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Abstract—Let X1, X2, . . . be independent random variables observed sequentially and such that
X1, . . . , Xθ−1 have a common probability density p0, while Xθ, Xθ+1, . . . are all distributed accord-
ing to p1 �= p0. It is assumed that p0 and p1 are known, but the time change θ ∈ Z

+ is unknown
and the goal is to construct a stopping time τ that detects the change-point θ as soon as possible.
The standard approaches to this problem rely essentially on some prior information about θ. For
instance, in the Bayes approach, it is assumed that θ is a random variable with a known probability
distribution. In the methods related to hypothesis testing, this a priori information is hidden in the
so-called average run length. The main goal in this paper is to construct stopping times that are free
from a priori information about θ. More formally, we propose an approach to solving approximately
the following minimization problem:

Δ(θ; τα) → min
τα

subject to α(θ; τα) ≤ α for any θ ≥ 1,

where α(θ; τ) = Pθ

{
τ < θ

}
is the false alarm probability and Δ(θ; τ) = Eθ(τ − θ)+ is the aver-

age detection delay computed for a given stopping time τ . In contrast to the standard CUSUM
algorithm based on the sequential maximum likelihood test, our approach is related to a multiple
hypothesis testing methods and permits, in particular, to construct universal stopping times with
nearly Bayes detection delays.
Keywords: stopping time, false alarm probability, average detection delay, Bayes stopping time,
CUSUM method, multiple hypothesis testing.
AMS 2010 Subject Classification: primary 62L10, 62L15; secondary 60G40.
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1. INTRODUCTION

Let X1,X2, . . . be independent random variables observed sequentially. It is assumed that X1, . . . ,
Xθ−1 have a common probability density p0(x), x ∈ R

d, while Xθ,Xθ+1, . . . are all distributed according
to a probability density p1(x), x ∈ R

d. This paper deals with the simple change-point detection problem
assuming that p0(·) and p1(·) are known, but the time change θ ∈ Z

+ is unknown, and the goal is to
construct a stopping time τ ∈ Z

+ that detects θ as soon as possible. The existing approaches to this
problem rely essentially on some prior information about θ. For instance, in the Bayes approach, it is
assumed that θ is a random variable with a known probability distribution, see e.g. [12]. In methods
related to sequential hypothesis testing, the prior information is hidden in the so-called average run
length, see e.g. [7]. Our goal in this paper is to construct stopping times that are free from a priori
information about θ, but have nearly minimal detection delays.

To be more precise, denote by Pθ the probability distribution of {X1, . . . ,Xθ−1,Xθ, . . .} and by Eθ the
expectation with respect to this measure. In this paper, statistical properties of τ are measured with the
help of the following functions in θ ∈ Z

+:
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• false alarm probability

α(θ; τ) = Pθ

{
τ < θ

}
;

• average detection delay

Δ(θ; τ) = Eθ[τ − θ]+, where [x]+ = max{0, x}.

Heuristically, we want to find a stopping time solving the following problem:

Δ(θ; τα) → min
τα

subject to α(θ; τα) ≤ α for any θ ∈ Z
+. (1)

In other words, the goal is to construct τα minimizing detection delay Δ(θ; τα) for any given θ ∈ Z
+

and such that α(θ; τα) ≤ α. The main difficulty in this problem is related obviously to the fact that for
a given stopping time τα the average detection delay Δ(θ; τα) depends on θ. This means that in order
to compare two stopping times τα

1 and τα
2 , one has to compare two functions of θ ∈ Z

+. Obviously,
this is not feasible from a mathematical viewpoint and the principal objective in this paper is to propose
stopping times providing good approximative solutions to (1). Notice that similar problems are common
in statistics and there are well-known approaches to obtain their reasonable solutions.

In change-point detection, two standard methods are usually used for constructing stopping times.

