moreover, in cases I and IV the optimal bandwidth is zero if σ > n− 1
2k+2a+1 , where the threshold value
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n− 1
2k+2a+1 itself depends on the unknown value of k. In order to resolve this difficulty, we use a novel

modification of the Lepski method for construction of adaptive estimators (see, e.g., [15, 12]).

Below we consider the cases I–IV, for which the optimal value hopt depends on the unknown
parameter k. To start with, note that, by Lemma 1, if hopt = 0, as it happens in the cases I and IV,
one has

Δ(n, σ, 0) � Δ(n, σ, n−1).

Moreover, if σ ≤ n− 1
2a+1 < n− 1

2k+2a+1 , then hopt > 1/n.

In order to replace the unknown value of hopt by its estimated value, we use the variance term given
by

D(n, σ, h) = ‖f̂W,h(x) − fW,h(x)‖2 = 1
2π ‖f̂∗

W,h(x) − f∗
W,h(x)‖2

= 1
2π

∫ 1/h

−1/h

|g∗(σs)|2
|f∗

ξ (s)|2 |f̂∗
Y (s) − f∗

Y (s)|2 ds.

If h ≥ 1/n, then it is easy to see that

D(n, σ, h) ≤ max
|s|≤n

|f̂∗
Y (s) − f∗

Y (s)|2 I(σ, h),

where I(σ, h) is defined in (3.4).

Recall also that the value hopt is such that it minimizes the sum of Δ1(n, σ, h) + n−1Δ2(n, σ, h)
where, under the assumptions A1–A3, the first term is growing polynomially in h while the second is
decreasing polynomially in h. Therefore

Δ(n, σ, hopt) � Δ1(n, σ, hopt) � n−1 I(n, σ, hopt). (4.1)

Consider the sets

J = {1, 2, 3, . . . , jmax} and H = {h = 2−j , j ∈ J } (4.2)

and denote

jmax = min
( log n

2a + 1
, log

( 1
σ

))
. (4.3)

Let q > 0 be such that E(|X1|q) ≤ Cq < ∞ and

C(τ, q) ≥ 8
√

2τ(q + 1) + 6q + 2/
√

q. (4.4)

Define a set in the sample space

Ωσ,n =

⎧⎨
⎩

{w : ‖f̂W,σ − fW, 1
n
‖ ≥ 4C(τ, q)

√
n−1 I(σ, 1/n) log n} for cases I and IV,

∅ (the empty set) for cases II and III.
(4.5)

Then the following statement holds.

Theorem 2. Let conditions (2.7)–(2.10) hold with b = 0 (cases I–IV) and τ ≥ 4. Define

ĥ =

⎧⎨
⎩

1/n, if w ∈ Ωσ,n

max{h ∈ H : ‖f̂W,h − fW,h̃‖ ≤ 4C(τ, q)
√

log n
n I(σ, h̃) for any h̃ ≤ h, h̃ ∈ H}, if w /∈ Ωσ,n

Then

E‖f̂W,ĥ − fW‖2 � Δ(n, σ, hopt) log n. (4.6)
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5. DISCUSSION

In the present paper, our main goal was to justify the choice of a bandwidth in deconvolution problems
with small Berkson errors. To the best of our knowledge, our paper is the first paper which carries out a
comprehensive theoretical study of density deconvolution with Berkson errors when Berkson errors are
asymptotically small.

In particular, we refined the conclusion of Long et al. (2016) and studied the relationship between the
three parameters: the bandwidth h, the sample size n and the standard deviation of the Berkson errors σ.
As Theorem 1 above shows, the expressions for the optimal bandwidth are always chosen to minimize
the error in the estimator of the density of interest fW . In particular, if h = 0 is possible, one should
choose this value as long as the Berkson errors are not too small, i.e., σ lies above some threshold level
that depends on the shapes of the densities and the number of observations n.

In order to uncover the reason for this, compare expressions (2.4) and (2.6) and observe that g∗(σs)
in (2.4) acts as a kernel function g with the bandwidth h = σ. If σ is large enough (i.e., σ > hopt, where
hopt is the value of h that achieves the best bias-variance balance), then convolution with g leads to
sufficient regularization and no kernel estimation is necessary. However, if σ < hopt, then one needs
additional kernel smoothing with h > σ.

The setting of [16] corresponds to cases I, II, III, and IV in Tables 1 and 2 with a = b = 0. If ϑ > 1/2,
then hopt is zero if σ is large enough and hopt is of the order n−1/(2k+1) (where k is the degree of
smoothness of the density fX of the measurements) otherwise. The choice depends on the relationship
between parameters σ, n and k. Since k is unknown, we construct adaptive estimators of fW using
a novel modification of Lepski method. Indeed, one cannot use the traditional Lepski method since
the value of the optimal bandwidth depends on the relationship between σ and the unknown threshold
n−1/(2k+2a+1). Hence our paper presents a non-trivial extension of the Lepski technique.

Note that we did not consider the case of multivariate density functions. This extension is fairly
straightforward but rather cumbersome. We shall leave this case for the future investigation.

6. PROOFS

6.1. Proofs of the Statements in the Paper

Proof of Lemma 1. Since for any fX ∈ S(k,B) one has

Δ1 = max
fX∈S(k,B)

‖Ef̂W,h − fW‖2

= max
fX∈S(k,B)

1
2π

∫
|s|>1/h

|g∗(σs)|2|f∗
X(s)|2 ds

= max
fX∈S(k,B)

1
π

∫ ∞

1
h

|g∗(σs)|2|f∗
X(s)|2 ds

≤ max
fX∈S(k,B)

2Cg

π

∫ ∞

1
h

(σ2s2 + 1)−ϑ exp(−2γ|s|βσβ)
(s2 + 1)k

(s2 + 1)k
|f∗

X(s)|2 ds

≤ 2Cg B2

π
max
s≥ 1

h

[(σ2s2 + 1)−ϑ exp(−2γ|s|βσβ)] (h−2 + 1)−k,

hence

Δ1 � min
{(h

σ

)2ϑ
, 1

}
h2k exp

(
− 2γ

(σ

h

)β)

which implies (3.8).

