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1. INTRODUCTION

Motivated by numerous applications, the theory of U-statistics (introduced in a seminal work by
Hoeffding [32]) and U-processes has received considerable attention in the past decades. U-processes
are useful for solving complex statistical problems. For example, for density estimation, nonparametric
regression tests and goodness-of-fit tests. More precisely, U-processes appear in statistics in many
different instances, e.g. as the components of higher order terms in von Mises expansions. In particular,
U-statistics are used in the analysis of estimators (including function estimators) with varying degrees
of smoothness. For example, Stute [64] applies a.s. uniform bounds for P-canonical U-processes to the
analysis of the product limit estimator for truncated data. Arcones and Wang [5] present two new tests
for normality based on U-processes. Making use of the results of [26, 27], Schick et al. [55] introduced
new tests for normality using weighted L1-distances between the standard normal density and local
U-statistics based on standardized observations. Joly and Lugosi [36] discussed the estimation of the
mean of multivariate functions in case of possibly heavy-tailed distributions and introduce the median-
of-means that is based on U-statistics. U-processes are important tools for a broad range of statistical
applications such as testing for qualitative features of functions in nonparametric statistics [43, 25, 1],
cross-validation for density estimation [40], and establishing limiting distributions of M-estimators (see,
e.g., [3, 58, 59, 12]), Halmos [29], von Mises [68] and Hoeffding [32], who provided (among others) the
first asymptotic results for the case that the underlying random variables are independent and identically
distributed. Under weak dependence assumptions asymptotic results are for instance shown in [8],
in [15], or more recently in [44] and in more general setting in [45]. For excellent resource of references
on the U-statistics and U-processes the interested reader may refer to [9, 39, 42, 4, 7, 3]. For the U-
statistics with random kernels of diverging orders we refer to [24, 53, 31, 61]. Infinite-order U-statistics
are a useful tool for constructing simultaneous prediction intervals that quantify the uncertainty of
ensemble methods such as subbagging and random forests. Song et al. (2019) (unpublished preprint)
provide the following important example.

*E-mail: salim.bouzebda@utc.fr
**E-mail: boutheina.nemouchi@utc.fr

169
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Example 1.0.1. Simultaneous prediction intervals for random forests [61]. Consider a training
dataset of size n, {(Y1, Z1), . . . , (Yn, Zn)} = {X1, . . . ,Xn} = Xn

1 , where Yi ∈ Y is a vector of features
and Zi ∈ R is a response. Let h be a deterministic prediction rule that takes as input a sub-sample
{Xi1 , . . . ,Xim} with 1 ≤ m ≤ n and outputs predictions at d testing points (y∗1 , . . . , y

∗
d) in the feature

space Y . For random forests, the tree-based prediction rule is constructed on each sub-sample with
additional randomness. Specifically, let {Wι : ι ∈ I(m,n)} be a collection of i.i.d. random variables
taking values in a measurable space (S′,S ′) that are independent of the data Xn

1 . Let H : Sm × S′ → R
d

be an Sm ⊗S ′-measurable function such that E[H(x1, . . . , xm,W )] = h(x1, . . . , xm). Then predictions
of random forests are given by a d-dimensional U-statistic with random kernel H :

̂Un :=
(n − m)!

n!

∑

i∈I(m,n)

H(Xi1 , . . . ,Xim ,Wi). (1.1)

where the random kernel H varies with m and

I(m,n) = {i = (i1, . . . , im) : 0 ≤ ij ≤ n and ij �= ir if j �= r}
is the set of all m-tuples of different integers between 1 and n.

A very deep insight into the theory of U-processes is given in [12]. In this paper we consider the so-
called conditional U-statistics introduced in [63]. These statistics may be viewed as generalizations of
the Nadaraya–Watson ([46], [69]) estimates of a regression function. To be more precise, let us consider
the strictly stationary sequence of random elements {(Xi,Yi), i ∈ N

∗} defined on the probability space
(Ω,A, P) with Xi ∈ R

d and Yi ∈ R
d, and a measurable function ϕ : R

dm → R. In this paper, we are
primarily concerned with the estimation of the conditional expectation, or the regression function,

r(m)(ϕ, t) = E (ϕ(Y1, . . . ,Ym) | (X1, . . . ,Xm) = t) for t ∈ R
dm,

whenever it exists, i.e., E (|ϕ(Y1, . . . ,Ym)|) < ∞. We now introduce a kernel function K : R
d → R with

support contained in [−B,B]d, 0 < B < ∞, satisfying

sup
x∈Rd

|K(x)| =: κ < ∞ and
∫

K(x) dx = 1. (1.2)

Stute [63] introduced a class of estimators for r(m)(ϕ, t), called conditional U-statistics, which is defined
for each t ∈ R

dm by

r̂(m)
n (ϕ, t;hn) =

∑

(i1,...,im)∈I(m,n) ϕ(Yi1 , . . . ,Yim)K
(Xi1

−t1
hn

)

· · ·K
(Xim−tm

hn

)

∑

(i1,...,im)∈I(m,n) K
(Xi1

−t1
hn

)

· · ·K
(Xim−tm

hn

)
, (1.3)

where {h = hn}n≥1 is a sequence of positive constants converging to zero at the rate
(

nhdm = nhdm
n

)

→
∞. In the particular case m = 1, the r(m)(ϕ, t) is reduced to r(1)(ϕ, t) = E(ϕ(Y)|X = t) and Stute’s
estimator becomes the Nadaraya–Watson estimator of r(1)(ϕ, t) given by

r̂(1)
n (ϕ, t, hn) =

n
∑

i=1

ϕ(Yi)K
(

Xi − t
hn

)/ n
∑

i=1

K

(

Xi − t
hn

)

.

The work of Sen [56] was devoted to estimate the rate of the uniform convergence in t of r̂
(m)
n (ϕ, t;hn)

to r(m)(ϕ, t). In [52], the limit distributions of r̂
(m)
n (ϕ, t;hn) are discussed and compared with those

obtained by Stute. Harel and Puri [30] extend the results of Stute [63], under appropriate mixing
conditions, to weakly dependent data and apply their findings to verify the Bayes risk consistency of the
corresponding discrimination rules. Stute [65] proposed symmetrized nearest neighbor conditional U-
statistics as alternatives to the usual kernel-type estimators. An important contribution is given in [16],
where a much stronger form of consistency holds, namely, uniform in t and in bandwidth consistency

(i.e., hn ∈ [an, bn], where 0 < an < bn → 0 at some specific rate) of r̂
(m)
n (ϕ, t;hn). In addition, uniform

consistency is also established over ϕ ∈ F for a suitably restricted class of functions F . The main tool in
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their result is the use of local conditional U-processes investigated in [26]. Let Z1,Z2, . . . be a stationary
sequence of random variables on some probability space (Ω,D, P ) and let σj

i be the σ-field generated by
Zi, . . . ,Zj , for i, j � 1. The sequence Z1,Z2, . . . is said β-mixing or absolute regular if

β(k) := E sup
l�1

{

|P (A|σl
1) − P (A)| : A ∈ σ∞

l+k

}

−→ 0 as k → ∞.

A more general definition is introduced in the Appendix in addition to other measures of dependence.
Throughout the sequel, we assume tacitly that sequence of random elements {(Xi,Yi), i ∈ N

∗} is
absolutely regular.

In this paper, we are mainly interested in extensions of the results of [6] to the conditional U-
processes. More precisely, we investigate the weak convergence of the conditional empirical process
indexed by a suitable class of functions and of conditional U-processes. We treat the weak convergence
in both cases when the class of functions is bounded or unbounded satisfying some moment conditions.
It is important to notice that in [6] the weak convergence of the U-processes is obtained for uniformly
bounded class of functions. To the best of our knowledge, these results have not yet been investigated,
and this give the main motivation of this study. Although Arcones and Yu [6] have established some
weak convergence, their results are not directly applicable in our framework since we are interested in
some local empirical processes. However their results will be essential to obtain our main theorems.
We shall not discuss removing the bias in general. The bias is not probabilistic and can always be
studied by adding enough smoothness to the kernel and the regression function. In order to obtain
our general results we make use and combine several techniques: blocking, chaining argument method,
square root trick, Hoeffding’s trick, etc. Several inequalities, Eberlein’s inequality, Bernstein’s inequality,
Hoeffding’s inequality and others, are used in nontrivial ways to obtain some desired bounds.

The layout of the present article is as follows. Section 2 is devoted to the weak convergence of the
conditional empirical processes indexed by a function in the spirit of [51] and [50]. In Section 3, we
investigate weak convergence of the conditional U-processes indexed by a class of functions satisfying
some entropy conditions. In Section 4, we provide an application of our results to testing the conditional
independence. In Section 5, we collect some examples of classes of functions and some U-statistics.
Some concluding remarks and possible future developments are relegated to Section 6. To avoid
interrupting the flow of our presentation, all mathematical developments are given in Section 7. We
recall some facts and technical results that we need in our proof in the Appendix.

2. CONDITIONAL EMPIRICAL PROCESSES

Let Fm = {ϕ : R
dm → R} denote a class of real-valued symmetric measurable functions on R

dm

with a measurable envelope function

F (y) ≥ sup
ϕ∈Fm

|ϕ(y)| for y ∈ R
dm. (2.1)

For a kernel function K(·) and a measurable set I ⊂ R
d, we define the class of functions

K m :=
{

(x1, . . . , xm) 
→
m
∏

i=1

K

(

xi − ti

hn

)

, (t1, . . . , tm) ∈ I
m

}

.

I is chosen so that (xi − t) /hn be contained in [−B,B], the support of K, and the classes Fm, K m

are assumed to be pointwise measurable classes. From now on, to stress the role of the class K m,

we shall write r̂
(m)
n (ψ, t;hn) or r̂

(m)
n (ψ, t) for the estimator of the regression function defined in (1.3),

where ψ = ϕ
∏m

i=1 K
( ·−ti

hn

)

∈ FmK m, and by misuse of notation we write r(m)(ψ, t) for r(m)(ϕ, t) and
νn(ψ | t) to denote νn(ϕ | t) that we will define later. Nevertheless, in some cases we keep the notation

r̂
(m)
n (ϕ, t;hn) = r̂

(m)
n (ϕ, t). Let us introduce the following class of functions on R

d × R
d:

FK = F1K
1 :=

{

(·, ·) 
→ ϕ(·)K
(

· − t
hn

)

: ϕ ∈ F1, t ∈ I

}

.
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The main objective of this section is to investigate the uniform central limit theorems for the conditional
empirical process defined by

{

νn(ψ | t) =
√

nhd (r̂(1)
n (ψ, t;hn) − r(1)(ψ, t), ψ ∈ FK , t ∈ I

}

.

If, for Pψ =
∫

ψ dP, where P is a probability measure and for each (x,y)

sup
ψ∈FK

|ψ(x,y) − Pψ| < ∞,

then
{

νn(ψ | t) : ψ ∈ FK , t ∈ I
}

is a random element with values in l∞(FK ) consisting of all
functionals ν∞ on FK such that

sup
ψ∈FK

|ν∞(ψ)| < ∞.

Then it will be important to investigate the following weak convergence:

{νn(ψ | t) : ψ ∈ FK , t ∈ I} w−→ {G(ψ) : ψ ∈ FK } in l∞(FK ),

in the sense of [33], refer to Definition 1.3.3 in [67], where {G(ψ) : ψ ∈ FK } is the Gaussian process
indexed by the class of functions FK . It is known that the weak convergence to a Gaussian limit with
a version of uniformly bounded and uniformly continuous paths (with respect to the ‖ · ‖2) is equivalent
to the finite-dimensional convergence and the existence of pseudo-metric dp.m on FK such that
(FK , dp.m) is totally bounded pseudo-metric space and

lim
r→0

lim sup
n→∞

P
∗
{

sup
dp.m(ψ1,ψ2)≤r

|νn ((ψ1 − ψ2) | t)| > ε
}

= 0 (2.2)

for all ε > 0, where P
∗ is the outer probability, see p. 6 in [67] for definition. As mentioned earlier, Pory-

vai [51] provided finite-dimensional convergence results for dependent sequences, we will borrow some
techniques from this work, which will adapted to our framework in connection with the methodology
of [6]. We will show henceforth that the Eq. (2.2) holds for the VC subgraph classes and classes satisfying
some entropy conditions.

2.1. Convergence of Finite-Dimensional Distributions

Below, we write Z
d= N (μ, σ2) whenever the random variable Z follows a normal law with expectation

μ and variance σ2, d→ denotes convergence in distribution and P→ convergence in probability. To
unburden our notation a bit, we assume the {Xi}i∈N∗ to be real-valued (d = 1) and suppose that the
distribution of the r.v. X1 admits a density ρ(·) with respect to the Lebesgue measure. In what follows,
we assume that ρ(t) > 0. We will remark that our results extend with obvious changes of notation and
modifications of assumptions to the case when X takes values in R

d, for d > 1. The proofs carry over
exactly as before after some additional but cumbersome indexing. Let us introduce

νni =

√

h

n
ϕ̆(Yi)Kh(Xi − t), ∀i = 1, . . . , n, for t ∈ R,

where

ϕ̆ = ϕ − r(1)(ϕ, t) and Kh(t) = h−1K
(

h−1t
)

.

In this article, the finite-dimensional convergence requires the following assumptions:

(C.1) The functions ρ(z) and r(1)(ϕ, z) (for all ϕ ∈ F ) are twice continuously differentiable with
respect to z in some neighborhood of the point t.

(C.2) The function K : R → R with support contained in [−B,B], 0 < B < ∞, satisfies
∫

R

K(z) dz = 1,
∫

R

K2(z) dz < ∞, K(−z) = K(z) for z ∈ R,
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(C.3) We assume that h = hn → 0 as n → ∞ and is such that nh5/2 ↘ c = cte < ∞ with nh → ∞ as
n → ∞.

(C.4) The new sequence {νni, 1 ≤ i ≤ n} is formed by strictly stationary β-mixing r.v.’s and the joint
distribution of (X1,Xj) for j > 1 admits a density ρj(z1, zj) with respect to the Lebesgue measure
such that the following conditions hold for all (z1, zj) ∈ R

2:

|ρj(z1, zj) − ρ(z1)ρ(zj)| ≤ θ(j)ρ(z1)ρ(zj) for θ(j) < 1,

and

h
n
∑

j=2

θ(j) → 0 as n → ∞.

(C.5) The function r(1)(ϕ1ϕ2, z) is continuous in z at the point t and

sup
j>1

sup
(z1,zj)∈R2

|E(ϕ̆1(Y1)ϕ̆2(Yj) | X1 = z1,Xj = zj | < ∞ for ϕ1, ϕ2 ∈ F .

(C.6) The sequence {Zi = (Xi, Yi)}i∈N∗ satisfies for p > 0:
(

nhmax1≤k≤n β
1/p
k

)

→ 0 as n → ∞.
Moreover, r(1)(‖ϕ̆‖q, z1) < ∞, r(1)(‖ϕ̆‖s, zj) < ∞ for all j � 2, where q > 1, s > 1 and

1
q

+
1
s

= 1 − 1
p
,

where we define, for {Xj}1≤j≤n and almost all {zj}1≤j≤n ∈ R, for r = q, s,

r(1)(‖ϕ̆‖r, zj) = E
1/r

(

|ϕ̆r(Yj)|
∣

∣Xj = zj

)

.

We are now equipped to state our theorem.