The Bayes approach. The first Bayes change-point detection problem was stated in [4] for on-line
quality control problem for continuous technological processes. This approach assumes that θ is a
random variable with a known distribution

πm = P{θ = m}, m = 1, 2, . . . ,

and the goal is to construct a stopping time τα
π that solves the averaged version of (1), i.e.,

∞∑

m=1

πmΔ(m; τα
π ) → min

τα
π

subject to
∞∑

m=1

πmα(m; τα
π ) ≤ α. (2)

Let us emphasize that in contrast to (1), Problem (2) is well defined from a mathematical viewpoint, but
its solution depends on the prior distribution π that is hardly known in practice.

A hypothesis testing approach. The first non-Bayesian change-point detection algorithm based on
sequential hypothesis testing was proposed in [7]. Denote by Xn = {X1, . . . ,Xn} the observations till
moment n. The main idea in this approach is to test sequentially

simple hypothesis

Hn
0 : Xn ∼

n∏

i=1

p0(xi)

vs. composite alternative

Hn
1 : Xn ∼

m−1∏

i=1

p0(xi)
n∏

i=m

p1(xi), for some m ∈ [1, n],

(3)

and to compute stopping time τ as follows:

• if Hn
1 is accepted, then τ = n;

• if Hn
0 is accepted, then Hn+1

0 and Hn+1
1 are tested.

In order to motivate stopping times proposed in this paper, let us discuss briefly the basic statistical
properties of the above mentioned approaches.
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1.1. The Bayes Approach
Usually in this approach the geometric prior distribution

πm = γ(1 − γ)m−1, m = 1, 2, . . . , γ > 0,

is used. The parameter γ is assumed to be known. In this case, the optimal stopping time is given by the
following famous theorem [12].

Theorem 1. The optimal Bayes stopping time (see (2)) is given by

τα
γ = min{k : π̄γ(k) ≥ Aα

γ}, (4)

where Aα
γ is a threshold and

π̄γ(k) = P
{
θ ≤ k | Xk

}
.

Remark. Computing the exact value of Aα
γ is difficult. For instance, this can be done with the help of the

Monte Carlo method. However it is also well known (see Remark 1, p. 200 in [12]) that Aα
γ ≤ 1 − α.

Notice that the geometric prior distribution results in the following recursive formula for the posterior
probability (see, e.g., [12]):

π̄γ(k) =
[γ + (1 − γ)π̄γ(k − 1)]p1(Xk)

[γ + (1 − γ)π̄γ(k − 1)]p1(Xk) + [1 − π̄γ(k − 1)](1 − γ)p0(Xk)
. (5)

So, if we denote

ργ(k) =
π̄γ(k)

1 − π̄γ(k)
,

then (5) may be rewritten in the following equivalent form:

ργ(k) =
γ + ργ(k − 1)

1 − γ
× p1(Xk)

p0(Xk)
, ργ(0) = 0. (6)

From this equation it is clear, in particular, that the Bayes stopping time depends on γ that is hardly
known in practice. In statistics, in order to avoid such dependence, the uniform prior distribution is
usually used. Let us see how this idea works in the change-point detection. The uniform prior distribution
assumes that γ = 0 and in this case we immediately obtain from (6)

ρ0(k) = ρ0(k − 1) × p1(Xk)
p0(Xk)

.

Therefore, for

L0(k) = log[ρ0(k)],

we get

L0(k) =
k∑

i=1

log
p1(Xi)
p0(Xi)

.

Hence the optimal stopping time is given by

τα
◦ = min

{
k : L0(k) ≥ tα

}
, (7)

where tα is a threshold which we will compute later on. Figure 1 shows a typical trajectory of L0(Xk),
k = 1, 2, . . ., in detecting change θ = 0 to θ = 80 in the Gaussian distribution N (θ, 1).