Proof of Lemma 2. Note that the variance term is given by

Δ2 ≤ 1
2π

∫ ∞

−∞

|g∗(σs)|2
|f∗

ξ (s)|2 I(|s| < h−1) ds
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≤ Cg

cξ

∫ 1
h

0
(σ2s2 + 1)−ϑ (s2 + 1)a exp(−2γ|s|βσβ + 2d|s|b) ds.

Using the change of variables s = z/h we obtain

Δ2 � h−(2a+1) V (σ, h) with V (σ, h) =
∫ 1

0
P (z | σ, h) exp{φ(z|σ, h)} dz, (6.1)

where

φ(z | σ, h) = 2dzbh−b − 2γzβσβh−β, P (z | σ, h) = (σ2z2h−2 + 1)−ϑ(z2 + h2)a. (6.2)

For the cases when b = 0 (cases I–IV), one can obtain an asymptotic expression for Δ2 using direct
calculations. If b > 0 and d ≥ 0, one needs to apply Lemma 6. Denote by z0 and zh, respectively, the
point where φ(z | σ, h) attains its global maximum on the interval [0, 1] and its critical point:

z0 ≡ z0(σ, h) = argmax
z∈[0,1]

φ(z | σ, h), zh = (db (γβ)−1 σ−β)
1

β−b h. (6.3)

Since zh > 0, there are two possible cases here: zh ∈ (0, 1] and zh > 1. If zh ∈ (0, 1], then z0 = zh,
φ′(z0) = 0 and φ′′(z0) < 0. If zh > 1, then z0 = 1 and φ′(z0) = φ′(1) > 0.

Hence Lemma 6 and formula (6.1) yield that, for small values of h and σ,

h2a+1 Δ2 �

⎧⎪⎨
⎪⎩

exp{φ(zh|σ,h)}P (zh|σ,h)√
|φ′′(zh|σ,h)|

if z0 = zh,

exp{φ(1|σ,h)}P (1|σ,h)
φ′(1|σ,h) if z0 = 1.

(6.4)

Here

φ(1 | σ, h) = 2dh−b − 2γσβh−β, φ′(1 | σ, h) = 2(dbh−b − γβσβh−β),

P (1 | σ, h) � (σ2h−2 + 1)−ϑ, P (zh | σ, h) = (σ2z2
hh−2 + 1)−ϑ(z2

h + h2)a.
(6.5)

Below we consider various cases.

Cases I, II, III: b = β = 0. Note that

I(σ, h) =
2Cg

2

cξ
2

∫ 1
h

0
(σ2s2 + 1)−ϑ(s2 + 1)a ds =

2Cg
2

cξ
2h

∫ 1

0
(σ2z2h−2 + 1)−ϑ (z2h−2 + 1)a dz. (6.6)

If h ≥ σ, then σ2z2h−2 + 1 ∈ (1, 2) and I(σ, h) ≤ 21−ϑCg
2

cξ
2 h−(2a+1).

If h < σ, then, by the change of variables σs = u in (6.6), we obtain

I(σ, h) =
2Cg

2

cξ
2σ

∫ σ
h

0
(u2 + 1)−ϑ (u2σ−2 + 1)a du ≤ 2Cg

2Ca

cξ
2

σ−(2a+1)

∫ σ
h

0

u2a

(u2 + 1)ϑ
du.

Hence

I(σ, h) ≤ 2Cg
2Ca

cξ
2

min(h−(2a+1), σ−(2a+1))Δhσ,

where

Δh,σ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if ϑ > a + 1/2,

max
{

log
(

σ
h

)
, 1

}
if ϑ = a + 1/2,

max
{
1,

(
σ
h

)2a−2ϑ+1} if ϑ < a + 1/2.

(6.7)
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Case IV: b = 0, β > 0. In this case,

Δ2 � h−1

∫ 1

0
(σ2z2h−2 + 1)−ϑ (z2h−2 + 1)a exp(−2γσβzβh−β) dz.

If h > σ, then the argument of the exponent is bounded above and Δ2 � h−2a−1. If h < σ, then by
changing variables u = 2γ(σz/h)β we obtain

Δ2 � σ−1

∫ ∞

0

(( u

2γ

) 2
β + 1

)−ϑ( 1
σ2a

( u

2γ

) 2a
β + 1

)
exp(−u)u

1
β
−1

du � σ−(2a+1).

Hence

Δ2 � min(h−(2a+1), σ−(2a+1)).

Case V: β > b > 0. In this case ρ2(σ) = ∞ in (2.3), so that h > 0. The expression for the variance is
given by (6.1) with φ(z|σ, h) defined in (6.2). Let zh be given by (6.3). It is easy to check that

zh = (db (γβ)−1 σ−β)
1

β−b h � σ− β
β−b h. (6.8)

It is easy to check that φ′′(zh | σ, h) < 0, so that zh is the local maximum. Now consider two cases.