Theorem 2.1.1. Let us consider the class of functions FK such that Eϕ2(Y1) < ∞ and suppose
that conditions (C.1)–(C.6) hold. Then, for M ≥ 1 and ψ1, . . . , ψM ∈ FK we have

{νn(ψi | t) : i = 1, . . . ,M} d−→ N (0,Σ) as n → ∞,

where Σ := (σi,j)i,j=1,...,M and

σi,j :=
(

r(1)(ψiψj , t) − r(1)(ψi, t)r(1)(ψj , t)
)

{
∫

R
K2(u) du

ρ(t)

}

.

2.2. Asymptotic Uniform Equicontinuity (Tightness)

In this part, we give sufficient conditions for (2.2) to hold for the process
{

νn(ψ | t) =
√

nh(r̂(1)
n (ψ, t, hn) − r(1)(ψ, t), ψ ∈ FK , t ∈ I

}

.

To do this we need to measure the size of the class FK that could be achieved in a simple way by metric
entropy. The metric entropy of a class of functions E with respect to the pseudo-metric dp.m is defined
by logN (ε,E , dp.m), where

N (ε,E , dp.m) = min
{

m : there are f1, . . . , fm ∈ E such that sup
f∈E

min
1≤j≤m

dp.m(f, fj) ≤ ε
}

is the covering number. Recall that the envelope function given in (2.1), for m = 1, is

F (y) ≥ sup
ϕ∈F1

|ϕ(y)|, for y ∈ R, (2.3)
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and from equation (1.2), we have supx∈R |K(x)| =: κ < ∞. Let us denote, for m = 1,

Lr(Q) = || · ||Lr(Q) =
(∫

| · |r dQ

) 1
r

,

γn(t) :=
1

nhn

n
∑

i=1

ϕ(Yi)K
(

Xi − t

hn

)

.

(C.7) For some 2 < p < ∞, the β-mixing coefficient satisfies

k
p

(p−2) (log k)
2(p−1)
(p−2) βk −→ 0 as k → ∞.

(C.8) The conditional moment, for some 2 < p < ∞,

μp := sup
t∈I

E(F p(Y ) | X = t) < ∞. (2.4)

(C.9) The metric entropy of the class FK satisfies, for some 2 < p < ∞,
∫ ∞

0
(log N(u,FK , ‖ · ‖1))

1
2 du < ∞,

∫ ∞

0
(log N(u,FK , ‖ · ‖2))

1
2 du < ∞,

∫ ∞

0
(log N(u,FK , ‖ · ‖p))

1
2 du < ∞.

(C.10) There are two positive constants b and ν such that:

N(ε,FK , ‖ · ‖L2(Q)) ≤
(

b‖Fκ‖L2(Q)

ε

)ν

for any ε > 0 and each probability measure such that

Q(Fκ)2 :=
∫

(Fκ)2dQ < ∞,

where Q is any probability measure on
(

R
m,B(Rm)

)

, and B (Rm) represents the σ-field of Borel
sets of R

m (in the present section we consider m = 1).

Remark 2.2.1. Imposing such conditions is mainly for technical reasons:

• Condition (C.1) and nh5/2 → 0 allow us to apply Proposition 3.4 of [73] in order to prove that
nh5/2μ′

n → 0 (defined in the proof). Imposing nh5/2 → 0 could be replaced by the condition
√

nh5

↘ c = const < ∞.

• Conditions (C.2), (C.3) and (C.8) are classical conditions in kernel-type estimation.

• Conditions (C.4)–(C.6) and (C.7) are technical conditions used in order to calculate Var (νn1)
and prove that νni are asymptotically uncorrelated and also to get (υn − 1)βan → 0 in the
Eberlein’s inequality.

• Imposing conditions (C.9) and (C.10) means that we are dealing with a class of functions
neither too small nor too large with the property of being totally bounded. The latter allows us
to study the asymptotic equicontinuity of the process. We impose such entropy properties in order
to get that (FK , ‖ · ‖r) is totally bounded and also for technical reasons, it allows us to use some
inequalities and propositions in order to get the asymptotic tightness.

MATHEMATICAL METHODS OF STATISTICS Vol. 28 No. 3 2019



CENTRAL LIMIT THEOREMS FOR U-PROCESSES 175

We were inspired by [51] to impose conditions (C.1)–(C.5) and by [6] to impose (C.7), (C.9) and
(C.10).

Our main result of this section is the following.

Theorem 2.2.2. Suppose that conditions (C.2), (C.7)–(C.10) hold and E(ϕ2(Y1)) < ∞ for each
ϕ ∈ F . Then

lim
b→0

lim sup
n→∞

P

{

sup
‖ψ1−ψ2)‖p≤b

ψ1,ψ2∈FK

∣

∣νn ((ψ1 − ψ2) | t)
∣

∣ > ε
}

= 0.

The proof of this theorem is based on the blocking approach and essentially on technics used in [6]:
the main idea is to divide the strictly stationary sequence (Z1, . . . , Zn) into a number of blocks equal to
2υn such that each one is of length equal to an and the remaining block is of length n − 2υnan, that is
(for 1 ≤ j ≤ υn)

Hj = {i : 2(j − 1)an + 1 ≤ i ≤ (2j − 1)an},
Tj = {i : (2j − 1)an + 1 ≤ i ≤ 2jan},
R = {i : (2υnan + 1 ≤ i ≤ n}.

The values of υn, an are given in the proof. Then introduce the sequence of independent blocks
(ξ1, . . . , ξn) such as:

L(ξ1, . . . , ξn) = L(Z1, . . . , Zan) ×L(Zan+1, . . . , Z2an) × · · · .

An application of the result of [21] implies that, for any measurable set A,
∣

∣

∣P
{

(ξ1, . . . , ξan , ξ2an+1, . . . , ξ3an , . . . , ξ2(υn−1)an+1, . . . , ξ2υnan) ∈ A
}

−P
{

(Z1, . . . , Zan , Z2an+1, . . . , Z3an , . . . , Z2(υn−1)an+1, . . . , Z2υnan) ∈ A
}

∣

∣

∣

≤ 2(υn − 1)βan . (2.5)

Based on the work of Ibragimov [35] and that of Doukhan et al. [17], Arcones and Yu [6] showed
that, for each stationary absolute regular sequence (Z,Z1, . . . , Zn) satisfying (C.7), each function g(·)
contained in some measurable class of functions G , and for all 2 < p < ∞, there is a positive constant
cp,β depending on p and the mixing coefficients {βk}∞k=1 such that

E(αn(g))2 ≤ cp,β‖g(Z)‖2
p,

where {αn(g)}G is an empirical process indexed by the class G , i.e., for g ∈ G ,

αn(g) =
1√
n

n
∑

i=1

(g(Zi) − Eg(Zi)).

They add that for each g, g(1) ∈ G ,

‖G(g) − G(g(1))‖2 ≤ cp,β‖g(Z) − g(1)(Z)‖p, (2.6)

where {G(g)}G is a Gaussian process indexed by G . Arcones and Yu [6] assert also that if the class of
functions G satisfies (C.9) and if (C.7) and (2.6) hold and with respect to Theorem 3.1 in [18], then the
Gaussian process has a version with uniformly bounded and uniformly continuous paths with respect to
the ‖ · ‖2-norm. In the rest of this section, we assume that F is of VC-type, with characteristics A and
v (”VC” for Vapnik and Červonenkis) meaning that

( F.iii) N(ε,F , ‖ · ‖Lr(Q)) ≤ A

(

(QF r)1/r

ε

)v

, ε > 0,
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for a given 1 ≤ r < ∞, such that QF r < ∞, Q is any probability measure on (Rm,B(Rm)), and B(Rm)
represents the σ-field of Borel sets of R

m. For instance, Examples 26 and 38 in [49], Lemma 22 in [47]
§ 4.7 in [19], Theorem 2.6.7 in [67], § 9.1 in [40] provide a number of sufficient conditions under which
(F.iii) holds, we may also refer to § 3.2 in [13] for further discussions. For instance, it is satisfied, for
general d ≥ 1, whenever g(x) = φ(p(x)), with p(x) being a polynomial in d variables and φ(·) being
a real-valued function of bounded variation, we refer the reader to p. 1381 in [23]. If the class F is a
VC-type class of functions then F satisfies (F.iii) with characteristics A and ν. Since it is generally
recognized that the choice of the kernel is of less importance for the performance of a kernel estimator
than the choice of bandwidth, we feel free to impose the following conditions on the kernel. Recall that
K(·) is a kernel function with support contained in [−B,B], 0 < B < ∞, and satisfying

(K.ii) The class K is a VC-type class of functions.

Remark that condition (K.ii) is satisfied whenever K(·) is of bounded variation on R. Notice that
conditions (F.iii) and (K.ii) imply that the class of functions FK is of VC-type, i.e., (C.10) is satisfied.
Since we are dealing with a stationary absolute regular sequence (Z1, . . . , Zn), where Zi = (Xi, Yi), the
sequence of the independent blocks that we use in the following is given by {ξi = (ςi, ζi)}i∈N∗ .

Theorem 2.2.3. Assume that conditions (C.1)–(C.8) hold. Suppose that the class FK is of
VC-type and for each ϕ ∈ F , E(ϕ2(Y1)) < ∞, then the process

{

νn(ψ | t) =
√

nh(r̂(1)
n (ψ, t, hn) − r(1)(ψ, t)), ψ ∈ FK , t ∈ I

}

converges in law to a Gaussian process {Gn(ψ) : ψ ∈ FK } that admits a version with uniformly
bounded and uniformly continuous paths with respect to ‖ · ‖2-norm.

Remark 2.2.4. If the VC type class of functions FK is uniformly bounded, then to obtain the weak

convergence of the process {νn(ψ | t) =
√

nh(r̂(1)
n (ψ, t, hn)− r(1)(ψ, t)), ψ ∈ FK , t ∈ I} we just need

to assume that the mixing coefficient satisfies

βkk
r → 0 as k → ∞

for some r > 1.

Remark 2.2.5. We denote by {M(t) : t ≥ 0} a nonnegative continuous function increasing on [0,∞)
and such that, for some s > 2, ultimately as t ↑ ∞

(i) t−sM(t) ↓; (ii) t−1M(t) ↑ .

For each x ≥ M(0), we define Minv(x) ≥ 0 by M(Minv(x)) = x. We assume further that

(C.8’) sup
t∈I

E(M(F (Y )) | X = t) < ∞.

Assumption (C.8) on the class of functions F can be replaced by the general assumption (C.8’) but
this will add much extra complexity to the proofs. We will need also that the sequence {hn}n≥1 satisfies
some appropriate conditions. For more details, we may refer to [22, 14 and 13].

3. CONDITIONAL U-PROCESSES

In this section, we shall establish weak convergence for conditional U-processes of β-mixing se-
quences. For a given strictly stationary β-mixing sequence {Zi = (Xi, Yi), i ∈ N

∗} of random variables
with (Xi, Yi) ∈ R

2, the conditional U-statistic based on {Zi = (Xi, Yi)}N∗ and the kernel ϕ ˜K ( ˜K(·) will
be defined later) is given by

r̂(m)
n (ϕ, t;hn) = r̂(m)

n (ϕ, t) =

∑

(i1,...,im)∈I(m,n) ϕ(Yi1 , . . . , Yim)K
(Xi1

−t1
hn

)

· · ·K
(Xim−tm

hn

)

∑

(i1,...,im)∈I(m,n) K
(Xi1

−t1
hn

)

· · ·K
(Xim−tm

hn

)
, (3.1)

where

I(m,n) = {i = (i1, . . . , im) : 0 ≤ ij ≤ n and ij �= ir if j �= r} ,
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is the set of all m-tuples of different integers between 1 and n and {h = hn}n≥1 is a sequence of positive
constants converging to zero at the rate nhm

n → ∞. The class of functions that we consider is FmK m

given in Section 2. We define the conditional U-process indexed by FmK m by
{

U (m)
n (ϕ, t) :=

√
nhm(r̂(m)

n (ϕ, t;hn) − r(m)(ϕ, t))
}

FmK m
, (3.2)

for notational brevity, we suppose that the kernel ϕ(·) ˜K(·) is symmetric ( ˜K(·) will be defined later).
To study (3.2) we introduce some slightly different definitions and notation, which however should not
lead to a misunderstanding (some are borrowed from [6] and [16]). First, let πk,mf be a P-canonical
function (completely degenerate, or completely centered) defined for a (symmetric) measurable function
f : Sm × Sm → R and xk = (x1, . . . , xk),yk = (y1, . . . , yk) ∈ Sk by

πk,mf(xk,yk) := (δ(x1,y1) − P) · · · (δ(xk ,yk) − P)Pm−k(f),

where for a measurable space (S,S), and some measurable function f , the notation Pf means Pf =
∫

f dP, P
m−k(f) means that we are dealing with the integral related to the product measure composed

of the probability measure P, (m− k) times. For 1 ≤ i ≤ k, δ(xi,yi) denotes the Dirac measure on (xi, yi).
From now on,

X := (X1, . . . ,Xm) ∈ R
m, Y := (Y1, . . . , Ym) ∈ R

m,

Xi := (Xi1 , . . . ,Xim), Yi := (Yi1 , . . . , Yim),

˜K(t) :=
m
∏

i=1

K(ti), t = (t1, . . . , tm),

Kh(x) :=
1
h

K
(x

h

)

,

Gϕ,t(x, y) := ϕ(y) ˜Kh(x − t) =
1

hm
ϕ(y1, . . . , ym)

m
∏

i=1

K

(

xi − ti
h

)

for x ∈ R
m, y ∈ R

m, t ∈ I
m,

G :=
{

Gϕ,t(·, ·) = h−mϕ(·) ˜K
(

· − t
h

)

, ϕ ∈ Fm, ˜K ∈ K m, t = (t1, . . . , tm)
}

,

G(k) := {πk,mGϕ,t(·, ·), ϕ ∈ Fm, t = (t1, . . . , tm)} ,

un(ϕ, t) = u(m)
n (Gϕ,t) :=

(n − m)!
n!

∑

i∈I(m,n)

Gϕ,t(Xi, Yi),

and the U-statistic process

μn(ϕ, t) :=
√

nhm {un(ϕ, t) − E(un(ϕ, t))} .

The main result of this section is summarized in the following theorem.

Theorem 3.0.1. Let FmK m be a measurable VC subgraph class of functions from (Rm, Rm) −→ R

such that, for some 2 < p < ∞,

μ(m)
p := sup

t∈Rm
E(F p(Y) | X = t) < ∞. (3.3)

If the β coefficients of the mixing stationary sequence {Zi = (Xi, Yi)}i∈N∗ fulfill

βkk
r −→ 0 as k → ∞, (3.4)

for some r > 1, then {U (m)
n (ϕ, t)}FmK m converges in law to a Gaussian process {G(ϕ)}FmK m ,

which has a version with uniformly bounded and uniformly continuous paths with respect to
‖ · ‖2-norm.

Remark 3.0.2. The index r in equation (3.4) denotes a constant r > 1 different from the r used in (F.iii).
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Remark 3.0.3. If Gϕ,t is not symmetric, we will need to symmetrize it. To do this we have:

Gϕ,t(x, y) :=
1
m!

∑

σ∈Im
m

Gϕ,t(xσ, yσ) =
1
m!

∑

σ∈Im
m

ϕ(yσ) ˜K(xσ − t),

where xσ = (xσ1 , . . . , xσm) and yσ = (yσ1 , . . . , yσm). After symmetrization the expectation

E
(

Gϕ,t(x, y)
)

= E (Gϕ,t(x, y)) ,

and the U-statistic u
(m)
n (Gϕ,t) = u

(m)
n (Gϕ,t) = un(ϕ, t) do not change, so the U-process could be

redefined using the symmetric kernels ϕ ˜K as

μn(ϕ, t) =
√

nhm
{

u(m)
n (Gϕ,t) − E(u(m)

n (Gϕ,t))
}

,

so Hoeffding’s decomposition is:

μn(ϕ, t) =
√

nhm

m
∑

k=1

m!
(m − k)!

u(k)
n (πk,mGϕ,t).