Computing the false alarm probability for this stopping time is not difficult with the help of the
following simple fact. Let

ϕ(λ) = E∞ exp
[
λ log

p1(X1)
p0(X1)

]
.
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Fig. 1. Detecting change θ = 0 to θ = 80 in the mean of N (θ, 1) with the help of τα
◦ .

Lemma 1. For any λ > 0

E∞ exp
{
−τα

◦ log[ϕ(λ)]
}
1
(
τα
◦ < ∞

)
≤ exp(−λtα).

It follows immediately from the definition of ϕ(λ) that if λ = 1, then ϕ(λ) = 1. So, by this Lemma we
get

P∞
{
τα
◦ < ∞

}
≤ exp(−tα).

As to the average detection delay, it can be easily computed with the help of the famous Wald identity
[2, 14]. The following proposition summarizes principal properties of τα

◦ . Let us assume that

μ0
def=

∫
log

p0(x)
p1(x)

p0(x) dx > 0 and μ1
def=

∫
log

p1(x)
p0(x)

p1(x) dx > 0.

Proposition 1. Let tα = log(1/α) in (7). Then

α(θ; τα
◦ ) ≤ α, Δ(θ; τα

◦ ) =
log(1/α) + θμ0

μ1
.

We would like to emphasize that Δ(θ; τα
◦ ) is linear in θ. Unfortunately, this is not good both from

practical and from theoretical viewpoints. In order to understand why it is so, let us turn back to the
Bayes setting assuming that γ > 0. This case is described by the following proposition.

Proposition 2. Suppose γ > 0. Then for τα
γ defined by (4), as γ → 0,

sup
θ∈Z+

α(θ; τα
γ ) = 1 + o(1), Δ(θ; τα

γ ) =
log[1/(γα)]

μ1
+ O(1). (8)

Let us explain heuristically some simple ideas in the proof of this proposition. Its formal proof may be
obtained with the help of the standard technique (see, e.g., [1]).

For

Lγ(k) = log[ργ(k)] + log
1
γ
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we obtain from (6)

Lγ(k) = log
{
1 + exp

[
Lγ(k − 1)

]}
+ log

p1(Xk)
p0(Xk)

− log(1 − γ) (9)

and

τα
γ = min

{
k : Lγ(k) ≥ log

1
αγ

}
.

Therefore it is clear from (9) that if k < θ and

E0 log
p1(Xk)
p0(Xk)

< log(1 − γ),

then Lγ(k) is a stationary Markov process with a bounded mean. Next notice that

log[1 + exp(x)] = x + O(exp(−x)), x → ∞.

Therefore, when k > θ,

E

[
log

p1(Xk)
p0(Xk)

− log(1 − γ)
]

> 0

and hence we obtain the following approximation

Lγ(k) ≈ Lγ(θ − 1) +
k∑

s=θ

[
log

p1(Xk)
p0(Xk)

− log(1 − γ)
]
.

So, (8) follows from Wald’s identity.

Fig. 2. Detecting change θ = 0 to θ = 80 in the mean of N (θ, 1) with the help of τα
γ (γ = 0.005).

Figure 2 illustrates typical behavior of log[ργ(k)] with γ = 0.005. Notice that if the stopping time τα
◦

is used in the considered case, then by (8) we get

EΔ(θ; τα
◦ ) =

log(1/α)
μ1

+
μ0

μ1
× 1

γ
.
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So, we see that for small γ this mean detection delay may be far away from the Bayes one given by

EΔ(θ; τα
γ ) =

log(1/α)
μ1

+
1
μ1

× log
1
γ

+ O(1) as γα → 0.

Let us now summarize briefly some facts related to the classical Bayes approach.

• If γ = 0, then the average detection delay of the Bayes stopping time grows linearly in θ.

• If γ > 0, then the maximal false alarm probability of the Bayes stopping time is 1.

So, it is clear that the standard Bayes technique cannot provide good solutions to (1).