(a) If h >
(γβ

db σβ
) 1

β−b , then zh > 1. Hence φ(z | σ, h) does not have a local maximum on [0, 1] and
it attains its global maximum at z0 = 1. Then 2dh−b > φ(1 | σ, h) = 2dh−b − 2γσβh−β > 2dh−b(1 −
b/β). Moreover, since β > b and h >

(γβ
db σβ

) 1
β−b > σ, one has 2dbh−b > 2γβσβh−β , which yields

φ
′
(1 | σ, h) = 2dbh−b − 2γβσβh−β = 2dbh−b

(
1 − γβ

db
σβhb−β

)
� h−b.

Plugging these expressions into the second equation of (6.4) and using (6.5), we obtain

Δ2 � h−(2a+1) min{(hσ−1)2ϑ, 1} exp(2dbh−b)hb � hb−2a−1 exp(2dh−b).

(b) If h <
(γβ

db σβ
) 1

β−b , then zh is given by formula (6.8) and z0 = zh < 1. Hence Δ2 is given by the
first expression in formula (6.4)

Δ2 � exp(φ(zh | σ, h))√
|φ′′(zh | σ, h)|

h−(2a+1)(σ2z2
hh−2 + 1)−ϑ (z2

h + h2)a. (6.9)

Note that, due to β > b > 0, β2

β−b > βb
β−b and β − β2

β−b = − βb
β−b , one has

φ(zh | σ, h) =
2d
hb

( db

γβ
σ−β

) b
β−b

hb − 2γσβ

hβ

( db

γβ
σ−β

) β
β−b

hβ = κσ− βb
β−b ,

where κ is a positive constant defined in (3.9). Also

φ′′(zh | σ, h) =
2
z2
h

(db(b − 1)zb
h

hb
− γβ(β − 1) zβ

hσβ

hβ

)
=

2db(b − β)zb−2
h

hb
� zb−2

h

hb
.

Then plugging φ(zh | σ, h) and φ′′(zh | σ, h) into (6.9) we obtain

Δ2 � exp
(
κσ− βb

β−b

)
σ

β(b−2)
2(β−b)

−2ϑ
.

Case VI: b = β > 0. In this case ρ2(σ) = ∞ in (2.3), so that h > 0. Moreover, since φ(z | σ, h) =
2zb h−b(d − γσb) where, due to condition (2.10), d − γσb > 0, z0 = 1 is the non-local maximum of
φ(z | σ, h). Then the second expression in formula (6.4) yields

Δ2 � exp(φ(1 | σ, h))
φ′(1 | σ, h)

h−(2a+1)(σ2h−2 + 1)−ϑ. (6.10)
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Using (6.5) with β = b, we derive

Δ2 � hb−(2a+1) min
((h

σ

)2ϑ
, 1

)
exp(2h−b(d − γσb)).

Case VII: b > 0, β = γ = 0. In this case, z0 = 1 is the non-local maximum of φ(z | σ, h) and (6.5) yields
φ(1|σ, h) = 2dh−b and φ′(1 | σ, h) = 2dbh−b. Plugging those expressions into (6.10), we derive

Δ2 � min
((h

σ

)2ϑ
, 1

)
hb−(2a+1)exp(2dh−b).

Case VIII: b > β > 0. In this case ρ2(σ) = ∞ in (2.3), so that h > 0. Also, it is easy to check that
although zh ∈ (0, 1), one has φ

′′
(zh | σ, h) > 0 , so zh is the local minimum. It is easy to see that z0 = 1

and φ(1 | σ, h) = 2dh−b(1 − γd−1σβhb−β) � 2dh−b. Moreover, φ′(1 | σ, h) = 2h−b(db − γβσβhb−β) �
h−b, so formula (6.10) yields

Δ2 � hb−(2a+1) min
((h

σ

)2ϑ
, 1

)
exp(2dh−b).

Proof of Theorem 1. Consider various cases.

Cases I, II, III: b = β = 0. One has

Δ � min{(hσ−1)2ϑ, 1}h2k + n−1 min(h−(2a+1), σ−(2a+1))Δhσ, (6.11)

where Δh,σ is defined in (6.7).

Case I: b = β = 0, ϑ > a + 1/2. In this case ρ2(σ) < ∞ and h = 0 is possible. If h = 0, then Δ =
O(σ−(2a+1)n−1). If h �= 0, then choose h ≥ σ, so that Δ1(σ, h) � h2k , Δ2(σ, h) � h−(2a+1). Then

hopt � n− 1
2k+2a+1 and Δ1(σ, hopt) + n−1 Δ2(σ, hopt) � n− 2k

2k+2a+1 . Choose h = hopt if hopt ≥ σ, i.e., if

n− 1
2k+2a+1 ≥ σ. We obtain

Δ �

⎧⎨
⎩

n−1 σ−(2a+1), hopt = 0 if σ > n− 1
2k+2a+1 ,

n− 2k
2k+2a+1 , hopt = n− 1

2k+2a+1 if σ ≤ n− 1
2k+2a+1 .

Case II: b = β = 0, ϑ = a + 1
2 . Here, Δ is given by (6.11), where Δhσ = max{log(σ/h), 1}. If h < σ,

then Δ � σ−2ϑh2ϑ+2k + σ−(2a+1)n−1 log(σ/h). Setting σ−2ϑh2ϑ+2k = σ−(2a+1)n−1 log(σ/h) leads to

hopt � n− 1
2k+2a+1 , Δ � n−1 σ−(2a+1) log n.

Note that hopt < σ if and only if n− 1
2k+2a+1 < σ. Now, consider the case when h ≥ σ.

Then by (6.11), Δ � n− 2k
2k+2a+1 if n− 1

2k+2a+1 ≥ σ. Hence

Δ �

⎧⎨
⎩

σ−(2a+1)

n log n, hopt = n− 1
2k+2a+1 if σ > n− 1

2k+2a+1 ,

n− 2k
2k+2a+1 , hopt � n− 1

2k+2a+1 if σ ≤ n− 1
2k+2a+1 .