Note that if the class of functions FmK m satisfies the entropy condition (7.22), the class FmK m of
symmetrized functions satisfies it too with some characteristics a, b, and its envelope function is

F (y) ≡ F (x, y) = km
∑

σ∈Im
m

F (yσ).

Further, if the class of functions FmK m is of VC-type, then so is also the class FmK m.

4. STATISTICAL APPLICATION TO THE INDEPENDENCE TEST

In this section we present a statistical application of the theoretical results given in Section 3. To test
the independence of one-dimensional random variables X and Y , Kendall [38] proposed a method based
on the U-statistic Kn with the kernel function

ϕ ((s1, t1), (s2, t2)) = 1{(s2−s1)(t2−t1)>0} − 1{(s2−s1)(t2−t1)≤0}. (4.1)

Its rejection region is of the form {√nKn > γ}. In our paper, we consider the multivariate case. To test
the conditional independence of ξ,η : Y = (ξ,η) given X, we propose a method based on the conditional
U-statistic

r̂(2)
n (ϕ, t) =

∑n
i
=j ϕ(Yi, Yj)K

(

t1−Xi
hn

)

K
( t2−Xj

hn

)

∑n
i
=j K

(

t1−Xi
hn

)

K
( t2−Xj

hn

)
,

where t = (t1, t2) ∈ I ⊂ R
2 and ϕ(·) is Kendall’s kernel (4.1). Suppose that ξ and η are d1- and d2-

dimensional random vectors respectively and d1 + d2 = d. Furthermore, suppose that Y1, . . . , Yn are
observations of (ξ,η). We are interested in testing

H0 : ξ and η are conditionally independent given X vs Ha : H0 is not true. (4.2)

Let a = (a1,a2) ∈ R
d be such that ‖a‖ = 1 and a1 ∈ R

d1 , a2 ∈ R
d2 , and let F (·), G(·) be the distribution

functions of ξ and η respectively. Suppose that F a1(·) and Ga2(·) are continuous for any unit vector
a = (a1,a2), where F a1(t) = P(aτ

1ξ < t) and Ga2(t) = P(aτ
2η < t) and aτ

i means the transpose of the
vector ai, 1 ≤ i ≤ 2. For n = 2, let Y (1) = (ξ(1),η(1)) and Y (2) = (ξ(2),η(2)) such as ξ(i) ∈ R

d1 and
η(i) ∈ R

d2 for i = 1, 2, and

ϕa(Y (1), Y (2)) = ϕ
(

(aτ
1ξ

(1),aτ
2η(1)), (aτ

1ξ(2),aτ
2ξ(2))

)

.

As in [72], for m = 2 and the class of functions

FaK
2 =

{

ϕa(·, ·)K
( · − t1

h

)

K
( · − t2

h

)

,a ∈ R
d, ‖a‖ = 1

}

,
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it is easy to see that sup‖a‖=1

√
nh2r̂

(2)
2 (ϕa, t) could be used as a test statistic for (4.2). If the null

hypothesis is true, then

Dn = sup
‖a‖=1

√
nh2 |r̂(2)

2 (ϕa, t)| = sup
ϕa×K×K∈FaK 2

√
nh2 |r̂(2)

2 (ϕa, t)|.

An application of Theorem 3.0.1 gives

Dn → sup
ϕa×K×K∈FaK 2

√
nh2 |r̂(2)

2 (ϕa, t)|.

It will be of interest to give more details how to perform this statistical tests. We will not investigate this
question in the present paper.

5. EXAMPLES

5.1. Examples of Classes of Functions

Example 5.1.1. The set F of all indicator functions 1I{(−∞,t]} of cells in R satisfies

N
(

ε,F , d
(2)
P

)

≤ 2
ε2

,

for any probability measure P and ε ≤ 1. Notice that
∫ 1

0

√

log
(1

ε

)

dε ≤
∫ ∞

0
u1/2 exp(−u) du ≤ 1.

For more details and discussion on this example refer to Example 2.5.4 in [67] and p. 157 in [40]. The
covering numbers of the class of cells (−∞, t] in higher dimension satisfy a similar bound, but with
higher power of (1/ε), see Theorem 9.19 in [40].

Example 5.1.2. (Classes of functions that are Lipschitz in a parameter, Section 2.7.4 in [67]). Let
F be the class of functions x 
→ ϕ(t, x) that are Lipschitz in the index parameter t ∈ T . Suppose that

|ϕ(t1, x) − ϕ(t2, x)| ≤ d(t1, t2)κ(x)

for some metric d on the index set T and the function κ(·) defined on the sample space X , and all x.
According to Theorem 2.7.11 in [67] and Lemma 9.18 in [40], it follows, for any norm ‖ · ‖F on F , that

N
(

ε‖F‖F ,F , ‖ · ‖F

)

≤ N(ε/2, T, d).

Hence if (T, d) satisfy J(∞, T, d) =
∫∞
0

√

log N(ε, T, d) dε < ∞, then the conclusions holds for F .

Example 5.1.3. Let us consider as example the classes of functions that are smooth up to order α defined
as follows, see Section 2 in [66]. For 0 < α < ∞ let �α� be the greatest integer strictly smaller than α.
For any vector k = (k1, . . . , kd) of d integers define the differential operator:

Dk. :=
∂k.

∂k1 · · · ∂kd
,

where

k. :=
d
∑

i=1

ki.

Then, for a function ϕ : X → R, let

‖ϕ‖α := max
k.≤�α�

sup
x

|Dkϕ(x)| + max
k.=�α�

sup
x,y

Dkϕ(x) − Dkϕ(y)
‖x − y‖α−�α� ,
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where the suprema are taken over all x, y in the interior of X with x �= y. Let Cα
M (X ) be the set of all

continuous functions ϕ : X → R with

‖ϕ‖α ≤ M.

Note that for α ≤ 1 this class consists of bounded functions ϕ that satisfy a Lipschitz condition.
Kolmogorov and Tihomirov [38] computed the entropy of the classes of Cα

M (X ) for the uniform norm. As
a consequence of their results, van der Vaart [66] shows that there exists a constant K depending only
on α, d and the diameter of X such that for every measure γ and every ε > 0

log N[ ]

(

εMγ(X ), Cα
M (X ), L2(γ)

)

≤ K

(

1
ε

)d/α

,

N[ ] is the bracketing number, refer to Definition 2.1.6 in [67] and we refer to Theorem 2.7.1 in [67] for a
variant of the last inequality. By Lemma 9.18 in [40], we have

log N
(

εMγ(X ), Cα
M (X ), L2(γ)

)

≤ K

(

1
2ε

)d/α

.

5.2. Examples of U-Statistics

Generally speaking, we may take for ϕ(·) any function which has been found interesting in the
unconditional setup; cf. [57]. As was mentioned before, the case m = 1 leads to the Nadaraya–Watson
estimator if we set ϕ = Id, the identity function; ϕ = 1{· ≤ t} yields the conditional d.f. evaluated
at t; [62]. We now discuss several examples for m = 2. We suppose that (X1, Y1) and (X2, Y2) are
independent.
Example 5.2.1. Let ϕ(Y1, Y2) = Y1Y2, then

r(2)(ϕ(Y1, Y2) | t1, t2) = E(Y1Y2 | X1 = t1,X2 = t2)
= E(Y1 | X1 = t1)E(Y2 | X2 = t2)

= r(2)(t1)r(2)(t2),

with r(2) denoting the regression of Y on X = t. The above ϕ(·) is a simple example of kernel for a
conditional U-statistic, where one is interested in functions of r(2).

Example 5.2.2. For

ϕ(Y1, Y2) =
1
2
(Y1 − Y2)2

we obtain

r(2)(ϕ(Y1, Y2) | t1, t2) = Var(Y1 | X1 = t1).

Example 5.2.3. For ϕ(Y1, Y2) = 1{Y1 + Y2 > 0}, we obtain a conditional U-statistic which may be
viewed as a conditional version of the Wilcoxon one-sample statistic. It may be used for testing the
hypothesis that the conditional distribution at X1 is symmetric at zero. Obviously:

r(2)(ϕ(Y1, Y2) | t1 = t2) = P(Y1 + Y2 > 0 | X1 = t1 = X2).

Example 5.2.4. For ϕ(Y1, Y2) = 1{Y1 ≤ Y2},

r(2)(ϕ(Y1, Y2) | t1, t2) = P(Y1 ≤ Y2 | X1 = t1,X2 = t2) for t1 �= t2

equals the probability that the output pertaining to t1 is less than or equal to the one pertaining to t2.
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Example 5.2.5. Assume {Yi = (Yi,1, Yi,2)}i=1,2 and define ϕ by

ϕ(y1, y2) :=
1
2
(y1,1y1,2 + y2,1y2,2 − y1,1y2,2 − y1,2y2,1),

and

r(2)(ϕ(Y1, Y2) | t1, t2) =
1
2
{E(Y1,1Y1,2 | X1 = t1) + E(Y2,1Y2,2 | X2 = t2)

− E(Y1,1Y2,2 | X1 = t1,X2 = t2) − E(Y1,2Y2,1 | X1 = t1,X2 = t2)} .

In particular,

r(2)(ϕ(Y1, Y2) | t1) = E(Y1,1Y1,2 | X1 = t1) − E(Y1,1 | X1 = t1)E(Y1,2 | X1 = t1)

is the conditional covariance of Y1 given X1 = t1.

Example 5.2.6. For m=3, let

ϕ(Y1, Y2, Y3) = 1{Y1 − Y2 − Y3 > 0},
We have

r(3)(ϕ(Y1, Y2, Y3) | t1 = t2 = t3 = t) = P(Y1 > Y2 + Y3 | X1 = X2 = X3 = t)
and the corresponding conditional unbiased statistic can be looked upon as a conditional analogue of
the Hollander–Proschan test-statistic [34]. It may be used to test the hypothesis that the conditional
distribution of Y1 given X1 = t, is exponential, against the alternative that it is of the New-Better than-
Used-type.

Example 5.2.7. Let

ψ(Y1, Y2, Y3) = 1{Y2 ≤ Y1} − 1{Y3 ≤ Y1}
and for m = 5 define

ϕ(Y1, . . . , Y5) =
1
4
ψ(Y1, Y2, Y3)ψ(Y1, Y4, Y5) × ψ(Y1, Y2, Y3)ψ(Y1, Y4, Y5).

We have

r(5)
(

ϕ(Y1, . . . , Y5) | t1 = t2 = t3 = t4 = t5 = t
)

= E
(

ϕ(Y1, . . . , Y5) | X1 = X2 = X3 = X4 = X5 = t
)

.

The corresponding U-statistics may be used to test the conditional independence.

Example 5.2.8. Let Ŷ1Y2 denote the oriented angle between Y1, Y2 ∈ T , T is the circle of radius 1 and
center 0 in R

2. Let

ϕt(Y1, Y2) = 1{Ŷ1Y2 ≤ t} − t/π, for t ∈ [0, π).
Silverman [60] has used this kernel in order to propose a U-process to test uniformity on the circle. Let

r(2)(ϕt(Y1, Y2) | t1 = t2 = t) = E(ϕt(Y1, Y2) | X1 = X2 = t).
In this setting, one can propose conditional U-process to test conditional uniformity on the circle.

Example 5.2.9. Let {Z1 = (X1, Y1),Z2 = (X2, Y2)} be two random variables. If we want to test the
symmetry about zero of the conditional distribution at X1 = X2 = t1, we often use the so-called
Wilcoxon one-sample statistic. In this case the U-statistic

r̂
(2)
2 (ϕ(Y1, Y2) | t1, t2) =

1
2
1{Y1+Y2>0}K

(

X1−t1
h

)

K
(

X2−t1
h

)

K
(

X1−t1
h

)

K
(

X2−t1
h

)

may be viewed as a conditional version of the Wilcoxon one-sample statistic with kernel

1{Y1+Y2>0}K

(

X1 − t1
h

)

K

(

X2 − t1
h

)

for
ϕ(y1, y2) = 1{y1+y2>0}.
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6. CONCLUDING REMARKS

In the present work we have considered the weak convergence to Gaussian processes of the
conditional empirical processes and the conditional U-processes from stationary β-mixing sequences
indexed by classes of functions satisfying some entropy conditions. In particular, we have extended the
results of [6] to the conditional U-processes. We have treated the weak convergence in both cases when
the class of functions is bounded or unbounded satisfying some moment conditions. The unbounded
case remains still open until present. The fact that the limits in our theorems depend on the unknown
parameters makes it important that good approximations of these limiting distributions be found and
that is where the bootstrap proved to be a very effective tool. It would be of interest to provide a
complete investigation of the approximation of the bootstrapped conditional empirical and conditional
U-processes based upon stationary mixing sequences which requires nontrivial mathematics, that goes
well beyond the scope of the present paper, we leave this problem open for future. A natural question is
how to relax the dependence assumption on the sequence of random variables to cope with more general
framework by considering weak dependence or by assuming only ergodicity.

7. MATHEMATICAL DEVELOPMENTS

This section is devoted to the proofs of our results. The aforementioned notation is also used in what
follows. First, we introduce the following easy lemma that will turn out to be useful later on.

Lemma 7.0.1. Let {ωnk, 1 ≤ k ≤ kn} be a triangular array such that following conditions are
fulfilled

E(ωnk) = 0, 1 ≤ k ≤ kn, lim
n→∞

kn
∑

k=1

E(ω2
nk) = 1,

and

lim
n→∞

kn
∑

k=1

E[ω2
nk1{|ωnk|>ε}] = 0, ∀ε > 0. (7.1)

Then

lim
n→∞

kn max
1≤j≤kn

βj = 0 (7.2)

implies that

Sn =
kn
∑

k=1

ωnk
d−→ N (0, 1).

Proof of Lemma 7.0.1

This lemma is a particular case of Theorem 5.3 in [20]. It can be proved with the help of Corollary
2.3 and Lemma 5.3 in [20]. Lemma 5.3 in [20] asserts that for some random variable (r.v) ξ (complex)
satisfying |ξ| < 1, we have

E [E(ξ | C) − E(ξ)] ≤ 2πα(B(ξ), C),

where B(ξ) is the σ-algebra generated by ξ and C is some σ-algebra in the same probability space. It is
known that 2α(A,B) ≤ β(A,B) for any two σ-algebras A and B, hence

E
[

E(ξ | C) − E(ξ)
]

≤ πβ(B(ξ), C).

Making use of this result, we obtain for the triangular array {ωni, 1 ≤ i ≤ kn} that

E [E(exp{itωnk} | Bn,k−1) − E(exp{itωnk})] ≤ πβ(Bn,k,Bn,k−1),
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where Bn,k = σ(ωnk). Consequently, we obtain

kn
∑

k=2

E [E(exp{itωnk} | Bn,k−1) − E(exp{itωnk})] ≤ πkn max
1≤j≤kn

βj .

Combining (7.1) and (7.2) and applying Corollary 2.3 in [20], we then get

kn
∑

k=2

E [E(exp{itωnk} | Bn,k−1) − E(exp{itωnk})] ≤ πkn max
1≤j≤kn

βj
n→∞−→ 0,

and it follows that

Sn
d−→ N(0, 1).

Hence the proof is complete.