1.2. Sequential hypothesis testing approach

The main idea of this approach is based on the well-known sequential test for two simple hypothe-
sis [15]. However, in contrast to the standard setting in [15], in the change-point detection, this approach
has a solely heuristic motivation since here we deal with testing a simple hypothesis versus a composite
alternative whose complexity grows with new observations.

In the classical sequential hypothesis testing there are two well-known methods:

• maximum likelihood (ML);

• Bayes.

The ML test accepts Hn
1 (see (3)) if

max
k≤n

∏k−1
i=1 p0(Xi)

∏n
i=k p1(Xi)∏n

i=1 p0(Xi)
≥ t′α

or, equivalently, if

M(n) ≥ tα,

where

M(n) = max
k≤n

n∑

i=k

log
p1(Xi)
p0(Xi)

.

The threshold tα is defined by

tα = min
{

t : P∞
{
M(n) ≥ t

}
≤ α

}
,

where α is the type I error probability. Notice that by Lemma 1

P∞
{
M(n) ≥ x

}
≤ exp(−x).

Therefore the ML test results in the following stopping time:

τα
ml = min

{
n : M(n) ≥ log

1
α

}
. (10)

Notice also that the test statistic M(n) admits a simple recursive computation [7]. Indeed,

max
k≤n

n∑

i=k

log
p1(Xi)
p0(Xi)

= max
{

log
p1(Xn)
p0(Xn)

, log
p1(Xn)
p0(Xn)

+ max
k≤n−1

n−1∑

i=k

log
p1(Xi)
p0(Xi)

}

= log
p1(Xn)
p0(Xn)

+ max
{

0, max
k≤n−1

n−1∑

i=k

log
p1(Xi)
p0(Xi)

}
.
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Therefore

M(n) = log
p1(Xn)
p0(Xn)

+
[
M(n − 1)

]
+
. (11)

This method is usually called the CUSUM algorithm. It is well known that it is optimal in the Lorden
[5] sense, i.e., for a properly chosen α, τα

ml minimizes

sup
θ∈Z+

ess supEθ

[
(τ − θ)+ | X1, . . . ,Xθ−1

]

in the class of stopping times
{
τ : E∞τ ≥ T

}
, see [6].

However with this method one cannot control the false alarm probability as the following proposition
shows.

Proposition 3. For any α ∈ (0, 1)

sup
θ∈Z+

α(θ; τα
ml) = 1,

and as α → 0

Δ(θ; τα
ml) =

1
μ1

log
1
α

+ O(1).

The proof of this proposition is standard and therefore omitted.
The Bayes test is based on the assumption that θ is a random variable with uniform distribution on

[1, n]. So, this test accepts Hn
1 if

S(n) def=
n∑

k=1

∏k−1
i=1 p0(Xi)

∏n
i=k p1(Xi)∏n

i=1 p0(Xi)
≥ tα. (12)

Since

S(n) =
n∑

k=1

n∏

i=k

p1(Xi)
p0(Xi)

and
n∑

k=1

n∏

i=k

p1(Xi)
p0(Xi)

=
n−1∑

k=1

n∏

i=k

p1(Xi)
p0(Xi)

+
p1(Xn)
p0(Xn)

=
[
1 +

n−1∑

k=1

n−1∏

i=k

p1(Xi)
p0(Xi)

]
p1(Xn)
p0(Xn)

,

the test statistic in (12) admits the following recursive computation:

S(n) =
[
1 + S(n − 1)

]
× p1(Xn)

p0(Xn)
. (13)

The corresponding stopping time is defined by

τα
S = min

{
n : S(n) ≥ tα

}
.

In the literature, this method is known as Shiryaev–Roberts (SR) algorithm. It was first proposed
in [11] and [10]. In [8] and [3] it is shown that it minimizes the integral average delay

1
E∞τ

∞∑

θ=1

Eθ(τ − θ)+

over all stopping times τ with E∞τ ≥ T . More detailed statistical properties of SR procedure can be
found in [9].