Case III: b = β = 0, ϑ < a + 1
2 . First, consider the case when h < σ. Then, by (6.11) and (6.7), obtain

Δ � σ−2ϑh2ϑ+2k + σ−(2ϑ)n−1h2ϑ−2a−1.
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Setting σ−2ϑh2ϑ+2k = σ−(2ϑ)n−1h2ϑ−2a−1, obtain hopt � n− 1
2k+2a+1 and Δ � σ−2ϑn− 2ϑ+2k

2k+2a+1 . Also

note that hopt < σ if and only if σ > n− 1
2k+2a+1 . Now, consider the case when h ≥ σ. Then (6.11) and

(6.7), imply that Δ � n− 2k
2k+2a+1 if n− 1

2k+2a+1 ≥ σ. Hence

Δ �

⎧⎨
⎩

σ−2ϑn− 2ϑ+2k
2k+2a+1 , hopt = n− 1

2k+2a+1 if σ > n− 1
2k+2a+1 ,

n− 2k
2k+2a+1 , hopt = n− 1

2k+2a+1 if σ ≤ n− 1
2k+2a+1 .

Case IV: b = 0, β > 0. In this case ρ2(σ) < ∞ and h = 0 is possible. Consider the case h < σ. Then

Δ1(σ, h) � σ(−2ϑ)h2ϑ+2k exp
(
− 2γ

(σ

h

)β)
, Δ2(σ, h) � σ−(2a+1).

If h < σ, then hopt = 0 and Δ � n−1σ−(2a+1). If h > σ, then Δ1(σ, h) ≤ h2k and Δ2(σ, h) � h−(2a+1).

Therefore, hopt � n− 1
2k+2a+1 and Δ � n

−2k
2k+2a+1 . Observing that hopt ≥ σ if σ ≤ n− 1

2k+2a+1 , we obtain

Δ �

⎧⎨
⎩

n−1σ−(2a+1) hopt = 0 if σ > n− 1
2k+2a+1 ,

n− 2k
2k+2a+1 hopt = n− 1

2k+2a+1 if σ ≤ n− 1
2k+2a+1 .

Case V: β > b > 0. In this case ρ2(σ) < ∞ and h = 0 is possible. The bias is given by (3.8) and

Δ2 �

⎧⎨
⎩

n−1hb−2a−1 exp(2dh−b) if h >
(γβ

db σβ
) 1

β−b ,

n−1 exp
(
κσ

−βb
β−b

)
σ

β
β−b

· b−2
2

−2ϑ if h <
(γβ

db σβ
) 1

β−b .

If h = 0, then Δ � n−1 exp
(
κσ

−βb
β−b

)
σ

β
β−b

· b−2
2

−2ϑ. If h > 0, then one needs h > σ �
(γβ

db σβ
) 1

β−b and
Δ � h2k + n−1hb−2a−1 exp(2dh−b). Choosing h such that h2k = n−1hb−2a−1 exp(2dh−b), arrive at

(2dh−b)
2a+2k+1−b

b exp(2dh−b) = (2d)
2a+2k+1−b

b n (6.12)

and, by Lemma 7, obtain hopt = μ1(n), where μ1(n) is defined in (3.10), and, hence, Δ � (log n)−
2k
b .

Therefore

Δ �

⎧⎨
⎩

n−1 exp
(
κσ

−βb
β−b

)
σ

β(b−2)
2(β−b)

−2ϑ
, hopt = 0, if σ > μ1(n),

(log n)−
2k
b , hopt = μ1(n), if σ ≤ μ1(n),

where μ1(n) is given by (3.10).

Case VI: b = β > 0, h > 0. Note that, due to (2.10), one has σ < (dγ−1)
1
b . Consider two cases. If h < σ,

then

Δ1(σ, h) � σ−2ϑh2ϑ+2k exp
(
− 2γ(σ/h)β

)
, Δ2(σ, h) � h(b+2ϑ−2a−1)σ−2ϑ exp(2h−b(d − γσb)).

Then the bias-variance balance is achieved when

h(b−2k−2a−1) exp(2h−b(d − γσb) + 2γσbh−b) = n,

which leads to (6.12) and, hence, hopt = μ1(n), where μ1(n) is defined in (3.10). Therefore hopt �
(log n)−

1
b and hence

Δ � σ−2ϑ(log n)−
2ϑ+2k

b exp
(
− 2γσβ(log n)

β
b
)
.
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If h ≥ σ, then Δ � h2k + n−1hb−(2a+1) exp(2h−b(d − γσb)) and the bias-variance balance is achieved
when h2k � n−1hb−(2a+1) exp(2h−b(d − γσb)). Then, by Lemma 7, we derive that hopt = μ2(n), where

μ2(n) is defined in (3.10), and Δ � (log n)−
2k
b . Hence

Δ �

⎧⎨
⎩

σ(−2ϑ)(log n)−
2ϑ+2k

b exp
(
− 2γσβ(log n)

β
b

)
, hopt = μ1(n), if σ > μ1(n),

(log n)−
2k
b , hopt = μ2(n), if σ ≤ μ1(n),

where μ1(n) and μ2(n) are given by (3.10).

Case VII: b > 0, β = 0. If h < σ, then

Δ � σ−2ϑh2ϑ+2k + n−1 σ−2ϑ h2ϑ−2a+b−1 exp(2dh−b).