Proof of Theorem 2.1.1
The Cramér–Wold device states, indirectly, that the convergence of finite-dimensional distributions

can be obtained from the convergence of one-dimensional distributions. Therefore we will just prove the
one-dimensional convergence. Notice that we have

νn(ϕ | t) =
√

nh(r̂(1)
n (ϕ, t) − r(1)(ϕ, t))

=
√

nh

(

1
n

∑n
i=1 ϕ(Yi)Kh(Xi − t)

1
n

∑n
i=1 Kh(Xi − t)

− r(1)(ϕ, t)

)

=

∑n
i=1

√

h
n(f(Yi) − r(1)(ϕ, t))Kh(Xi − t)

1
n

∑n
i=1 Kh(Xi − t)

=
∑n

i=1(νni − Eνni + Eνni)
ρn(t)

=
Sn

ρn(t)
+

∑n
i=1 Eνni

ρn(t)

=
Sn

ρn(t)
+ nh5/2μ′

n,

where the following is used

Sn =
n
∑

i=1

(νni − Eνni), ρn(t) =
1
n

n
∑

i=1

Kh(Xi − t) and nh5/2μ′
n =

∑n
i=1 Eνni

ρn(t)
.

It is known that the Akaike–Parzen–Rosenblatt [2, 48, 54] kernel density estimators ρn(t) are consis-
tent estimators of ρ(t), that is

ρn(t) P−→ ρ(t).

Making use of the Cramér–Slutsky lemma, it suffices to show that

Sn
d−→ N(0, σ2(ϕ)), where σ2(f) =

(

r(1)(ϕ2, t) − (r(1)(ϕ, t))2
)

ρ(t)
∫

R

K2(u) du,

and

nh5/2μ′
n → 0.

Let us begin by showing that nh5/2μ′
n → 0. We have

1
nh5/2

n
∑

i=1

Eνni =
1

nh5/2

n
∑

i=1

E

{
√

h

n
ϕ̆(Yi)Kh(Xi − t)

}

,
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=
1√
nh6

E

{

(

ϕ(Y1) − r(1)(ϕ, t)
)

K

(

X1 − t

h

)}

.

An application of Lemma 7.0.5 in combination with Proposition 3.4 in [73] implies that, as n → ∞,

1√
nh6

E

{

(

ϕ(Y1) − r(1)(ϕ, t)
)

K

(

X1 − t

h

)}

=
1√
nh6

∫

R

E
(

ϕ(Y1) − r(1)(ϕ, t) | X = z
)

K

(

z − t

h

)

ρ(z) dz,

=
1√
nh6

∫

R

(

r(1)(ϕ, z) − r(1)(ϕ, t)
)

K

(

z − t

h

)

ρ(z) dz→0.

Hence we have μ′
n → 0 as n → ∞. This when combined with condition (C.3) implies that

nh5/2μ′
n → 0.

We shall now prove that

Sn
d−→ N(0, σ2(ϕ)).

We start by calculating nVar(νn1). We get

nVar(νn1) =
1
h

Var
{

(

ϕ(Y1) − r(1)(ϕ, t)
)

K

(

X1 − t

h

)}

=
1
h

E

{

(

ϕ(Y1) − r(1)(ϕ, t)
)2

K2

(

X1 − t

h

)}

−h

{

1
h

E

{

(

ϕ(Y1) − r(1)(ϕ, t)
)

K

(

X1 − t

h

)}}2

.

Notice that we have, as n → ∞,

1
h

E

{

(

ϕ(Y1) − r(1)(ϕ, t)
)

K

(

X1 − t

h

)}

=
1
h

∫

R

(

r(1)(ϕ, z) − r(1)(ϕ, t)
)

K

(

z − t

h

)

ρ(z) dz→0. (7.3)

We apply again Lemma 7.0.5 to infer that, as n → ∞,

1
h

E

{

(

ϕ(Y1) − r(1)(ϕ, t)
)2

K2

(

X1 − t

h

)}

=
1
h

∫

E
((

ϕ(Y1) − r(1)(ϕ, t)
)2 | X = z

)

K2

(

z − t

h

)

ρ(z) dz

=
1
h

∫

r(1)
((

ϕ(Y1) − r(1)(ϕ, t)
)2

, z
)

K2

(

z − t

h

)

ρ(z) dz

→ r(1)
((

ϕ − r(1)(ϕ, t)
)2

, t
)

ρ(t)
∫

K2(z) dz. (7.4)

By combining equations (7.3), (7.4), we readily obtain

nVar(νn1)
n→∞−→ r(1)

((

f − r(1)(ϕ, t)
)2

, t
)

ρ(t)
∫

K2(z) dz.

Recall that our goal is to calculate Var(Sn). By using the stationarity of {νni, 1 ≤ i ≤ n}, we have

Var(Sn) = ES2
n = nVar(νn1) + 2

n
∑

j=2

(n − j + 1)Cov(νn1, νnj).
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It is straightforward to see that

nCov(νn1, νnj) = nCov
(
√

h

n
ϕ̆(Y1)Kh(X1 − t),

√

h

n
ϕ̆(Yj)Kh(Xj − t)

)

= hCov
(

ϕ̆(Y1)Kh(X1 − t), ϕ̆(Yj)Kh(j−t)
)

= h
(

E
(

ϕ̆(Y1)Kh(X1 − t)ϕ̆(Yj)Kh(Xj − t)
)

−E
(

ϕ̆(Y1)Kh(X1 − t)
)

E
(

ϕ̆(Yj)Kh(Xj − t)
)

)

. (7.5)

We have first to calculate

E(ϕ̆(Y1)Kh(X1 − t)ϕ̆(Yj)Kh(Xj − t))

=
∫

R2

E
(

ϕ̆(Y1)ϕ̆(Yj) | X1 = z1,Xj = zj

)

Kh(z1 − t)Kh(zj − t)ρj(z1, zj) dz1 dzj . (7.6)

A similar calculus yields:

E
(

ϕ̆(Y1)Kh(X1 − t)
)

=
∫

R

E
(

ϕ̆(Y1) | X1 = z1

)

Kh(z1 − t)ρ(z1)dz1

=
∫

R

r(1)
(

ϕ̆, z1

)

Kh(z1 − t)ρ(z1)dz1. (7.7)

In the same way we calculate E
(

ϕ̆(Yj)Kh(Xj − t)
)

. Thus, by combining equations (7.5), (7.6), and (7.7),
we infer that

nCov(νn1, νnj) = h

∫

R2

{

E
(

ϕ̆(Y1)ϕ̆(Yj) | X1 = z1,Xj = zj

)

ρj(z1, zj)

−r(1)(ϕ̆, z1)r(1)(ϕ̆, zj)ρ(z1)ρ(zj)
}

Kh(z1 − t)Kh(zj − t) dz1 dzj

= h

∫

R2

m̆(z1, zj)Kh(z1 − t)Kh(zj − t) dz1 dzj ,

where we use the notation

m̆(z1, zj) = E
(

ϕ̆(Y1)ϕ̆(Yj) | z1, zj

)

ρj(z1, zj) − r(1)(ϕ̆, z1)r(1)(ϕ̆, zj)ρ(z1)ρ(zj),

E
(

ϕ̆(Y1)ϕ̆(Yj) | z1, zj

)

= E
(

ϕ̆(Y1)ϕ̆(Yj) | X1 = z1,Xj = zj

)

.

Notice that by adding and subtracting the quantity E
(

ϕ̆(Y1)ϕ̆(Yj) | z1, zj

)

ρ(z1)ρ(zj) we get

m̆(z1, zj) ≤
∣

∣ρj(z1, zj) − ρ(z1)ρ(zj)
∣

∣

∣

∣E(ϕ̆(Y1)ϕ̆(Yj) | z1, zj)
∣

∣

+ρ(z1)ρ(zj)
∣

∣E(ϕ̆(Y1)ϕ̆(Yj) | z1, zj) − r(1)(ϕ̆, z1)r(1)(ϕ̆, zj)
∣

∣.

Let us recall that

E(Y | X = t) = lim
ε→0

E
(

Y 1{X∈Vε(t)}
)

P
(

X ∈ Vε(t)
) ,

where Vε(t) is the ε-neighborhood of t. We have

E(ϕ̆(Y1)ϕ̆(Yj) | z1, zj) − r(1)(ϕ̆, z1)r(1)(ϕ̆, zj)

= lim
ε→0

E
(

ϕ̆(Y1)ϕ̆(Yj)1{X1∈Vε(z1),Xj∈Vε(zj)}
)

P
(

X1 ∈ Vε(z1),Xj ∈ Vε(zj)
) − E(ϕ̆(Y1) | X1 = z1)E(ϕ̆(Yj) | Xj = zj)

= lim
ε→0

E
(

ϕ̆(Y1)1{X1∈Vε(z1)}ϕ̆(Yj)1{Xj∈Vε(zj)}
)

P(X1 ∈ Vε(z1))P(Xj ∈ Vε(zj))
− lim

ε→0

E
(

ϕ̆(Y1)1{X1∈Vε(z1)}
)

E
(

ϕ̆(Yj)1{Xj∈Vε(zj)}
)

P(X1 ∈ Vε(z1))P(Xj ∈ Vε(zj))

− lim
ε→0

E
(

ϕ̆(Y1)1{X1∈Vε(z1)}ϕ̆(Yj)1{Xj∈Vε(zj)}
)

P(X1 ∈ Vε(z1))P(Xj ∈ Vε(zj))
+ lim

ε→0

E
(

ϕ̆(Y1)ϕ̆(Yj)1{X1∈Vε(z1),Xj∈Vε(zj)}
)

P(X1 ∈ Vε(z1),Xj ∈ Vε(zj))
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= lim
ε→0

Cov
(

ϕ̆(Y1)1{X1∈Vε(z1)}
P(X1 ∈ Vε(z1))

ϕ̆(Yj)1{Xj∈Vε(zj)}
P(Xj ∈ Vε(zj))

)

+E(ϕ̆(Y1)ϕ̆(Yj) | z1zj)
(

1 − P(X1 ∈ Vε(z1),Xj ∈ Vε(zj))
P(X1 ∈ Vε(z1))P(Xj ∈ Vε(zj))

)

.

The integrability of ρ(·) and ρj(·) implies, for almost all (z1, zj) ∈ R
2, that

lim
ε→0

P (X1 ∈ Vε(z1),Xj ∈ Vε(zj))
P(X1 ∈ Vε(z1))P(Xj ∈ Vε(zj))

=
ρj(z1, zj)
ρ(z1)ρ(zj)

.

This when combined with Davydov’s inequality, implies readily

lim
ε→0

∣

∣

∣

∣

Cov
(

ϕ̆(Y1)1{X1∈Vε(z1)}
P(X1 ∈ Vε(z1))

,
ϕ̆(Yj)1{Xj∈Vε(zj)}
P(Xj ∈ Vε(zj))

)∣

∣

∣

∣

≤ 2pβ
1/p
j r(1)(‖ϕ̆‖q, z1)r(1)(‖ϕ̆‖s, zj).

We could choose
1
q

=
1
s

=
1
p

=
1
3
.

By using Lemma 3.1 in [51] and conditions (C.1)–(C.6), it follows, as n → ∞,

Cov(Sn1,nj) ≤ sup
j>1

(∫

R2

|E(ϕ̆(Y1)ϕ̆(Yj) | z1, zj)|ρ(z1)ρ(zj)Kh(z1 − t)Kh(zj − t) dz1 dzj

)

h

n
∑

j=2

θ(j)

+h
n
∑

j=2

2pβ
1/p
j

∫

R2

r(1)(‖ϕ̆‖q, z1)r(1)(‖ϕ̆‖r, zj)ρ(z1)ρ(zj)Kh(z1 − t)Kh(zj − t) dz1 dzj

+h
n
∑

j=2

∫

R2

|E(ϕ̆(Y1)ϕ̆(Yj) | z1, zj)|ρj(z1, zj)Kh(z1 − t)Kh(zj − t) dz1 dzj

+h sup
j>1

∫

R2

|E(ϕ̆(Y1)ϕ̆(Yj) | z1, zj)|ρ(z1)ρ(zj)Kh(z1 − t)Kh(zj − t) dz1 dzj→0,

where

Cov(Sn1,nj) =
n
∑

j=2

(n − j + 1)Cov(νn1, νnj).

Thus

Var(Sn) n→∞−→ r(1)
(

(ϕ − r(1)(ϕ, t))2, t
)

ρ(t)
∫

K2(z) dz.

Finally, all what remains is to check condition (7.1), i.e., for all ε > 0,

lim
n→∞

n
∑

i=1

E
{

(νni − E(νni))21{|νni−E(νni)|>ε}
}

= 0. (7.8)

But the event (νni − E(νni))21{|νni−E(νni)|>ε} only makes sense when |νni − E(νni)| > ε, so proving
(7.8) is to prove that

lim
n→∞

n
∑

i=1

P{|νni − E(νni)| > ε} = 0.

We have, by applying Markov’s inequality:
n
∑

i=1

P{|νni − E(νni)| > ε} ≤
∑n

i=1 E{|νni − E(νni)|}
ε2
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≤ 2nE|νn1|
ε2

n→∞
−→ 0 .

Therefore the proof is complete.

Proof of Theorem 2.2.2

To study the asymptotic equicontinuity of the conditional empirical process
{

νn(ψ | t) =
√

nh(r̂(1)
n (ψ, t, hn) − r(1)(ψ, t), ψ ∈ FK , t ∈ I

}

,

we decompose it so that to get a sum of simple empirical processes. Towards this end, we introduce the
following process: for any ϕK ∈ FK and t ∈ I,

Wn(t, ϕ) =
n
∑

i=1

ϕ(Yi)K
(

Xi − t

hn

)

− nE

{

ϕ(Y1)K
(

X1 − t

hn

)}

. (7.9)

We first decompose

νn(ϕ | t) =
√

nh(r̂(1)
n (ϕ, t) − r(1)(ϕ, t)) :=

√
nh(r̂(1)

n (ψ, t, hn) − r(1)(ψ, t)) = νn(ψ | t)

to

νn(ϕ | t) =
√

nh
(

r̂(1)
n (ϕ, t) − r(1)(ϕ, t)

)

=
√

nh

(
∑n

i=1 ϕ(Yi)K(Xi−t
hn

)
∑n

i=1 K(Xi−t
hn

)
− E(ϕ(Y ) | X = t)

)

=
√

nh

(

γn(t)
ρn(t)

− E(ϕ(Y ) | X = t)
)

=
√

nh

(

γn(t)
ρn(t)

− E(γn(t))
E(ρn(t))

)

−
√

nh

(

E(ϕ(Y ) | X = t) − E(γn(t))
E(ρn(t))

)

=
1

ρn(t)

√
nh

(

γn(t) − E(γn(t))
)

− E(γn(t))
ρn(t)E(ρn(t))

√
nh

(

ρn(t) − E(ρn(t))
)

−
√

nh

(

E(ϕ(Y ) | X = t) − E(γn(t))
E(ρn(t))

)

=
1

ρn(t)
1√
nh

Wn(t, ϕ) − E(γn(t))
ρn(t)E(ρn(t))

1√
nh

Wn(t, 1) −
√

nhRn(t). (7.10)

Then we study the equicontinuity of each of the terms of (7.10) in order to establish the equicontinuity
of the process. Let αn(·) denote the bivariate empirical process based upon (X1, Y1), . . . , (Xn, Yn) and
indexed by a class of functions G . Namely, αn(·) is defined for g ∈ G by

αn(g) =
1√
n

n
∑

i=1

(

g(Xi, Yi) − Eg(Xi, Yi)
)

.

