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1. INTRODUCTION AND PROBLEM SETTING
In this paper we deal with asymptotic study of the local power of goodness-of-fit tests of

Kolmogorov–Smirnov and Cramér–von Mises–Smirnov (omega-square) type (henceforth, briefly,
Kolmogorov and omega-square type) as applied to autoregression models. These tests are based on
the empirical distribution function (d.f.) of residuals. These functions and tests of fit based on them in
linear and nonlinear models have been studied for a long time. In particular, the paper [3] dealt with a
stationary AR(p) model

ut = β1ut−1 + · · · + βput−p + εt, t ∈ Z. (1)

Here {εt} are independent identically distributed (i.i.d.) random variables with unknown d.f. G(x) such
that Eε1 = 0, 0 < Eε2

1 < ∞ and β = (β1, . . . , βp)T is the vector of unknown parameters such that the
roots of the corresponding characteristic equation lie in the unit circle.

Let observations u1−p, . . . , un form a sample from a stationary solution to the equation (1), and let
β̂n = (β̂1n, . . . , β̂pn)T be any n1/2-consistent estimate of β based on these observations. For example,
the least squares estimate (LSE) is suitable, since it is asymptotically normal under our assumptions,
see, e.g., [1], Chapter 5. The quantities

ε̂t = ut − β̂1nut−1 − · · · − β̂pnut−p, t = 1, . . . , n,

are called residuals and the function

Ĝn(x) = n−1
n∑

t=1

I(ε̂t ≤ x), x ∈ R
1,

is called the residual empirical d.f. Here and henceforth I(·) denotes the indicator of an event.
The function Ĝn(x) is a counterpart of the empirical d.f.

Gn(x) = n−1
n∑

t=1

I(εt ≤ x)

of the unobservable innovations ε1, . . . , εn.
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It was shown in [3] that if G(x) is twice differentiable with g(x) = G′(x) and supx |g′(x)| < ∞, then

sup
x

|n1/2[Ĝn(x) − Gn(x)]| P−→ 0, n → ∞. (2)

This enables us to test the hypothesis

H0 : G(x) = G0(x), G0(x) is completely specified,

by means of Kolmogorov and omega-square type tests. Namely, let G−1
0 (t), t ∈ [0, 1], be the inverse

function to G0(x) and let

v̂n(t) = n1/2[Ĝn(G−1
0 (t)) − t]

be the residual empirical process. This is a counterpart of the empirical process

vn(t) = n1/2[Gn(G−1
0 (t)) − t].

Due to (2)

sup
t

|v̂n(t) − vn(t)| P−→ 0, n → ∞, (3)

under H0. It follows from (3) and well-known properties of vn(t) (see, e.g., [2], Chapter 3) that the
process v̂n(t) under H0 weakly converges in the Skorohod space D[0, 1] to the Brownian bridge v(t):

v̂n(t)
D[0,1]−−−−→ v(t), n → ∞. (4)

The Kolmogorov and omega-square statistics for testing H0 based on v̂n(t) are

D̂n := sup
t

|v̂n(t)|, ω̂2
n :=

∫ 1

0
[v̂n(t)]2 dt.

According to (4) under H0

P (D̂n ≤ λ) → P (sup
t

|v(t)| ≤ λ) = K(λ),

P (ω̂2
n ≤ λ) → P

(∫ 1

0
[v(t)]2dt ≤ λ

)
= S(λ), n → ∞,

where K(λ) and S(λ) are well-known tabulated Kolmogorov’s and Smirnov’s distribution functions.
Therefore the statistics D̂n and ω̂2

n can be used for testing H0 with large n in the same way as the usual
statistics based on vn(t).

The attractive results stated above were established only under the hypothesis H0, while the behavior
of the residual empirical process v̂n(t) under local alternatives has not been studied so far. This matter
will be treated in this paper.

The aim of this paper is to establish the weak limits in D[0, 1] of v̂n(t) and the statistics D̂n and ω̂2
n

based on it under local alternatives. We will carry over the results valid for vn(t) under local alternatives
to the residual empirical process. A systematic treatment of weak convergence of vn(t) in various metric
spaces was given in [5]. Let us state some results of that paper to be used here.