Setting σ−2ϑh2ϑ+2k = n−1 σ−2ϑ h2ϑ−2a+b−1 exp(2dh−b), we arrive at (6.12) and hopt = μ1(n) where

μ1(n)is defined in (3.10). Hence hopt � (log n)−1/b and Δ � (log n)−
2ϑ+2k

b σ−2ϑ, provided σ > μ1(n).
If h ≥ σ, then

Δ � h2k + n−1hb−2a−1exp(2dh−b). (6.13)

Setting h2k ≈ n−1hb−2a−1 exp(2dh−b), arrive at (6.12), so that hopt = μ1(n) � (log n)−1/b and Δ �
(log n)−2k/b if σ ≤ μ1(n). Hence

Δ �

⎧⎨
⎩

(log n)−
2ϑ+2k

b σ−2ϑ, hopt = μ1(n), if σ > μ1(n),

(log n)−
2k
b , hopt = μ1(n), if σ ≤ μ1(n),

where μ1(n)is defined in (3.10).

Case VIII: b > β > 0. If h ≤ σ, then

Δ(σ, h) � σ−2ϑh2ϑ+2k exp(−2γσβh−β) + n−1h2ϑ+b−(2a+1)σ−2ϑ exp(2dh−b).

Then the minimum of Δ(σ, h) is attained if n � hb−(2a+1)−2k exp(2dh−b + 2γσβh−β). Note that, due to
σβ < (d/γ)h−(b−β), b > β and σ < 1, one has 2dh−b > 2γσβh−β . Therefore we arrive at (6.12), so that

hopt � (log n)−1/b and Δ � σ−2ϑ(log n)
(1+2a−2ϑ)

b
−1.

If h > σ, then Δ � h2k + n−1hb−(2a+1) exp(2dh−b), which coincides with (6.13) and we obtain the
same expressions for hopt and Δ as in that case. Hence

Δ �

⎧⎨
⎩

σ−2ϑ(log n)
(1+2a−2ϑ)

b
−1, hopt = μ1(n), if σ > μ1(n),

(log n)−
2k
b , hopt = μ1(n), if σ ≤ μ1(n),

where μ1(n)is defined in (3.10).

Proof of Theorem 2. Observe that

E‖f̂W,ĥ − fW‖2 = Δ̃1 + Δ̃2 + Δ̃3, (6.14)

where

Δ̃1 = E
[
‖f̂W, 1

n
− fW‖2I(w ∈ Ωσ,n)

]
I
(
σ > n− 1

2a+1
)
,

Δ̃2 =
jopt∑
j=1

E
[
‖f̂W,h − fW‖2I(ĥ = h = 2−j)I(w /∈ Ωσ,n or σ ≤ n− 1

2a+1 )
]
,

Δ̃3 =
jmax∑

j=jopt+1

E‖f̂W,h − fW‖2 I(ĥ = h = 2−j) I(w /∈ Ωσ,n or σ ≤ n− 1
2a+1 ).
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We start with construction of an upper bound for Δ̃1. Consider the cases I and IV, since, otherwise,
Δ̃1 = 0. Then

Δ̃1 = E
[
‖f̂W, 1

n
− fW‖2I(w ∈ Ωσ,n)

]
I
(
σ > n− 1

2a+2k+1 = hopt

)
+E

[
‖f̂W, 1

n
− fW‖2I(w ∈ Ωσ,n)

]
I
(
n− 1

2a+1 < σ ≤ n− 1
2a+2k+1

)
= Δ̃11 + Δ̃12.

Here

Δ̃11 ≤ E‖f̂W, 1
n
− fW‖2 I(σ > hopt)

≤ C
[
σ−2ϑn−(2ϑ+2k) + n−1σ−(2a+1)

]
≤ Cn−1σ−(2a+1) = CΔopt ≡ CΔ(n, σ, hopt).

For Δ̃12, one has

Δ̃12 ≤
√

E‖f̂W, 1
n
− fW‖4

√
P
[
(w ∈ Ωσ,n) I

(
σ ≤ n− 1

2a+2k+1
)]

.

By Lemma 4, in cases I and IV, E‖f̂W, 1
n
− fW‖4 ≤ Cn2 and Δ̃12 ≤ C[n n− τ

2 ] ≤ Cn− 2k
2k+2a+1 provided

τ ≥ 4. Therefore

Δ̃1 ≤ CΔ(n, σ, hopt). (6.15)

Now we find an upper bound for Δ̃2. For Δ̃2, ĥ ≥ hopt. Recall that, by definition of ĥ, if ĥ = h ≥ hopt,
then

‖f̂W,h − f̂W,hopt‖2 ≤ 16C2(τ, q) I(σ, hopt)n−1 log n.

Therefore

Δ̃2 ≤ E
[
‖f̂W,ĥ − fW‖2I(ĥ ≥ hopt)

]
≤ E

[
‖f̂W,ĥ − f̂W,hopt‖2 I(ĥ ≥ hopt)

]
+ 2E‖f̂W,hopt − fW‖2

≤ 32C2(τ, q)n−1 I(σ, hopt) log n + Δ(n, σ, hopt) ≤ CΔ(n, σ, hopt) log n,

where Δ(n, σ, h) is defined in (3.5). Hence

Δ̃2 ≤ CΔ(n, σ, hopt) log n. (6.16)

Now we find an upper bound for Δ̃3. Note that

Δ̃3 ≤
jmax∑

j=jopt+1

E
[
‖f̂W,h − fW‖2I(ĥ = h = 2−j)

]
.