For any class of functions G , set

‖αn(g)‖G = sup
g∈G

|αn(g)| ,

and for any measurable function ϕ(·) and t ∈ I, set

ηn,t,ϕ,K(u, v) = ϕ(v)K
(

u − t

h

)

for u, v ∈ R.

Recalling (7.9), notice that

1√
nh

Wn(t, ϕ) =
1√
h

αn(ηn,t,ϕ,K),
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so we shall first obtain the equicontinuity of the following empirical process
{

1√
h

αn(ηn,t,ϕ,K) : ηn,t,ϕ,K ∈ FK

}

,

that is

lim
b→0

lim sup
n→∞

P

{

sup
‖ηn,t,ϕ1,K1

−ηn,t,ϕ2,K2
‖p≤b

1√
h

∣

∣αn(ηn,t,ϕ1,K1) − αn(ηn,t,ϕ2,K2)
∣

∣ > ε

}

= 0

for every ε > 0, or equivalently,

lim
b→0

lim sup
n→∞

P

{

1√
h

∥

∥αn(ηn,t,ϕ,K)
∥

∥

FK (b,‖·‖p)
> ε

}

= 0 (7.11)

where

FK (b,‖·‖p) =
{

ηn,t,ϕ1,K1 − ηn,t,ϕ2,K2 :
∥

∥ηn,t,ϕ1,K1 − ηn,t,ϕ2,K2

∥

∥

p
< b, ηn,t,ϕ1,K1, ηn,t,ϕ2,K2 ∈ FK

}

.

Now we translate our problem to that of the independent block sequence {ξj = (ζj , ςj)}∞j=1. We can
symmetrize the independent block sequence and work with random entropies. By Eq. (2.5), we have

P

{

∥

∥

∥(nh)−1/2
n
∑

j=1

(

ϕ(Yj)K
(Xj − t

h

)

− P(ηn,t,ϕ,K)
)∥

∥

∥

FK (b,‖·‖p)

> δ

}

≤ 2P

{

∥

∥

∥(nh)−1/2
υn
∑

j=1

∑

i∈Hj

(

ϕ(ζi)K
(ςi − t

h

)

− P(ηn,t,ϕ,K)
)∥

∥

∥

FK (b,‖·‖p)

> δ′
}

+2(υn − 1)βan . (7.12)

We adapt the choice of [6] for

an =
[

(log n)−1(np−2hp)1/2(p−1)
]

and υn =
[

n

2an

]

− 1.

So condition (C.7) implies (υn − 1)βan −→ 0 as n → 0, thus it suffices to treat the first term in the
right-hand side of (7.12). To do this and because of independence of the blocks, we symmetrize using a
sequence {εj}j∈N∗ of i.i.d. Rademacher variables, i.e., r.v’s with

P(εj = 1) = P(εj = −1) = 1/2.

Note that the sequence {εj}j∈N∗ is independent of the sequence {ξi = (ςi, ζi)}i∈N∗ , therefore it suffices
to prove, for all δ > 0,

lim
b→0

lim sup
n→∞

P

{

∥

∥

∥(nh)−1/2
υn
∑

j=1

εj

∑

i∈Hj

(

ϕ(ζi)K
(ςi − t

h

))∥

∥

∥

FK (b,‖·‖p)

> δ

}

= 0.

Making use of condition (C.8), we can truncate and we get, for each λ > 0, as n → ∞,

(nh)−1/2
n
∑

j=1

E
(

κF (ζi)1{F (ζi)≥λ(n/h)1/2(p−1)}
)

=
√

nh−1

∫ ∞

0
P
(

κF1{F≥λ(n/h)1/2(p−1)} ≥ t
)

dt

=
√

nh−1

∫ λ(n/h)1/2(p−1)

0
P(F ≥ λ(n/h)1/2(p−1)) dt

+
√

nh−1

∫ ∞

λ(n/h)1/2(p−1)

P(F ≥ t) dt −→
n→∞

0. (7.13)
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Thus from (7.13) there exists a sequence (λn)→ 0, as n → ∞, for which
√

nh−1E(κF1{F≥λn(n/h)1/2(p−1)}) −→
n→∞

0.

Therefore we have only to show

lim
b→0

lim sup
n→∞

P

{

∥

∥

∥(nh)−1/2
υn
∑

j=1

εj

∑

i∈Hj

(

ϕ(ζi)K
( ςi − t

h

))

1{κF (ζi)≤λn(n/h)1/2(p−1)}

∥

∥

∥

FK (b,‖·‖p)

> δ

}

.

We apply the chaining argument to the process

ν(2)
n (ηn,t,ϕ,K) = (nh)−1/2

υn
∑

j=1

εj

∑

i∈Hj

(

ϕ(ζi)K
(ςi − t

h

))

1{κF (ζi)≤λn(n/h)1/2(p−1)}.

And as done in [6], we define bk = b2−k, k = 0, . . . , kn, where kn is such that

2−1λn(log (n))−1 ≤ b2
kn

≤ λn(log (n))−1 (7.14)

and FK k is the class of measurable functions of FK satisfying

#FK k = Nk := N(bk,FK , ‖ · ‖p) sup
ηn,t,ϕ1,K1

∈FK
min

ηn,t,ϕ2,K2
FK k

‖ηn,t,ϕ1,K1 − ηn,t,ϕ2,K2‖p ≤ bk,

so there is a map πk : FK −→ FK k that takes each ηn,t,ϕ,K ∈ FK to its closest function in FK k

such that

‖ηn,t,ϕ,K − πk(ηn,t,ϕ,K)‖p ≤ bk.

By the chaining method,

sup
ηn,t,ϕ1,K1

,ηn,t,ϕ2,K2
∈FK

‖ηn,t,ϕ1,K1
−ηn,t,ϕ2,K2

‖p≤b

ν(2)
n (ηn,t,ϕ1,K1 − ηn,t,ϕ2,K2)

≤ sup
ηn,t,ϕ1,K1

,ηn,t,ϕ2,K2
∈FK

‖ηn,t,ϕ1,K1
−ηn,t,ϕ2,K2

‖p≤bkn

ν(2)
n (ηn,t,ϕ1,K1 − ηn,t,ϕ2,K2)

+2
kn
∑

k=1

sup
ηn,t,ϕ1,K1

,ηn,t,ϕ2,K2
∈(FK )k−1

‖ηn,t,ϕ1,K1
−ηn,t,ϕ2,K2

‖p≤3bk

ν(2)
n (ηn,t,ϕ1,K1 − ηn,t,ϕ2,K2)

+ sup
ηn,t,ϕ1,K1

,ηn,t,ϕ2,K2
∈(FK )0

‖ηn,t,ϕ1,K1
−ηn,t,ϕ2,K2

‖p≤2b

ν(2)
n (ηn,t,ϕ1,K1 − ηn,t,ϕ2,K2). (7.15)

For computational reasons, keep

δk = (bk)1/2 ∨ (3bk(8 + c2
p,β)1/2(log Nk)1/2). (7.16)

Choosing r so small that 2
∑∞

k=1 δk ≤ δ, we get from (7.15)

P

{

sup
ηn,t,ϕ1,K1

,ηn,t,ϕ2,K2
∈FK

‖ηn,t,ϕ1,K1
−ηn,t,ϕ2,K2

‖p≤b

ν(2)
n (ηn,t,ϕ1,K1 − ηn,t,ϕ2,K2) ≥ 3δ

}

≤ P

{

sup
ηn,t,ϕ1,K1

,ηn,t,ϕ2,K2
∈FK

‖ηn,t,ϕ1,K1
−ηn,t,ϕ2,K2

‖p≤bkn

ν(2)
n (ηn,t,ϕ1,K1 − ηn,t,ϕ2,K2) ≥ δ

}

+2
kn
∑

k=1

P

{

sup
ηn,t,ϕ1,K1

,ηn,t,ϕ2,K2
∈(FK )k−1

‖ηn,t,ϕ1,K1
−ηn,t,ϕ2,K2

‖p≤3bk

ν(2)
n (ηn,t,ϕ1,K1 − ηn,t,ϕ2,K2) ≥ δk

}
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+P

{

sup
ηn,t,ϕ1,K1

,ηn,t,ϕ2,K2
∈(FK )0

‖ηn,t,ϕ1,K1
−ηn,t,ϕ2,K2

‖p≤2b

ν(2)
n (ηn,t,ϕ1,K1 − ηn,t,ϕ2,K2) ≥ δ

}

=: A + B + C.

By the fact that the terms composing ν
(2)
n (ηn,t,ϕ,K) are bounded by anλn(n/h)1/2(p−1), and by applying

Bernstein’s inequality, we infer that

B ≤ 2
kn
∑

k=1

exp
(

2 log Nk − δ2
k(nh)

nb2
kc

2
p,β + (4/3)δkanλnnp/2(p−1)h(p−2)/2(p−1)

)

.

By the boundedness imposed on bk in (7.14) we obtain

δkanλnnp/2(p−1)h(p−2)/2(p−1) = (4/3)δkλn(nh)(log (n))−1 ≤ (8/3)nb2
kδk ≤ 8nb2

k,

which readily implies that

B ≤ 2
kn
∑

k=1

exp
(

2 log Nk − δ2
k

(8 + c2
p,β)b2

k

)

≤ 2
kn
∑

k=1

exp
(

− δ2
k

2(8 + c2
p,β)b2

k

)

≤ 2
∞
∑

k=1

exp
(

− 2k

2(8 + c2
p,β)b

)

−→ 0 as b → 0. (7.17)

In view of (7.16), we assume that δ < 3. In a similar way, we have

C ≤ 2 exp
(

2 log N0 −
δ2

(8 + c2
p,β)b2

)

−→ 0 as b → 0.

Finally, by (7.14) it suffices to prove, for each δ > 0,

lim
n→∞

P

{

∥

∥ν(2)
n (ηn,t,ϕ,K)

∥

∥

FK
(λ

1/2
n (log(n))−1/2,‖·‖p)

≥ δ
}

= 0.

As in [6], we apply to the last expression the square root trick (Lemma 5.2 in [28] and see also [41]).
Notice that

P

{

∥

∥

∥(nh)−1/2
υn
∑

j=1

εj

∑

i∈Hj

(

ϕ(ζi)K
(ςi − t

h

))

1{κF (ζi)≤λn(n/h)1/2(p−1)}

∥

∥

∥

FK
(λ

1/2
n (log(n))−1/2,‖·‖p)

≥ 2δ
}

≤ P

{

∥

∥

∥(nh)−1/2
υn
∑

j=1

εj

∑

i∈Hj

ϕ(ζi)K
(ςi − t

h

)

1{κF (ζi)≤λn(n/h)1/2(p−1)}

∥

∥

∥

FK
(λ

1/2
n (log(n))−1/2,‖·‖p)

≥ 2δ,

∥

∥

∥(nh)−1
υn
∑

j=1

(
∑

i∈Hj

ϕ(ζi)K
(ςi − t

h

)

1{κF (ζi)≤λn(n/h)1/2(p−1)}

)2∥
∥

∥

FK
(λ

1/2
n (log(n))−1/2,‖·‖p)

≤ 64λnc2
p,β(log (n))−1

}

+P

{

∥

∥

∥(nh)−1
υn
∑

j=1

(
∑

i∈Hj

ϕ(ζi)K
(ςi − t

h

)

1{κF (ζi)≤λn(n/h)1/2(p−1)}

)2∥
∥

∥

FK
(λ

1/2
n (log(n))−1/2,‖·‖p)

≤ 64λnc2
p,β(log (n))−1

}

=: P(A1) + P(A2).
So using the semi-norm

˜dnh,2 :=
(

(nh)−1
υn
∑

j=1

∑

i∈Hj

∣

∣ηn,t,ϕ1,K1(ςi, ζi) − ηn,t,ϕ2,K2(ςi, ζi)
∣

∣

2
)1/2
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and the covering number defined for any class of functions E by

˜Nnh,2(u,E ) := Nnh,2(u,E , ˜dnh,2),

The probability P(A1) can be bounded, as in [6], in the following way:

P(A1) ≤ P

{

A1, log ˜Nnh,2

(

δa−1/2
n (nh)−1/2,FK

(λ
1/2
n (log(n))−1/2,‖·‖p)

)

≥ 2−4 min (n, 2−6c−2
p,βδ2λ−1

n log (n))
}

+P

{

A1, log ˜Nnh,2

(

δa−1/2
n (nh)−1/2,FK

(λ
1/2
n (log(n))−1/2,‖·‖p)

)

< 2−4 min (n, 2−6c−2
p,βδ2λ−1

n log (n))
}

=: IA1 + IIA1.

By using condition (C.10) we establish IA1 → 0. Now for treating IIA1 → 0, let us consider the dense
net E

(δa
−1/2
n (nh)−1/2,˜dnh,2)

of FK
(λ

1/2
n (log(nh))−1/2,‖·‖p)

of cardinality

#E
(δa

−1/2
n (nh)−1/2,˜dnh,2)

:= ˜Nnh,2

(

δa−1/2
n (nh)−1/2,FK

(λ
1/2
n (log(nh))−1/2,‖·‖p)

)

.

An application of Hoeffding’s inequality to
{

∥

∥

∥(nh)−1/2
υn
∑

j=1

εj

∑

i∈Hj

ϕ(ζi)K
(ςi − t

h

)

1{κF (ζi)≤λn(n/h)1/2(p−1)}

∥

∥

∥

E
(δa

−1/2
n (nh)−1/2, ˜dnh,2)

≥ λ

}

gives that IIA1 → 0. Consider now the probability of A2. Following [6], since the blocks are i.i.d., we
can apply again Lemma 5.2 in [28] to bound P(A2) from above. This is achieved by using the condition
(C.10) to get P(A2) → 0, therefore the process

{

1
ρn(t)

1√
nh

Wn(t, ϕ) : ϕK ∈ FK

}

satisfies (7.11). In a similar way we treat
{

1√
h

αnh(ηn,t,1,K) : ηn,t,1,K ∈ K

}

.

Further, the class FK meets all of the conditions (C.7), (C.9) and (C.10) in addition to κ < ∞ so
the process

{

E(γn(t))
ρn(t)E(ρn(t))

1√
h

αnh(ηn,t,1,K : ηn,t,1,K ∈ K

}

satisfies (2.2.2). Hence the proof of the theorem is complete.

Proof of Theorem 2.2.3
Under conditions (C.1)–(C.6) convergence of the finite-dimensional distributions follows directly

from Theorem 2.2.1 and from (C.7)–(C.8). Since the VC-type class, whose envelope is in Lp,
satisfies conditions (C.9)–(C.10), the asymptotic uniform equicontinuity condition follows directly
from Theorem 2.2.2.

Proof of Theorem 3.0.1
Our work-plan to establish the convergence of our previously defined conditional U-process indexed

by a class of functions not necessarily uniformly bounded is to break the U-process into two parts:

• One that is called the truncated part, where we assume that the class FmK m is uniformly
bounded, and which will in turn be divided into two parts (linear and non-linear).

• The second is called the remainder part, which we will prove later to be asymptotically negligible.

Notice that, in order to simplify notation and calculations, we assume that the zero function belongs to
the class FmK m.
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Preliminaries of the Proof of Theorem 3.0.1

Here we develop some details that will be used in the proof of Theorem 3.0.1. Making use of (3.3) we
have, for each λ > 0,

Gϕ,t(x, y) = Gϕ,t(x, y)1{κmF (y)≤λ(n/hm)1/2(p−1)} + Gϕ,t(x, y)1{κmF (y)>λ(n/hm)1/2(p−1)}

=: G
(T )
ϕ,t (x, y) + G

(R)
ϕ,t (x, y).