Notice that for

V (n) = log[S(n)]
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we obtain obviously from (13)

V (n) = log
{
1 + exp[V (n − 1)]

}
+ log

p1(Xn)
p0(Xn)

.

Comparing this equation with (9) we see that the SR algorithm may be viewed as the limiting case
(γ → 0) of the standard Bayes change-point detection method and it is not surprising that the fact
similar to Proposition 3 holds for SR algorithm.

As one can see in Fig. 3, in practice there is no significant difference between CUSUM and SR
algorithms.

Fig. 3. Detecting change θ = 0 to θ = 80 in the mean of N (θ, 1) with the help of CUSUM and SR procedures.

Summarizing, the standard hypothesis testing methods result in stopping times with false alarm
probability 1 and thus they cannot provide reasonable approaches to solving (1).

2. A MULTIPLE HYPOTHESIS TESTING APPROACH

The main idea in this approach is to replace the constant threshold in the ML test (10) by the one
depending on k. So, we will consider the following stopping times:

τα = min
{
k : M(k) ≥ tα(k)

}
.

In order to control the false alarm probability and to obtain a nearly minimal average detection delay, we
are looking for a minimal deterministic function tα(k), k = 1, 2, . . ., such that

P∞
{

max
k≥Z+

[
M(k) − tα(k)

]
≥ 0

}
≤ α.

We begin the construction of tα(·) with the following function:

ϕ0(x) = 1 + log(x), x ∈ R
+,

and recurrently iterate it m times, i.e., compute

ϕk(x) = ϕ0

[
ϕk−1(x)

]
, k = 1, . . . ,m.
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Fig. 4. Distribution functions and α-quantiles of ζ1,ε for ε = 0.01 and ε = 0.5.

Next, for a given ε ∈ (0, 1), define

bm,ε(x) = − log
[

1
ε[ϕm(x)]ε

− 1
ε[ϕm(x + 1)]ε

]
, x ∈ R

+. (14)

Consider the following random variable:

ζm,ε = max
n∈Z+

{
M(n) − bm,ε(n)

}
,

where M(n) is defined by (11). The following lemma shows that this random variable is nondegenerate.

Lemma 2. For any ε ∈ (0, 1), m ≥ 1, and x > − log(1 − 0.2075/2) ≈ 0.11

P∞
{
ζm,ε ≥ x

}
≤ 1 − exp

{
−e−x

[
ε−1 + e−x

]}
.

Therefore we can define the α-quantile of ζm,ε by

tαm,ε = min
{
x : P∞

{
ζm,ε ≥ x

}
≤ α

}
.

Figure 4 shows distribution functions and α-quantiles of ζ1,ε for ε = {0.01, 0.5} computed with the help
of Monte Carlo method with 5 · 104 replications.

The following lemma describes principal statistical properties of the stopping time

τα
m,ε = min

{
n : M(n) ≥ bm,ε(n) + tαm,ε

}
.

Lemma 3. For any ε ∈ (0, 1]

α
(
θ; τα

m,ε

)
≤ α, Δ

(
θ; τα

m,ε

)
≤ dα

m,ε(θ),

where dα
m,ε(θ) is a solution to

μ1d
α
m,ε(θ) = bm,ε

[
θ + dα

m,ε(θ)
]
+ tαm,ε. (15)

The following theorem summarizes the principal statistical properties of τm,ε.

Theorem 2. For any ε ∈ (0, 1], uniformly in θ ∈ Z
+,

α
(
θ; τα

m,ε

)
≤ α,

Δ
(
θ; τα

m,ε

)
≤ 1

μ1
log

θ

α
+ O(1) +

1
μ1

{ m∑

j=1

log[ϕj(θ)] + ε log[ϕm(θ)] + log
1
ε

}
.

(16)
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Remark. It is easy to check with a simple algebra that for any given θ > 1

lim
j→∞

j log[ϕj(θ)] = 2.