If ĥ = h = 2−j for j ≥ jopt + 1, then ĥ < hopt and, by the definition of ĥ, there exist j̃ and h̃ = 2−j̃ < hopt

such that

‖f̂W,hopt − f̂W,h̃‖
2 ≥ 16C2(τ, q) I(σ, h̃)n−1 log n. (6.17)

Since for any h ≤ hopt,

‖fW,h − fW‖2 ≤ C0 n−1I(σ, h),

where C0 is an absolute constant, one has

‖f̂W,hopt − f̂W,h̃‖ ≤ ‖f̂W,hopt − fW,hopt‖ + ‖f̂W,h̃ − fW,h̃‖ + ‖fW,hopt − fW‖ + ‖fW,h̃ − fW‖

≤ C0

√
n−1I(σ, hopt) + C0

√
n−1I(σ, h̃) + ‖f̂W,hopt − fW,hopt‖ + ‖f̂W,h̃ − fW,h̃‖.
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Hence, by Lemma 3, if n is large enough,

P

{
‖f̂W,hopt − fW,h̃‖ ≥ 4C(τ, q)

√
log n

n I(σ, h̃)
}

≤ P

{
‖f̂W,hopt − fW,hopt‖ ≥ 2C(τ, q)

√
log n

n I(σ, h̃) − C0

√
I(σ,hopt)

n

}

+P

{
‖f̂W,h̃ − fW,h̃‖ ≥ 2C(τ, q)

√
log n

n I(σ, h̃) − C0

√
I(σ,h̃)

n

}

≤ P

{
‖f̂W,hopt − fW,hopt‖ ≥ C(τ, q)

√
log n

n I(σ, hopt)
}

+P

{
‖f̂W,h̃ − fW,h̃‖ ≥ C(τ, q)

√
log n

n I(σ, h̃)
}
≤ 2(2 + Cq)n−τ .

Therefore

Δ̃3 ≤
jmax∑

j=jopt+1

jmax∑
j̃=jopt+1

E
[
‖f̂W,ĥ − fW‖2I(ĥ = 2−j)I(h̃ = 2−j̃)

]
,

where h̃ is such that the inequality (6.17) holds. Let Ωh̃ be a set on which (6.17) is true. Then
P(Ωh̃) ≤ 2(2 + Cq)n−τ and

Δ̃3 ≤
jmax∑

j=jopt+1

jmax∑
j̃=jopt+1

√
E‖f̂W,ĥ − fW‖4

√
P(Ωh̃)I(h̃ = 2−j̃) I(ĥ = 2−j)

�
jmax∑

j=jopt+1

jmax∑
j̃=jopt+1

n1− τ
2 ≤ C(log n)2n1− τ

2 ≤ CΔ(n, σ, hopt)

if τ/2 − 1 ≥ 1, which is true iff τ ≥ 4. Combination of the last inequality with (6.14), (6.15) and (6.16)
complete the proof.

6.2. Supplementary Statements and Their Proofs

Lemma 3. Consider Y1, Y2, · · · , Yn i.i.d. such that E(|Y1|q) ≤ Cq with q > 0. Let τ ≥ 1, C(τ, q)
satisfy assumption (4.4), and I(σ, h) be defined by (3.4). Then there exists a set Ω such that for
w ∈ Ω and all h ≥ 1/n simultaneously

‖f̂W,h(x) − fW,h(x)‖2 ≤ C(τ, q)2 I(σ, h)n−1 log n (6.18)

and

P(Ω) ≥ 1 − (2 + Cq)n−τ . (6.19)

Proof. Let f∗
Y (w)=E(f̂∗

Y (w)), where f̂∗
Y (w)= 1

n

∑n
k=1 exp(iYkw) = 1

n

∑n
k=1[cos(Ykw) + i sin(Ykw)].

First we show that there exists a set Ω such that for w ∈ Ω

P
(

sup
|w|≤n

|f̂∗
Y (w) − f∗

Y (w)| > C(τ, q)
√

log n/n
)
≤ (2 + Cq)n−τ (6.20)

provided C(τ, q) satisfies assumption (4.4). Then it is sufficient to prove that

P

(
sup
|w|≤n

∣∣∣∣ 1n
n∑

k=1

[cos(Ykw) − E(cos(Ykw))]
∣∣∣∣ >

C(τ, q)
2

√
log n

n

)
≤ 2 + Cq

nτ
. (6.21)

Let B be the set, where the inequality (6.21) holds. For any γ > 0,

P(B) ≤ P
(
B ∩ { max

1≤k≤n
|Yk| ≤ nγ}

)
+ P

(
max

1≤k≤n
|Yk| > nγ

)
. (6.22)
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By Markov’s inequality,

P
(

max
1≤k≤n

|Yk| ≥ nγ
)
≤ n−γq

E
(

max
1≤k≤n

|Yk|q
)
≤ n−γq

n∑
k=1

E|Yk|q ≤ n−γq+1
E|Y1|q. (6.23)

Set γ = (τ + 1)/q, hence γq − 1 = τ . Then

P(B) ≤ P
(
B ∩ { max

1≤k≤n
|Yk| ≤ nγ}

)
+ n−τ

E|Y1|q. (6.24)

Partition the interval [−n, n] into M sub-intervals by points wj , j = 0, 1, 2, 3, . . . ,M , such that w0 =
−n, wj − wj−1 = n−(γ+1), so that M = 2nγ+2. Consider a random function Zk(w) =

[
cos(Ykw) −

E(cos(Ykw))
]
I(|Yk| ≤ nγ). Since |Yk| ≤ nγ and |∂(cos(Y w))/∂w| ≤ |Y | ≤ nγ , we obtain

|Zk(w) − Zk(w′)| ≤ 2nγ |w − w′|.
Therefore Zk(w) satisfies the Lipschitz condition and, for any w ∈ [−n, n], there exists wj such that

∣∣∣ 1
n

n∑
k=1

Zk(w)
∣∣∣ ≤

∣∣∣ 1
n

n∑
k=1

Zk(wj)
∣∣∣ + 2nγ .