We can write the U-statistic as follows:

μn(ϕ, t) =
√

nhm
{

u(m)
n (G(T )

ϕ,t ) − E(u(m)
n

(

G
(T )
ϕ,t ))

}

+
√

nhm
{

u(m)
n (G(R)

ϕ,t ) − E(u(m)
n (G(R)

ϕ,t ))
}

=:
√

nhm
{

u(T )
n (ϕ, t) − E(u(T )

n (ϕ, t))
}

+
√

nhm
{

u(R)
n (ϕ, t) − E(u(R)

n (ϕ, t))
}

=: μ(T )
n (ϕ, t) + μ(R)

n (ϕ, t). (7.18)

We call the first term of the right-hand side of (7.18) μ
(T )
n (ϕ, t) truncated part and the second μ

(R)
n (ϕ, t)

remainder part. First we are interested in μ
(T )
n (ϕ, t). An application of Hoeffding’s decomposition tells

us that

u(T )
n (ϕ, t) =

m
∑

k=0

m!
(m − k)!

u(k)
n (πk,mG

(T )
ϕ,t )

= EG
(T )
ϕ,t (X′, Y′) +

m
∑

k=1

m!
(m − k)!

u(k)
n (πk,mG

(T )
ϕ,t ), (7.19)

where {Z′
i = (X′

i,Y
′
i)}i∈N is a sequence of i.i.d. r.v.’s with L(Z′

i) = L(Zi) for each i, and X′ and Y′ are
respectively defined as X and Y. In view of (7.19), we have

μ(T )
n (ϕ, t) =

√
nhm

{

EG
(T )
ϕ,t (X′, Y′) +

m
∑

k=1

m!
(m − k)!

u(k)
n (πk,mG

(T )
ϕ,t ) − E(u(T )

n (ϕ, t))
}

,

the stationarity assumption and routine calculus of E(u(T )
n (ϕ, t)) show that

E(u(T )
n (ϕ, t)) = EG

(T )
ϕ,t (X′, Y′).

From this, we infer that

μ(T )
n (ϕ, t) =

√
nhm

{
m
∑

k=1

m!
(m − k)!

u(k)
n (πk,mG

(T )
ϕ,t )

}

=
√

nhm
{

mu(1)
n (π1,mG

(T )
ϕ,t ) +

m
∑

k=2

m!
(m − k)!

u(k)
n (πk,mG

(T )
ϕ,t )

}

. (7.20)

Yoshihara [70] proved that if ϕ ˜K is P-canonical and k ≥ 2, then

E
(

(nhm)
1
2 u(k)

n (ϕ ˜K, t)
)2 = O

(

n1−p(p−1)r/(p+1)(p−2)hm/2
)

= O
(

n1−p(p−1)r/(p+1)(p−2)
)

. (7.21)

By the fact that πk,mG
(T )
ϕ,t is P-canonical and making use of (7.21) we obtain that

(√
nhm

m
∑

k=2

u(k)
n (πk,mG

(T )
ϕ,t )

)

P−→ 0.

So that to establish the weak convergence of the U-process {μ(T )
n (ϕ, t)}FmK m , by Hoeffding’s decom-

position it is enough to show

m
√

nhmu(1)
n (π1,mG

(T )
ϕ,t ) w−→ G(ϕ) in �∞(mG(1)),
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where {G(ϕ)}mG(1) is a Gaussian process indexed by mG(1), and
∥

∥

√
nhmu(k)

n (πk,mG
(T )
ϕ,t )

∥

∥

FmK m

P−→ 0,

for 2 ≤ k ≤ m. Then we have to prove that the remainder part is negligible, in the sense that
∥

∥

√
nhm{u(R)

n (ϕ, t) − E(u(R)
n (ϕ, t))}

∥

∥

FmK m

P−→ 0.

The following technical lemma will be instrumental in the proof of our theorem.

Lemma 7.0.2. Let FmK m be a uniformaly bounded class of measurable canonical functions from
R

m ×Xm −→ R, m ≥ 2. Suppose that there are finite constants a and b such that the FmK m

covering number satisfies

N(ε,FmK m, ‖ · ‖L2(Q)) ≤ aε−b (7.22)

for every ε > 0 and every probability measure Q. If the mixing coefficients β of the stationary
sequence {Zi = (Xi, Yi)}i∈N∗ fulfill

βkk
r −→, as k → ∞ (7.23)

for some r > 1, then
∥

∥

∥hm/2n−m+ 1
2

∑

i∈In
m

Gϕ,t(Xi, Yi)
∥

∥

∥

FmK m

P−→ 0.

Proof of Lemma 7.0.2

For clarity of exposition we present the proof for m = 2, this case already contains the main idea. As
in the proof of Theorem 2.2.2, we divide the sequence {(Xi,Yi)} into υn alternate blocks, of sizes an,
bn, which are different and satisfy

bn � an, (υn − 1)(an + bn) < n ≤ υn(an + bn). (7.24)

Set, for 1 ≤ j ≤ υn − 1,

H
(U)
j = {i : (j − 1)(an + bn) + 1 ≤ i ≤ (j − 1)(an + bn) + an} ,

T
(U)
j = {i : (j − 1)(an + bn) + an + 1 ≤ i ≤ (j − 1)(an + bn) + an + bn} ,

H(U)
υn

= {i : (υn − 1)(an + bn) + 1 ≤ i ≤ n ∧ (υn − 1)(an + bn) + an} ,

T (U)
υn

= {i : (υn − 1)(an + bn) + an + 1 ≤ i ≤ n} .

Note that bn used here and in the proof of Theorem 3.0.1 denotes the size of the alternative blocks.
However in the proof of Theorem 2.2.2 it denotes the radius of the nets of the class of functions.

We decompose the process according to the distribution of the blocks:
n
∑

i
=j

1
h2

ϕ(Yi, Yj)K
(Xi − t1

h

)

K
(Xj − t2

h

)

=
υn
∑

p 
=q

∑

i∈H
(U)
p

∑

j∈H
(U)
q

1
h2

ϕ(Yi, Yj)K
(Xi − t1

h

)

K
(Xj − t2

h

)

+
υn
∑

p=1

∑

i
=j i,j∈H
(U)
p

1
h2

ϕ(Yi, Yj)K
(Xi − t1

h

)

K
(Xj − t2

h

)
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+2
υn
∑

p=1

∑

i∈H
(U)
p

υn
∑

q:|q−p|�2

∑

j∈T
(U)
q

1
h2

ϕ(Yi, Yj)K
(Xi − t1

h

)

K
(Xj − t2

h

)

+2
υn
∑

p=1

∑

i∈H
(U)
p

υn
∑

q:|q−p|≤1

∑

j∈T
(U)
q

1
h2

ϕ(Yi, Yj)K
(Xi − t1

h

)

K
(Xj − t2

h

)

+
υn
∑

p 
=q

∑

i∈T
(U)
p

∑

j∈T
(U)
q

1
h2

ϕ(Yi, Yj)K
(Xi − t1

h

)

K
(Xj − t2

h

)

+
υn
∑

p=1

∑

i
=j i,j∈T
(U)
p

1
h2

ϕ(Yi, Yj)K
(Xi − t1

h

)

K
(Xj − t2

h

)

=: I + II + III + IV + V + VI. (7.25)

We have to treat each of the terms I − VI. The treatment of V and VI is readily achieved through the
similar techniques used to investigate V and VI, which we omit.

(I). The same type of block but not the same block. Suppose that the sequence of independent
blocks {ξi = (ςi, ζi)}i∈N∗ is of size an. An application of (2.5) shows that

P

{

∥

∥

∥n−3/2h−1
υn
∑

p 
=q

∑

i∈H
(U)
p

∑

j∈H
(U)
q

ϕ(Yi, Yj)K
(Xi − t1

h

)

K
(Xj − t2

h

)∥

∥

∥

F2K 2
> δ

}

≤ 2υnβbn + P

{

∥

∥

∥n−3/2h−1
υn
∑

p 
=q

∑

i∈H
(U)
p

∑

j∈H
(U)
q

ϕ(ζi, ζj)K
( ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2
> δ

}

.

We keep the choice of bn and υn such that:

υnbr
n ≤ 1, (7.26)

which implies that 2υnβbn → 0 as n → ∞, so the term to consider is the second summand. By
combining Lemma A.1 in [11] with Proposition 7 in The Appendix, we obtain:

E

∥

∥

∥

∥

n−3/2h−1
υn
∑

p 
=q

∑

i∈H
(U)
p

∑

j∈H
(U)
q

ϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

)

∥

∥

∥

∥

F2K 2

≤ c2E

∥

∥

∥n−3/2h−1
υn
∑

p 
=q

εpεq

∑

i∈H
(U)
p

∑

j∈H
(U)
q

ϕ(ζi, ζj)K
( ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2

≤ c2E

∫ D
(U1)
nh

0
N(u,F2K

2, ˜d
(1)
nh,2) du, (7.27)

where D
(U1)
nh is the diameter of F2K

2 according to the distance ˜d
(1)
nh,2, which are defined respectively by

D
(U1)
nh :=

∥

∥

∥

∥

Eε

∣

∣

∣n−3/2h−1
υn
∑

p 
=q

εpεq

∑

i∈H
(U)
p

∑

j∈H
(U)
q

ϕ(ζi, ζj)K
( ςi − t1

h

)

K
(ςj − t2

h

)∣

∣

∣

∥

∥

∥

∥

F2K 2

and

˜d
(1)
nh,2(ϕ1K̃1, ϕ2K̃2) := Eε

∣

∣

∣n−3/2h−1
υn
∑

p 
=q

εpεq

∑

i∈H
(U)
p

∑

j∈H
(U)
q

[

ϕ1(ζi, ζj)K1

(ςi − t1
h

)

K1

(ςj − t2
h

)

−ϕ2(ζi, ζj)K2

(ςi − t1
h

)

K2

(ςj − t2
h

)]∣

∣

∣.
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Let us consider another semi-norm ˜d
(2)
nh,2,

˜d
(2)
nh,2(ϕ1K̃1, ϕ2K̃2) =

1
nh2

[ υn
∑

i
=j

(

ϕ1(ζi, ζj)K1

(ςi − t1
h

)

K1

(ςj − t2
h

)

−ϕ2(ζi, ζj)K2

( ςi − t1
h

)

K2

(ςj − t2
h

))2]1/2
.

One can see that

˜d
(1)
nh,2(ϕ1K1, ϕ2K2) ≤ ann−1/2h˜d

(2)
nh,2(ϕ1K1, ϕ2K2) ≤ ann−1/2

˜d
(2)
nh,2(ϕ1K1, ϕ2K2).

We readily infer that

E

∥

∥

∥n−3/2h−1
υn
∑

p 
=q

∑

i∈H
(U)
p

∑

j∈H
(U)
q

ϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2

≤ c2E

∫ D
(U1)
nh

0
N
(

ua−1
n n1/2,F2K

2, ˜d
(2)
nh,2

)

du

≤ c2ann−1/2
P
{

D
(U1)
nh a−1

n n1/2 � λn

}

+ cmann−1/2

∫ λn

0
log u−1 du,

where λn → 0. Notice that as λ → 0, we have
(∫ λ

0
log u−1du

)

/

(λ log λ−1) → 0,

where an and λn are chosen so that

anλnn−1/2 log λ−1
n → 0. (7.28)

Making use of the triangle inequality, in combination with Hoeffding’s trick, we obtain readily that

ann−1/2
P
{

D
(U1)
nh � λnann−1/2

}

≤ λ−2
n a−1

n n−5/2h−2
E

∥

∥

∥

∥

υn
∑

p 
=q

[
∑

i∈H
(U)
p

∑

j∈H
(U)
q

ϕ(ζi, ζj)K
( ςi − t1

h

)

K
(ςj − t2

h

)]2
∥

∥

∥

∥

F2K 2

≤ c2υnλ−2
n a−1

n n−5/2h−2
E

∥

∥

∥

∥

υn
∑

p=1

[
∑

i,j∈H
(U)
p

ϕ(ζi, ζ
′
j)K

( ςi − t1
h

)

K
(ς ′j − t2

h

)]2
∥

∥

∥

∥

F2K 2

,(7.29)

where {ξ′i = (ς ′i, ζ
′
i)}i∈N∗ are independent copies of {ξi = (ςi, ζi)}i∈N∗ . By imposing

λ−2
n a1−r

n n−1/2 → 0, (7.30)

we readily infer from (7.21) that
∥

∥

∥

∥

υnλ−2
n a−1

n n−5/2h−2
E

υn
∑

p=1

[
∑

i,j∈H
(U)
p

ϕ(ζi, ζ
′
j)K

(ςi − t1
h

)

K
(ς ′j − t2

h

)]2
∥

∥

∥

∥

F2K 2

= O
(

λ−2
n a1−r

n n−1/2
)

.

By symmetrizing the expression in (7.29) and applying again Proposition 7 in the Appendix, we get

υnλ−2
n a−1

n n−5/2h−2
E

∥

∥

∥

∥

υn
∑

p=1

[
∑

i,j∈H
(U)
p

εpϕ(ζi, ζ
′
j)K

( ςi − t1
h

)

K
(ς ′j − t2

h

)]2
∥

∥

∥

∥

F2K 2

≤ c2E

(∫ D
(U2)
nh

0

(

log N(u,F2K
2, ˜d′nh,2)

)1/2
)

, (7.31)
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where

D
(U2)
nh =

∥

∥

∥

∥

Eε

∣

∣

∣υnλ−2
n a−1

n n−5/2h−2
υn
∑

p=1

εp

[
∑

i,j∈H
(U)
p

ϕ(ζi, ζ
′
j)K

(ςi − t1
h

)

K
(ς ′j − t2

h

)]2∣
∣

∣

∥

∥

∥

∥

F2K 2

and for ϕ1K̃1, ϕ2K̃2 ∈ F2K
2,

˜d′nh,2(ϕ1K̃1, ϕ2K̃2) = Eε

∣

∣

∣υnλ−2
n a−1

n n−5/2h−2
υn
∑

p=1

εp

[(
∑

i,j∈H
(U)
p

ϕ1(ζi, ζ
′
j)K1

(ςi − t1
h

)

K1

( ς ′j − t2

h

))2

−
(

∑

i,j∈H
(U)
p

ϕ2(ζi, ζ
′
j)K2

(ςi − t1
h

)

K2

( ς ′j − t2

h

))2]∣
∣

∣.

By the fact that

Eε

∣

∣

∣υnλ−2
n a−1

n n−5/2h−2
υn
∑

p=1

εp

(
∑

i,j∈H
(U)
p

ϕ(ζi, ζ
′
j)K

(ςi − t1
h

)

K
(ς ′j − t2

h

))2∣
∣

∣

≤ a3/2
n λ−2

n n−1
[

υ−1
n a−2

n h−4
υn
∑

p=1

∑

i,j∈H
(U)
p

(

ϕ(ζi, ζ
′
j)K

(ςi − t1
h

)

K
(ς ′j − t2

h

))4]1/2
,

so

a3/2
n λ−2

n n−1h−2 → 0, (7.32)

we have the convergence of (7.31) to zero. For the choice of an, bn and υn, it should be noted that all the
values satisfying (7.24), (7.26), (7.28), (7.30) and (7.32) are accepted.