In order to explain why τm,ε is a good stopping time, suppose θ is a random variable with the geometric
distribution, i.e.,

P
{
θ = k

}
= γ(1 − γ)k−1, k ∈ Z

+.

Then, averaging (16) w.r.t. this distribution, we obtain

EΔ
(
θ; τα

m,ε

)
≤ 1

μ1
log

1
αγ

+ O(1)

+
1
μ1

{ m∑

j=1

log
[
ϕj

(
1
γ

)]
+ ε log

[
ϕm

(
1
γ

)]
+ log

1
ε

}
(17)

as γ → 0, and with (8) we arrive at

Theorem 3. As γ → 0,

Eα
(
θ; τα

m,ε

)
≤ EΔ

(
θ; τα

γ

)
= α,

EΔ
(
θ; τα

m,ε

)
≤ EΔ

(
θ; τα

γ

)
+ O(1) +

1
μ1

{ m∑

j=1

log
[
ϕj

(
1
γ

)]
+ ε log

[
ϕm

(
1
γ

)]
+ log

1
ε

}

= (1 + o(1))EΔ
(
θ; τα

γ

)
,

where τα
γ is the Bayes stopping time (see Theorem 1).

Remark. This theorem demonstrates that the stopping time τm,ε has a nearly Bayes detection delay.
From a formal mathematical viewpoint, it is clear also that the larger m, the better the upper bound for
the average detection delay for small γ. However, from a practical viewpoint m = 1 would be a reasonable
choice.

3. APPENDIX

Proof of Lemma 1. Since

Yk = exp
{
−k log[ϕ(λ)] + λL0(k)

}

is a martingale with E∞Yk = 1, we have

1 = E∞Yτα
◦ = E∞Yτα

◦ 1(τα
◦ < ∞) + E∞Yτα

◦ 1(τα
◦ = ∞)

≥ E∞Yτα
◦ 1(τα

◦ < ∞) = E∞ exp
{
−τα

◦ log[ϕ(λ)] + λA
}
1(τα

◦ < ∞).

In what follows, we denote by ek i.i.d. standard exponential random variables.

Lemma 4. For any m ≥ 1 and x > − log(1 − 0.2075/2) ≈ 0.11

P
{

max
k∈Z+

[ek − bm,ε(k)] ≥ x
}
≤ 1 − exp

{
−e−x

[
ε−1 + e−x

]}
,

where bm,ε(·) is defined by (14).
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Proof. It is easy to check with a simple algebra that for any u ∈ [0, 1)

log(1 − u) ≥ −u − u2

2(1 − u)
.

Therefore with this inequality we obtain

P
{
max
k∈Z+

[ek − bm,ε(k)] ≥ x
}

= 1 −
∞∏

k=1

{
1 − P

{
ek ≥ x + bm,ε(k)

}}

= 1 − exp
{ ∞∑

k=1

log
[
1 − e−x−bm,ε(k)

]}

≤ 1 − exp
{
−e−x

∞∑

k=1

e−bm,ε(k) − e−2x

2(1 − e−x)

∞∑

k=1

e−2bm,ε(k)

}
. (18)

It follows immediately from the definition of bm,ε (see (14)) that

∞∑

k=1

e−bm,ε(k) =
1

εϕm(1)
=

1
ε
.

It is also easy to check numerically that for any m ≥ 1 and ε > 0
∞∑

k=1

e−2bm,ε(k) < 0.2075.

Therefore, substituting the above equations in (18), we complete the proof.

Lemma 5. For any x > 0

P∞
{

max
k∈Z+

[M(k) − bm,ε(k)] ≥ x
}
≤ P

{
max
k∈Z+

[ek − bm,ε(k)] ≥ x
}

,

where the random process M(k) is defined by (11).