1
nγ+1

.

Hence

P
(
B ∩ { max

1≤k≤n
|Yk| ≤ nγ}

)
≤ P

(
max

1≤j≤M

∣∣∣ 1
n

n∑
k=1

Zk(wj)
∣∣∣ +

2
n

>
C(τ, q)

2

√
log n

n

)

≤ P

(
max

1≤j≤M

∣∣∣ 1
n

n∑
k=1

Zk(wj)
∣∣∣ >

C(τ, q)
4

√
log n

n

)

≤
M∑

j=1

P

(∣∣∣ 1
n

n∑
k=1

Zk(wj)
∣∣∣ >

C(τ, q)
4

√
log n

n

)

provided

C(τ, q)
4

√
log n

n
≥ 2

n
,

which is guaranteed by condition (4.4).

Using Hoeffding’s inequality with ξk = Zk(wj) where |ξk| ≤ 2 and t = C(τ,q)
4

√
log n

n , we obtain that

P

(∣∣∣ 1
n

n∑
k=1

Zk(wj)
∣∣∣ >

C(τ, q)
4

√
log n

n

)
≤ 2 exp

(
− (C(τ, q))2 log n

128

)

and

P
(
B ∩ { max

1≤k≤n
|Yk| ≤ nγ}

)
≤ 2n−τ (6.25)

is guaranteed by condition (4.4). Validity of (6.20) follows from inequalities (6.24) and (6.25).
In order to prove (6.18), note that 1/h ≤ n and

‖f̂W,h − fW,h‖2 = 1
2π ‖f̂∗

W,h − f∗
W,h‖2

= 1
2π

∫ 1/h

−1/h

|g∗(σs)|2
|f∗

ξ (s)|2 |f̂∗
Y (s) − f∗

Y (s)|2 ds

≤ sup
|s|≤n

|f̂∗
Y (s) − f∗

Y (s)|2 I(σ, h),

which completes the proof.
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Lemma 4. Let hmin = max{σ, n− 1
2a+1}. Then, for any h ∈ [hmin, 1/2] , one has

E‖f̂W,h − fW‖4 ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cσ−(4a+3)n−1, cases I, IV,

Cσ−(4a+3)n−1 log n, case II,

Cn2, case III.

(6.26)

In particular, if σ ≥ n− 1
2a+1 , then E‖f̂W,h − fW ‖4 ≤ Cn2.

Proof. Note that

E‖f̂W,h − fW‖4 = E‖f̂W,h − Ef̂W,h + Ef̂W,h − fW‖4 ≤ 8E‖f̂W,h − Ef̂W,h‖4 + 8‖Ef̂W,h − fW‖4.
(6.27)

Then

‖Ef̂W,h − fW‖4 = [R1(f̂W,h, fW )]2 ≤ Δ2
1 ≤ 1,

where Δ1 is defined in (3.7). To find an upper bound for the first term, note that for any x

|f̂W,h(x)| ≤ 1
2π

∫ 1/h

−1/h

|g∗(σs)|
|f∗

ξ (s)| ds

≤ 1
2π

∫ 1/h

−1/h

Cg(σ2s2 + 1)−
ϑ
2 exp(−γ|σs|β)

cξ(s2 + 1)−
a
2

ds

≤ C min
(
h−(a+1), σ−(a+1)

)
Δ̃h,σ,

where

Δ̃h,σ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 in cases I and IV,

max
{

log
(

σ
h

)
, 1

}
in case II,

max
{
1,

(
σ
h

)a−ϑ+1} in case III.

The same upper bound holds for fW,h = Ef̂W,h. Hence

‖f̂W,h − Ef̂W,h‖2
∞ ≤ C min(h−2(a+1), σ−2(a+1))Δ̃2

h,σ. (6.28)

Therefore

E‖f̂W,h − fW,h‖4 ≤ E[‖f̂W,h − fW,h‖2]‖f̂W,h − fW,h‖2
∞

≤ C n−1 min(h−(4a+3), σ−(4a+3)
)
Δ̃2

h,σΔ2
h,σ,

where, according to Lemma 2, Δh,σ is of the form (6.7). Observe that an upper bound for the first term
in (6.27) is larger than the second term and that

E‖f̂W,h − fW‖4 ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cσ−(4a+3)n−1 in cases I, IV,

Cσ−(4a+3)n−1 log
(

1
hmin

)
in case II,

h−(4a+3)n−1 in case III.

Since hmin ≥ n− 1
2a+1 , we finally obtain (6.26).

Now, let σ ≥ n− 1
2a+1 , then σ−(4a+3)n−1 ≤ n−1n

4a+3
2a+1 ≤ n

2a+2
2a+1 ≤ n2, which completes the proof.

Lemma 5. Let σ ≤ n− 1
2a+2k+1 and Ωσ,n be defined by formula (4.5). Then in the cases I and IV, if n

is large enough,

P(Ωσ,n) ≤ (2 + Cq)n−τ . (6.29)
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Proof. Note that

‖f̂W,σ − f̂W, 1
n
‖ ≤ ‖f̂W,σ − fW,σ‖ + ‖f̂W, 1

n
− fW, 1

n
‖ + ‖fW,σ − fW‖ + ‖fW, 1

n
− fW‖. (6.30)

Then by Lemma 1, for some absolute constant C̃, ‖fW,σ − fW‖ ≤ C̃σ−k; ‖fW, 1
n
− fW‖ ≤ C̃n−k < C̃σk.