(II). The same blocks. We have

P

{∥

∥

∥n−3/2h−1
υn
∑

p=1

∑

i
=j i,j∈H
(U)
p

ϕ(Yi, Yj)K
(Xi − t1

h

)

K
(Xj − t2

h

)∥

∥

∥

FK 2
> λ

}

≤ 2υnβbn + P

{∥

∥

∥n−3/2h−1
υn
∑

p=1

∑

i
=j i,j∈H
(U)
p

ϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2
> λ

}

.

In a similar way as in the preceding proof, it suffices to prove that

E

(∥

∥

∥n−3/2h−1
υn
∑

p=1

∑

i
=j i,j∈H
(U)
p

ϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2

)

→ 0.

Notice that we treat uniformly bounded classes of functions. We obtain uniformly in F2K
2

E

(
∑

i
=j i,j∈H
(U)
p

ϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

))

= O(an).

This implies that we have to prove that

E

(∥

∥

∥n−3/2h−1
υn
∑

p=1

∑

i
=j i,j∈H
(U)
p

[

ϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

)

−E

(

ϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

))]∥

∥

∥

F2K 2

)

→ 0. (7.33)
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Like for empirical processes, to prove (7.33), it suffices to symmetrize and show that

E

(∥

∥

∥n−3/2h−1
υn
∑

p=1

∑

i
=j i,j∈H
(U)
p

εpϕ(ζi, ζj)K
( ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2

)

→ 0.

Similarly to (7.27), we infer that

E

(

∥

∥

∥n−3/2h−1
υn
∑

p=1

∑

i
=j i,j∈H
(U)
p

εpϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2

)

≤ E

(∫ D
(U3)
nh

0

(

log N(u,F2K
2, ˜d

(3)
nh,2)

)1/2
du

)

,

where

D
(U3)
nh =

∥

∥

∥Eε

∣

∣

∣n−3/2h−1
υn
∑

p=1

εp

∑

i
=j i,j∈H
(U)
p

ϕ(ζi, ζj)K
( ςi − t1

h

)

K
(ςj − t2

h

)∣

∣

∣

∥

∥

∥

F2K 2

and the semi-metric ˜d
(3)
nh,2 is defined by

˜d
(3)
nh,2(ϕ1K̃1, ϕ2K̃2) = Eε

∣

∣

∣n−3/2h−1
υn
∑

p=1

εp

∑

i
=j i,j∈H
(U)
p

(

ϕ1(ζi, ζj)K1

(ςi − t1
h

)

K1

( ςj − t2
h

)

−ϕ2(ζi, ζj)K2

( ςi − t1
h

)

K2

(ςj − t2
h

))∣

∣

∣.

Since we are treating uniformly bounded classes of functions, we infer that

Eε

∣

∣

∣n−3/2h−1
υn
∑

p=1

εp

∑

i
=j i,j∈H
(U)
p

ϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

)∣

∣

∣

≤ a3/2
n (nh)−1

[ 1
υna2

n

υn
∑

p=1

∑

i
=j i,j∈H
(U)
p

(

ϕ(ζi, ζj)K
( ςi − t1

h

)

K
(ςj − t2

h

))2]1/2

= O(a3/2
n (nh)−1).

Since a
3/2
n (nh)−1 → 0, D

(U3)
nh → 0, we obtain II → 0 as n → ∞.

(III) Different types of blocks. An application of (2.5), shows that

υn
∑

p=1

E

∥

∥

∥n−3/2h−1
∑

i∈H
(U)
p

υn
∑

q:|q−p|�2

∑

j∈T
(U)
q

ϕ(Yi, Yj)K
(Xi − t1

h

)

K
(Xj − t2

h

)∥

∥

∥

F2K 2

≤
υn
∑

p=1

E

∥

∥

∥n−3/2h−1
∑

i∈H
(U)
p

υn
∑

q:|q−p|�2

∑

j∈T
(U)
q

ϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2

+n−3/2h−1υ2
nanbnβan .

By the last choice of the parameters an, bn, υn and condition (7.23) imposed on the β-coefficients, we
have

n−3/2h−1υ2
nanbnβan → 0.
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For p = 1 and p = υn, since we have independent exchangeable blocks, we infer that

E

∥

∥

∥n−3/2h−1
∑

i∈H
(U)
1

υn
∑

q:|q−p|�2

∑

j∈T
(U)
q

ϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2

= E

∥

∥

∥n−3/2h−1
∑

i∈H
(U)
υn

υn
∑

q:|q−p|�2

∑

j∈T
(U)
q

ϕ(ζi, ζj)K
( ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2

= E

∥

∥

∥n−3/2h−1
∑

i∈H
(U)
1

υn
∑

q=3

∑

j∈T
(U)
q

ϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2
.

For 2 ≤ p ≤ υn − 1, we obtain

E

∥

∥

∥n−3/2h−1
∑

i∈H
(U)
p

υn
∑

q:|q−p|�2

∑

j∈T
(U)
q

ϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2

= E

∥

∥

∥n−3/2h−1
∑

i∈H
(U)
1

υn
∑

q=4

∑

j∈T
(U)
q

ϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2

≤ E

∥

∥

∥n−3/2h−1
∑

i∈H
(U)
1

υn
∑

q=3

∑

j∈T
(U)
q

ϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2
,

therefore it suffices to treat the convergence

E

∥

∥

∥υnn−3/2h−1
∑

i∈H
(U)
1

υn
∑

q=3

∑

j∈T
(U)
q

ϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2
−→ 0.

By similar arguments to those in [6], the usual symmetrization applies and

E

∥

∥

∥υnn−3/2h−1
∑

i∈H
(U)
1

υn
∑

q=3

∑

j∈T
(U)
q

ϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2

≤ 2E

∥

∥

∥υnn−3/2h−1
∑

i∈H
(U)
1

υn
∑

q=3

∑

j∈T
(U)
q

εqϕ(ζi, ζj)K
( ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2

= 2E

{∥

∥

∥υnn−3/2h−1
∑

i∈H
(U)
1

υn
∑

q=3

∑

j∈T
(U)
q

εqϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2
1{D(U4)

nh ≤γn}

}

+2E

{∥

∥

∥υnn−3/2h−1
∑

i∈H
(U)
1

υn
∑

q=3

∑

j∈T
(U)
q

εqϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2
1{D(U4)

nh >γn}

}

= 2III1 + 2III2, (7.34)

where:

D
(U4)
nh =

∥

∥

∥υnn−3/2h−1
[

υn
∑

q=3

(
∑

j∈T
(U)
q

∑

i∈H
(U)
1

ϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

))2]1/2∥
∥

∥

F2K 2
.

Similarly to (7.27), we infer that

III1 ≤ c2

∫ γn

0

(

log N(u,F2K
2, ˜d

(4)
nh,2)

)1/2
du, (7.35)
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where

˜d
(4)
nh,2(ϕ1K̃1, ϕ2K̃2) = Eε

∣

∣

∣υnn−3/2h−1
∑

i∈H
(U)
1

υn
∑

q=3

∑

j∈T
(U)
q

εq

[

ϕ1(ζi, ζj)K1

( ςi − t1
h

)

K1

(ςj − t2
h

)

−ϕ2(ζi, ζj)K2

( ςi − t1
h

)

K2

(ςj − t2
h

)]∣

∣

∣.

Since we have

Eε

∣

∣

∣υnn−3/2h−1
∑

i∈H
(U)
1

υn
∑

q=3

∑

j∈T
(U)
q

εqϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

)∣

∣

∣

≤ a−1/2
n bnh

[( 1
anbnυnh4

∑

i∈H
(U)
1

υn
∑

q=3

∑

j∈T
(U)
q

[

ϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

)]2)1/2]

,

and by considering the semi-metric

˜d
(5)
nh,2(ϕ1K̃1, ϕ2K̃2) =

( 1
anbnυnh4

∑

i∈H
(U)
1

υn
∑

q=3

∑

j∈T
(U)
q

[

ϕ1(ζi, ζj)K1

(ςi − t1
h

)

K1

( ςj − t2
h

)

−ϕ2(ζi, ζj)K2

(ςi − t1
h

)

K2

(ςj − t2
h

)]2)1/2
,

we show that the expression in (7.35) is bounded by

υ1/2
n bnn−1/2h

∫ υ
−1/2
n b−1

n n1/2h−1γn

0

(

log N(u,F2K
2, ˜d

(5)
nh,2)

)1/2
du.

By choosing γn = n−α for some α > (17r − 26)/60r we get the convergence to zero of the previous
quantity. To bound the second term in the right-hand side of (7.34), we remark that

III2 = E

{∥

∥

∥υnn−3/2h−1
∑

i∈H
(U)
1

υn
∑

q=3

∑

j∈T
(U)
q

εqϕ(ζi, ζj)K
( ςi − t1

h

)

K
(ςj − t2

h

)∥

∥

∥

F2K 2
1{D(U4)

nh >γn}

}

≤ a−1
n bnn1/2h−1

× P

{∥

∥

∥υ2
nn−3h−2

υn
∑

q=3

(
∑

j∈T
(U)
q

∑

i∈H
(U)
1

ϕ(ζi, ζj)K
( ςi − t1

h

)

K
(ςj − t2

h

))2∥
∥

∥

F2K 2
� γ2

n

}

, . (7.36)

Now we apply the square root trick to the last expression conditionally on HU
1 . We denote by ET the

expectation with respect to σ{(ςj , ζj) : j ∈ Tq, q � 3} and we get by equation (2.4) for 2r/(r − 1) < s <
∞ (in the notation in Lemma 5.2 in [28])

Mn = υ1/2
n ET

(
∑

j∈T
(U)
q

∑

i∈H
(U)
1

ϕ(ζi, ζj)K
(ςi − t1

h

)

K
(ςj − t2

h

))2

t = γ2
na5/2

n n1/2h−1, ρ = λ = 2−4γna5/4
n n1/4h−1/2, m = exp (γ2

nnh−2b−2
n )

Since we need t > 8Mn, and m → ∞, by similar arguments as in [6], p. 69, we get the convergence
of (7.35) and (7.36) to zero.

(IV). Different types of blocks. We have

∥

∥

∥n−3/2h−1
υn
∑

p=1

∑

i∈H
(U)
p

υn
∑

q:|q−p|≤1

∑

j∈T
(U)
q

ϕ(Yi, Yj)K
(Xi − t1

h

)

K
(Xj − t2

h

)∥

∥

∥

F2K 2
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≤ c2υnanbnn−3/2h−1 → 0.

Hence the proof of the lemma is complete.
Armed with Lemma 7.0.2, we are now ready to complete the proof of Theorem 3.0.1. This will be

achieved in the forthcoming section.

Proof of Theorem 3.0.1

In order to prove the convergence of the process {U (m)
n (ϕ, t)}FmK m , we shall proceed as follows:

U (m)
n (ϕ, t) =

√
nhm

(

r̂(m)
n (ϕ, t;hn) − r(m)(ϕ, t)

)

=
√

nhm
{un(ϕ, t)

un(1, t)
− E(un(ϕ, t))

E(un(1, t))
− r(m)(ϕ, t) +

E(un(ϕ, t))
E(un(1, t))

}

=
1

un(1, t)

√
nhm

(

un(ϕ, t) − E(un(ϕ, t))
)

− E(un(ϕ, t))
un(1, t)E(un(1, t))

×
√

nhm
(

un(1, t) − E(un(1, t))
)

−
√

nhm
(

r(m)(ϕ, t) − E(un(ϕ, t))
E(un(1, t))

)

.

Our conditional U-process is a sum of U-processes that will be treated. Let us begin with the finite-
dimensional convergence of {μn(ϕ, t)}FmK m that can be obtained from Theorem 1 in [70], which asserts
that

μn(ϕ, t) =
√

nhm
{

un(ϕ, t) − E(un(ϕ, t))
}

converges in distribution to a Gaussian r.v. if the functions, for fixed ϕ, K and the β-mixing coefficients,
satisfy the conditions:

(H.1) there are constants M ′ and p > 2 such that

E

∣

∣

∣ϕ(Yi1 , . . . , Yim)
m
∏

j=1

K
(Xij − tj

h

)∣

∣

∣ ≤ M ′;

(H.2) the β-mixing coefficients satisfy, for some r > 1,

βn = O
(

(n)−rp/(p−2)
)

.

These conditions are fulfilled thanks to (1.2), (3.3) and (3.4) respectively, so we have the finite-
dimensional convergence. Let us consider now the tightness of the process

{

μn(ϕ, t)
}

FmK m . As was
mentioned earlier, we decompose the U-process μn(ϕ, t) into two parts, the truncated and remainder
parts,

μn(ϕ, t) = μ(T )
n (ϕ, t) + μ(R)

n (ϕ, t).

The truncated part μ
(T )
n (ϕ, t) is decomposed according to the Hoeffding’s decomposition as it is

displayed in the preliminaries:

μ(T )
n (ϕ, t) =

√
nhm

{

mu(1)
n (π1,mG

(T )
ϕ,t ) +

m
∑

k=2

m!
(m − k)!

u(k)
n (πk,mG

(T )
ϕ,t )

}

.

We shall first investigate the linear term m
√

nhmu
(1)
n (π1,mG

(T )
ϕ,t ). Notice that

m
√

nhmu(1)
n

(

π1,mG
(T )
ϕ,t

)

=
m
√

hm

√
n

n
∑

i=1

π1,mG
(T )
ϕ,t (Xi,Yi).
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We can write

π1,mG
(T )
ϕ,t (x, y) = E

[

G
(T )
ϕ,t (x,X2, · · · ,Xm), (y,X2, · · · ,Xm)

]

− E
[

G
(T )
ϕ,t (X, Y)

]

= E
[

G
(T )
ϕ,t (X, Y) | (X1, Y1) = (x, y)

]

− E
[

G
(T )
ϕ,t (X, Y)

]

.

For notational brevity, we use a function introduced in [16]:
Sϕ,t :R × R −→ R

(x, y) −→ mE

[

ϕ(y) ˜K
(t − x

h

)

| (X1, Y1) = (x, y)
]

.

Hence we get

mπ1,mG
(T )
ϕ,t (x, y) = h−m

(

Sϕ,t(x, y) − E[Sϕ,t(x, y)]
)

.

The linear term of the process is given by

m
√

nhmu(1)
n (π1,mG

(T )
ϕ,t ) =

1√
nhm

n
∑

i=1

{

Sϕ,t(Xi, Yi) − E[Sϕ,t(Xi, Yi)]
}

:= αn(Sϕ,t).

Therefore the linear term of the U-process {μn(ϕ, t)}FmK m is an empirical process indexed by the class
of functions S defined by

S =
{

Sϕ,t(·, ·) ϕ ∈ Fm, t = (t1, . . . , tm) ∈ I
}

,

therefore its weak convergence may be established in a similar way to the proof of Theorem 2.2.2. It is
clear that S ⊂ mG(1). Consider now the nonlinear part. We have to show that

∥

∥

√
nhmu(k)

n (πk,mG
(T )
ϕ,t )

∥

∥

FmK m

P−→ 0, for 2 ≤ k ≤ m.

This is a consequence of Lemma 7.0.2, noting that to get the convergence of the truncated term we will
need to choose the parameters an, bnυn in a way that the terms I–VI converge toward 0.

Let us investigate now the remainder part μ
(R)
n (ϕ, t). Our main goal is to prove that

P
{

‖μ(R)
n (ϕ, t)‖FmK m > λ

}

→ 0 as n → ∞.