Proof. Define random integers κ1 < κ2 < . . . by

κk = min
{
s > κk−1 : M(s) ≤ 0

}
, κ0 = 0,

It is clear (see (11)) that these random variables are renovation points for the random process M(k) and
therefore the random variables

μk = max
κk<s≤κk+1

M(s), k = 1, 2, . . . ,

are independent. Since bm,ε(k) is nondecreasing in k and obviously κk ≥ k, we get

max
k∈Z+

[M(k) − bm,ε(k)] ≤ max
k∈Z+

max
κk<s≤κk+1

[M(s) − bm,ε(tk)] ≤ max
k∈Z+

[μk − bm,ε(k)].

Therefore, to finish the proof, it suffices to notice that by (11) and Lemma 1

P∞
{
μk ≥ x

}
≤ P∞

{
max
k>θ

k∑

s=θ

log
p0(Xs)
p1(Xs)

≥ x

}
≤ exp(−x).

Lemma 2 follows now immediately from Lemmas 4 and 5.
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Proof of Lemma 3. It follows from (11) that for all k ≥ θ

M(k) ≥
k∑

s=θ

log
p0(Xs)
p1(Xs)

and therefore

Δ(θ; τm,ε) ≤ Eθτ
+,

where

τ+ = min
{

k ≥ 1 :
θ+k∑

s=θ

log
p0(Xs)
p1(Xs)

≥ bm,ε(θ + k) + tαm,ε

}
.

The computation of Eθτ
+ is based on the famous Wald’s identity [14] (see also [2]). For given θ ∈ Z

+

and ε > 0 define

B(k) = bm,ε(θ + k) + tαm,ε, k ∈ Z
+.

It is clear that B(·) is a convex function and hence for any k0 ∈ Z
+

B(k) ≤ B(k0) + B′(x0)(k − k0).

Hence

τ+ ≤ τ++ = min
{

k ≥ 1:
θ+k∑

s=θ

log
p0(Xs)
p1(Xs)

≥ B(k0) + B′(k0)(k − k0)
}

.

Next, we obtain by Wald’s identity

μ1Eθτ
++ ≤ B(k0) + B′(k0)

(
Eθτ

++ − k0

)

and thus

Eθτ
++ ≤ B(k0) − B′(k0)k0

μ1 − B′(k0)
. (19)

To complete the proof, let us choose k0 = dα
m,ε(θ) (see (15)) and notice that B(k0) = μ1k0. Hence

by (19)

Eθτ
++ ≤ k0 = dα

m,ε(θ).

Proof of Theorem 2. It follows immediately from Lemma 2 that

tαm,ε ≤ log
1
αε

+ o(1), αε → 0. (20)

Next, by convexity of bm,ε(·) we obtain for any x, x0

bm,ε(θ + x) ≤ bm,ε(θ + x0) + b′m,ε(θ + x0)(x − x0).

Therefore choosing

x0 =
bm,ε(θ) + tαm,ε

μ1

we have with (15)

dα
m,ε(θ) ≤

bm,ε(θ + x0) + tαm,ε

μ1 − b′m,ε(θ + x0)
. (21)
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So, our next step is to upper bound bm,ε(·). To do this, notice that

−1
ε

dϕ−ε
m (x)
dx

= ϕ−1−ε
m (x)ϕ′

m(x) =
ϕ−ε

m (x)
x

m∏

j=1

1
ϕj(x)

,

and thus

− log
[
−1

ε

dϕ−ε
m (x)
dx

]
= log(x) +

m∑

j=1

log[ϕj(x)] + ε log[ϕm(x)].

Therefore with this equation and (14) we obtain

bm,ε(k) = log(k) +
m∑

j=1

log[ϕj(k)] + ε log[ϕm(k)] + o(1), k → ∞. (22)

It is also easy to check that

b′m,ε(k) = O
(
k−1

)
. (23)

Finally, substituting (20), (22), and (23) in (21), we complete the proof.
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