Also, by Lemma 3, for w ∈ Ω

‖f̂W,σ − fW,σ‖ ≤ C(τ, q)

√
I(σ, σ) log n

n
≤ C(τ, q)

√
I(σ, 1/n) log n

n

and

‖f̂W, 1
n
− fW, 1

n
‖ ≤ C(τ, q)

√
I(σ, 1/n) log n

n
.

Hence it follows from (6.30) that for w ∈ Ω

‖f̂W,σ − f̂W, 1
n
‖ ≤ 2C(τ, q)

√
I(σ, 1/n) log n

n
+ 2C̃σk.

Therefore, for w ∈ Ω,

‖f̂W,σ − f̂W, 1
n
‖ ≥ 4C(τ, q)

√
I(σ, 1/n) log n

n

cannot be true, unless

C(τ, q)

√
I(σ, 1/n) log n

n
< C̃σk. (6.31)

By Lemma 2, in cases I and IV, one has I(σ, 1/n) ≤ ˜̃Cσ−(2a+1). So, inequality (6.31) holds only

if C(τ, q) ( ˜̃C)2σ−(a+ 1
2
)
√

log n/n < C̃σk, which is equivalent to σ > C̄(n−1 log n)
1

2k+2a+1 , where

C̄ = ˜̃CC(τ, q)/C̃. Therefore, if w ∈ Ω and σ ≤ n− 1
2k+2a+1 , where n is such that C̄(log n)

1
2k+2a+1 ≥ 1,

then (6.31) is not true. Hence w /∈ Ωσ,n, so that Ωσ,n ⊂ Ωc and (6.29) holds.

Lemma 6. Consider an integral of the form

I(λ) =
∫ m2

m1

Pλ(z) exp(Qλ(z)) dz, (6.32)

where 0 ≤ m1 < m2 < ∞ and Pλ(z) and Qλ(z) are real-valued differentiable functions of z and
λ → ∞ is a large parameter. Let z0 ≡ z0,λ = argmax

z∈[m1,m2]

Qλ(z) be a unique global maximum of Qλ(z)

on the interval [m1,m2]. Assume that the following conditions hold:
(1) A function P is a positive slowly varying function, i.e., for any t > 0 one has

lim
x→∞

P (tx)/P (x) = 1.

(2) Qλ(z0) − Qλ(z) increases monotonically for λ ≥ λ0 as λ → ∞.

(3) If Q
′
λ(z0) = 0, then for every λ ≥ λ0

lim
x→0

Qλ(z0 + x) − Qλ(z0)
x2

=
Q

′′
λ(z0)
2

< 0. (6.33)

(4) If Q
′
λ(z0) �= 0, then for every λ ≥ λ0

lim
x→0

Qλ(z0 + x) − Qλ(z0)
x

= Q
′
λ(z0) �= 0. (6.34)
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Then, as λ → ∞,

I(λ) �

⎧⎪⎨
⎪⎩

exp{Qλ(z0)}Pλ(z0)√
|Q′′

λ(z0)|
if (6.33) holds,

exp{Qλ(z0)}Pλ(z0)

Q
′
λ(z0)

if (6.34) holds.
(6.35)

Proof. Comparing (6.32) with the integral

I(λ) =
∫

G(z) exp(−F (z))dz (6.36)

we obtain F (z) = −Qλ(z), G(z) = Pλ(z). Then, following the calculations in [8] with F (z0) =
−Qλ(z0), F1(z0) = −Q

′
λ(z0), we obtain from formulas (3) and (4), p. 111,

I(λ) = [−Q′
λ(z0)]−1 exp{Qλ(z0)}

∞∑
0

Lr,

where Lr is given by

Lr = −Q′
λ(z0)

( d

Q′
λ(z) dz

)r Pλ(z)
Q′

λ(z)

∣∣∣∣∣
z=z0

.

Hence, taking the term with r = 0, we obtain, when (6.33) holds:

I(λ) ≈ exp{Qλ(z0)}Pλ(z0)
Q

′
λ(z0)

.

Now, consider the case when (6.34) holds.
Then following the calculations in [8], p. 118, we obtain

I(λ) = exp{Qλ(z0)}
∫

exp{−f2}Pλ(z) dz,

where

f =
√

Qλ(z0) − Qλ(z) ∼
√

F2/2 z as z → z0

with F2(z0) = −Q′′
λ(z0). Therefore, from formulas (16) and (17), p. 119, we obtain

I(λ) =
[ π

−2Q′′
λ(z0)

] 1
2 exp{Qλ(z0)}

∞∑
0

Lr,

where Lr is given by

Lr = Q′
λ(z0)

( d

2 f ′ dz

)r Pλ(z)
f ′

∣∣∣
z=z0

.

Hence, taking the term with r = 0, we obtain, when (6.34) holds:

I(λ) ≈
√

π exp{Qλ(z0)}Pλ(z0)√
−2Q′′

λ(z0)
,

which is equivalent to the second expression of (6.35).

Lemma 7. Let n be large and z ∈ R be a fixed quantity. Then, as n → ∞, the solution of the
equation

emmz = n (6.37)

is given by

m = (log n − z log log n)(1 + o(1)), n → ∞. (6.38)
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Proof. Since emmz = n, then m + z log m = log n and m = log n − z log m. Plugging this m back
into (6.37), we obtain elog n−z log m(log n − z log m)z = n. Since for large values of n, one has (log n −
z log m)z ≈ (log n)z , the previous equation becomes (log n)zne−z log m ≈ n, so that z log log n ≈
z log m, which yields (6.38).
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