For clarity we restrict ourselves to m = 2. We have

μ(R)
n (ϕ, t) =

√
nh2

{

u(R)
n (ϕ, t) − E(u(R)

n (ϕ, t))
}

=

√
nh2

n(n − 1)

n
∑

i
=j

{

G
(R)
ϕ,t ((Xi,Xj), (Yi, Yj)) − E

[

G
(R)
ϕ,t ((Xi,Xj), (Yi, Yj))

]}

≤ 1√
nh2

υn
∑

p 
=q

∑

i∈H
(U)
p

∑

j∈H
(U)
q

h2
{

G
(R)
ϕ,t ((Xi,Xj), (Yi, Yj)) − E

[

G
(R)
ϕ,t ((Xi,Xj), (Yi, Yj))

]}

+
1√
nh2

υn
∑

p=1

∑

i
=j i,j∈H
(U)
p

h2
{

G
(R)
ϕ,t ((Xi,Xj), (Yi, Yj)) − E

[

G
(R)
ϕ,t ((Xi,Xj), (Yi, Yj))

]}

+2
1√
nh2

υn
∑

p=1

∑

i∈H
(U)
p

υn
∑

q:|q−p|�2

∑

j∈T
(U)
q

h2
{

G
(R)
ϕ,t ((Xi,Xj), (Yi, Yj)) − E

[

G
(R)
ϕ,t ((Xi,Xj), (Yi, Yj))

]}

+2
1√
nh2

υn
∑

p=1

∑

i∈H
(U)
p

υn
∑

q:|q−p|≤1

∑

j∈T
(U)
q

h2
{

G
(R)
ϕ,t ((Xi,Xj), (Yi, Yj)) − E

[

G
(R)
ϕ,t ((Xi,Xj), (Yi, Yj))

]}

+
1√
nh2

υn
∑

p 
=q

∑

i∈T
(U)
p

∑

j∈T
(U)
q

h2
{

G
(R)
ϕ,t ((Xi,Xj), (Yi, Yj)) − E

[

G
(R)
ϕ,t ((Xi,Xj), (Yi, Yj))

]}
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+
1√
nh2

υn
∑

p=1

∑

i
=j i,j∈T
(U)
p

h2
{

G
(R)
ϕ,t ((Xi,Xj), (Yi, Yj)) − E

[

G
(R)
ϕ,t ((Xi,Xj), (Yi, Yj))

]}

=: I′ + II′ + III′ + IV′ + V′ + VI′.
We will use blocking arguments and treat the resulting terms. We start by considering the first I′. We
have

P

{∥

∥

∥

1√
nh2

υn
∑

p 
=q

∑

i∈H
(U)
p

∑

j∈H
(U)
q

h2
{

G
(R)
ϕ,t ((Xi,Xj), (Yi, Yj)) − E

[

G
(R)
ϕ,t ((Xi,Xj), (Yi, Yj))

]}

∥

∥

∥

F2K 2
>δ

}

≤ P

{∥

∥

∥

1√
nh2

υn
∑

p 
=q

∑

i∈H
(U)
p

∑

j∈H
(U)
q

h2
{

G
(R)
ϕ,t ((ςi, ςj), (ζi, ζj)) − E

[

G
(R)
ϕ,t ((ςi, ςj), (ζi, ζj))

]}

∥

∥

∥

F2K 2
> δ

}

+2υnβbn .

Notice that (3.4) readily implies that υnβbn → 0 and recall that for all ϕ ∈ Fm and x, y, t ∈ R
2,

κ2F (y) � ϕ(y) ˜K
(x − t

h

)

.

By symmetry of the function F (·), it holds that:
∥

∥

∥

1√
nh2

υn
∑

p 
=q

∑

i∈H
(U)
p

∑

j∈H
(U)
q

h2
{

G
(R)
ϕ,t ((ςi, ςj), (ζi, ζj)) − E

[

G
(R)
ϕ,t ((ςi, ςj), (ζi, ζj))

]}

∥

∥

∥

F2K 2

≤
∣

∣

∣

1√
nh2

υn
∑

p 
=q

∑

i∈H
(U)
p

∑

j∈H
(U)
q

{

κ2F (ζi, ζj)1{κ2F>λ(n/hm)1/2(p−1)}

−E
[

κ2F (ζi, ζj)1{κ2F>λ(n/hm)1/2(p−1)}
]}

∣

∣

∣, (7.37)

hence we have to investigate the following probability:

P

{∣

∣

∣

1√
nh2

υn
∑

p 
=q

∑

i∈H
(U)
p

∑

j∈H
(U)
q

{

κ2F (ζi, ζj)1{κ2F>λ(n/hm)1/2(p−1)}

− E
[

κ2F (ζi, ζj)1{κ2F>λ(n/hm)1/2(p−1)}
]}

∣

∣

∣ > δ
}

.

We apply respectively Chebyshev’s inequality, Hoeffding’s trick, and Hoeffding’s inequality to get

P

{∣

∣

∣

1√
nh2

υn
∑

p 
=q

∑

i∈H
(U)
p

∑

j∈H
(U)
q

{

κ2F (ζi, ζj)1{κ2F>λ(n/hm)1/2(p−1)}

−E
[

κ2F (ζi, ζj)1{κ2F>λ(n/hm)1/2(p−1)}
]

}∣

∣

∣ > δ
}

≤ δ−2n−1h−2Var
(

υn
∑

p 
=q

∑

i∈H
(U)
p

∑

j∈H
(U)
q

κ2F (ζi, ζj)1{κ2F>λ(n/hm)1/2(p−1)}

)

≤ c2υnδ−2n−1h−2Var
(

υn
∑

p=1

∑

i,j∈H
(U)
p

κ2F (ζi, ζ
′
j)1{κ2F>λ(n/hm)1/2(p−1)}

)

≤ 2c2υnδ−2n−2h−2
E
[

(κ2F (ζ1, ζ2))21{κ2F>λ(n/hm)1/2(p−1)}
]

. (7.38)

Since the moment condition (3.3) is fulfilled, we have for each λ > 0,

c2υnδ−2n−2h−2
E
[(

κ2F (ζ1, ζ2)
)21{κ2F>λ(n/hm)1/2(p−1)}

]
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= c2υnδ−2n−2h−2

∫ ∞

0
P
{(

κ2F (ζ1, ζ2)
)21{κ2F>λ(n/hm)1/2(p−1)} � t

}

dt

= c2υnδ−2n−2h−2

∫ λ(n/hm)1/2(p−1)

0
P
{

κ2F > λ(n/hm)1/2(p−1)
}

dt

+c2υnδ−2n−2h−2

∫ ∞

λ(n/hm)1/2(p−1)

P
{

(κ2F
)2

> t
}

dt,

which tends to 0 as n → ∞. The terms II′, V′ and VI′ are treated in the same way as the first, except
that for II′, VI′ we do not need to apply Hoeffding’s trick because our variables {ζi, ζj}i,j∈H

(U)
p

(or

{ζi, ζj}i,j∈T
(U)
p

for VI′) are in the same blocks, and for the term IV′ we deduce its study from those

of I′ and III′. Let us consider the term III′. As for the truncated part, we have

P

{∥

∥

∥

1√
nh2

υn
∑

p=1

∑

i∈H
(U)
p

υn
∑

q:|q−p|�2

∑

j∈T
(U)
q

h2
{

G
(R)
ϕ,t ((Xi,Xj), (Yi, Yj))

−E
[

G
(R)
ϕ,t ((Xi,Xj), (Yi, Yj))

]}

∥

∥

∥

F2K 2
> δ

}

≤ P

{∥

∥

∥

1√
nh2

υn
∑

p=1

∑

i∈H
(U)
p

υn
∑

q:|q−p|�2

∑

j∈T
(U)
q

{

G
(R)
ϕ,t ((ςi, ςj), (ζi, ζj))

−E
[

G
(R)
ϕ,t ((ςi, ςj), (ζi, ζj))

]}

∥

∥

∥

F2K 2
> δ

}

+
υ2

nanbnβan√
nh2

.

We also have

P

{∥

∥

∥

1√
nh2

∑

i∈H
(U)
p

υn
∑

q:|q−p|�2

∑

j∈T
(U)
q

{

G
(R)
ϕ,t ((ςi, ςj), (ζi, ζj))

−E
[

G
(R)
ϕ,t ((ςi, ςj), (ζi, ζj))

]}

∥

∥

∥

F2K 2
> δ

}

≤ P

{∥

∥

∥

1√
nh2

∑

i∈H
(U)
1

υn
∑

q=3

∑

j∈T
(U)
q

{

G
(R)
ϕ,t ((ςi, ςj), (ζi, ζj))

−E
[

G
(R)
ϕ,t ((ςi, ςj), (ζi, ζj))

]}

∥

∥

∥

F2K 2
> δ

}

.

Since the equation (7.37) is still satisfied, the problem is reduced to

P

{∣

∣

∣

1√
nh2

∑

i∈H
(U)
1

υn
∑

q=3

∑

j∈T
(U)
q

{

κ2F (ζi, ζj)1{κ2F>λ(n/hm)1/2(p−1)}

−E
[

κ2F (ζi, ζj)1{κ2F>λ(n/hm)1/2(p−1)}
]}

∣

∣

∣ > δ
}

.

We have the following bound:

P

{∣

∣

∣

1√
nh2

∑

i∈H
(U)
1

υn
∑

q=3

∑

j∈T
(U)
q

{

κ2F (ζi, ζj)1{κ2F>λ(n/hm)1/2(p−1)}

−E
[

κ2F (ζi, ζj)1{κ2F>λ(n/hm)1/2(p−1)}
]}

∣

∣

∣ > δ
}

≤ δ−2n−1h−2Var
(

∑

i∈H
(U)
1

υn
∑

q=3

∑

j∈H
(U)
q

κ2F (ζi, ζj)1{κ2F>λ(n/hm)1/2(p−1)}

)

,
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we follow the same procedure as in (7.38). The rest has just been shown to be asymptotically negligible,
so the process {μn(ϕ, t)}FmK m converges in law to a Gaussian process which has a version with
uniformly bounded and uniformly continuous paths with respect to ‖ · ‖2-norm. We treat {μn(1, t)}K m

in a similar way, and the treatment of E(un(ϕ, t)), un(1, t) and E(un(1, t)) is done as in the proof of
Theorem 2.2.2.

Remark.

• In the treatment of the remainder part, we think that we could choose alternative blocks of the
same size.

• For any measurability question regarding the calculation of the probability tails when dealing
either with the conditional empirical process or the conditional U-process, we invite the reader to
check [71], p. 110.

APPENDIX

To estimate the dependence between two σ-algebras A and B defined on a probability space
(Ω,D, P ), we are going to use some classical measures of dependence (see, for example, [10]):

α(A,B) := sup
∣

∣P (A ∩ B) − P (A)P (B)
∣

∣, A ∈ A, B ∈ B,

β(A,B) := sup 1
2

∑I
i=1

∑J
j=1

∣

∣P (Ai ∩ Bj) − P (Ai)P (Bj)
∣

∣,

φ(A,B) := sup |P (B|A) − P (A)P (B)|, A ∈ A, B ∈ B, P (A) > 0,

ψ(A,B) := sup
∣

∣P (A ∩ B) − P (A)P (B)
∣

∣

/

P (A)P (B), A ∈ A, B ∈ B,

where for β(A,B), the sup is taken over all pairs of finite partitions {A1, . . . , AI} and {B1, . . . , BJ} of Ω
such that Ai ∈ A for all 1 ≤ i ≤ I and Bj ∈ B for all 1 ≤ j ≤ J . Let

σL
J := σ(Zi, J ≤ i ≤ L),

a ∗-mixing sequence is defined by requiring the ∗-mixing coefficient ∗k to satisfy

∗k := sup
J∈Z

∗(σJ
−∞, σ∞

J+k) −→
k→∞

0.

Definition 7.0.3. A class of subsets C on a set C is called a VC class if there exists a polynomial P (·)
such that, for every set of N points in C, the class C picks out at most P (N) distinct subsets.

Definition 7.0.4. A class of functions F is called a VC subgraph class if the graphs of the functions in
F form a VC class of sets, that is, if we define the subgraph of a real-valued function f on some space S
as the following subset Gf on S × R:

Gf = {(s, t) : 0 ≤ t ≤ f(s) or f(s) ≤ t ≤ 0}
the class {Gf : f ∈ F} is a VC class of sets on S × R.

Lemma 7.0.5 (Bochner) Let G : (R,BR) → (R,BR) be a bounded integrable function such that

|z|G(z)
|z|→∞−→ 0,

and g : (R,BR) → (R,BR) an integrable function. Set

gn(x) =
1
hn

∫

R

G
( z

hn

)

g(x − z) dz,

where 0 < hn→0 as n → ∞. If g(·) is continuous at the point x, then

lim
n→∞

gn(x) = g(x)
∫ +∞

−∞
G(z) dz.
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Further, if g(·) is uniformly continuous the convergence is uniform.

The Nadaraya–Watson estimator of regression is defined by

r̂(1)
n (Id, t, hn) =

∑n
i=1 YiK

(

Xi−t
hn

)

∑n
i=1 K

(

Xi−t
hn

) ,

where Id denote the identity function. In our analysis, we shall consider another, but more appropriate

and more computationally convenient, centering factor than the expectation Er̂
(1)
n (Id, t, hn), which is

delicate to handle. This is given by

˜E[r̂(1)
n (Id, t, hn)] =

E
(∑n

i=1 YiK
(

Xi−t
hn

))

E
(∑n

i=1 K
(

Xi−t
hn

)) .

Proposition 7.0.6. If Y is a bounded random variable and nh → ∞, h → 0, then

E[r̂(1)
n (Id, t, hn)] = ˜E[r̂(1)

n (Id, t, hn)] + O((nh)−1).

If E(Y2) < ∞ and nh2 → ∞, then we have

E[r̂(1)
n (Id, t, hn)] = ˜E[r̂(1)

n (Id, t, hn)] + O((n
1
2 h)−1).

Proposition 7.0.7. (see [3], Proposition 3.6). Let {Xt : t ∈ T} be a process satisfying, for m � 1,

(

E‖Xt − Xs‖p
)1/p ≤

(p − 1
q − 1

)m/2(
E‖Xt − Xs‖q

)1/q
, 1 < q < p < ∞,

and the semi-metric

ρ(s, t) =
(

E‖Xt − Xs‖2
)1/2

.

There exists a constant K = K(m) such that

E sup
s,t∈T

‖Xt − Xs‖ ≤ K

∫ D

0
[log N(ε, T, ρ)]m/2 dε,

D being the ρ-diameter of T.
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7. M. A. Arcones, Z. Chen, and E. Giné, “Estimators Related to U-Processes with Applications to Multivariate

Medians: Asymptotic Normality”, Ann. Statist. 22 (3), 1460–1477 (1994).
8. S. Borovkova, R. Burton, and H. Dehling, “Limit Theorems for Functionals of Mixing Processes with

Applications to U-Statistics and Dimension Estimation”, Trans. Amer. Math. Soc. 353 (11), 4261–4318
(2001).

MATHEMATICAL METHODS OF STATISTICS Vol. 28 No. 3 2019



206 BOUZEBDA, NEMOUCHI

9. Y. V. Borovskikh, U-Statistics in Banach Spaces (VSP, Utrecht, 1996).
10. R. C. Bradley, “Basic Properties of Strong Mixing Conditions. A Survey and Some Open Questions”,

Probab. Surv. 2, 107–144 (2005). Update of and a supplement to the 1986 original.
11. V. H. de la Peña, “Decoupling and Khintchin’s Inequalities for U-Statistics”, Ann. Probab. 20 (4), 1877–

1892 (1992).
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26. E. Giné and D. M. Mason, “Laws of the Iterated Logarithm for the Local U-Statistic Process”, J. Theoret.

Probab. 20 (3), 457–485 (2007a).
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