Since testing the hypothesis H0 : G(x) = G0(x) with continuous G0(x) is equivalent to testing
G0(ε1), . . . , G0(εn) for uniformity on [0, 1], we will discuss testing the hypothesis F0(t) = t, t ∈ [0, 1].
We consider alternatives to F0(t) of the form

Fn(t) = F0(t) + n−1/2δn(t), (5)

where δn(t) converges to a function δ(t) as n → ∞. The mode of convergence depends on the metric
space in which the weak convergence of vn(t) is studied. There may be various metric spaces, but the
general results of [5] imply that whenever δn(t) uniformly converges to a continuous function δ(t), we
have

vn(t)
D[0,1]−−−−→ v(t) + δ(t), n → ∞,
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under alternatives (5). Of course, for Kolmogorov’s statistic Dn and omega-square statistic ω2
n based on

vn(t) this implies that

Dn
d−→ sup

t
|v(t) + δ(t)|, ω2

n
d−→

∫ 1

0
[v(t) + δ(t)]2 dt, n → ∞.

Now we turn back to our problem. In Subsection 2.2 below we assume that {εt} in (1) are
i.i.d. random variables with d.f. in the form of a mixture

An(x) := (1 − n−1/2)G0(x) + n−1/2Hn(x) with Hn(x) being a d.f. (6)

Assumption (6) will be regarded as a local alternative to H0 to be denoted by H1n. The variables
G0(ε1), . . . , G0(εn) under this alternative have the following d.f. of the form (5):

Fn(t) = An(G−1
0 (t)) = t + n−1//2δn(t), δn(t) = Hn(G−1

0 (t)) − t.

The representation (6) of the alternative in the form of a mixture will be convenient for formulating
conditions on G0(x) and Hn(x) providing the properties of the estimates of β under H1n needed for
our results.

The results about the asymptotic behavior of v̂n(t) and the statistics D̂n and ω̂2
n under H1n will be

given in Theorem 2.2 and Corollary 2.2 (Subsection 2.2). To obtain them, we first prove an analog of
relation (2) for the case when the distribution of innovations depends on n. This will be done under more
general assumptions than (6) in Theorem 2.1 and Corollary 2.1 (Subsection 2.1).

By now relations of type (2) (i.e., uniform stochastic expansions of the residual empirical d.f.) have
been established for various autoregression models: ARMA, explosive and unstable autoregression,
AR(∞), ARCH , GARCH , and some others, see [4] and references therein. Therefore in these models
one can also test hypotheses on the distribution of innovations by means of Kolmogorov and omega-
square type tests. The present paper is a step towards the study of the power of these tests.

The main results are stated in Section 2, the proofs are collected in Section 3.

2. MAIN RESULTS

2.1. Stochastic Expansion for the Residual Empirical d.f.

In this subsection we do not deal with hypothesis testing, but focus on obtaining a stochastic
expansion for the residual empirical d.f. when the distribution of innovations may depend on n.

Namely, we will assume that {εt} in (1) are i.i.d. r.v.’s with d.f. An(x). But we stress once more that
this d.f. need not satisfy (6), we impose on it the following very general conditions. (In what follows, in
order to emphasize dependence on n, we write En for the expectation with respect to a d.f. depending
on n.)

Condition (i). Enε1 = 0, supn Enε2
1 < ∞.

Condition (ii). The d.f. An(x) is differentiable with derivative an(x) satisfying the Lipschitz condition:

|an(x1) − an(x2)| < L|x1 − x2| for all x1, x2 ∈ R
1,

where the constant L > 0 does not depend on n.

Similarly to the residuals {ε̂t} from the estimate β̂n defined in the Introduction, let us define the
residuals from a nonrandom vector θ = (θ1, . . . , θp)T ∈ R

p by

εt(θ) := ut − θ1ut−1 − . . . − θput−p, t = 1, . . . , n.

Let us define the corresponding residual empirical d.f.

Gn(x,θ) = n−1
n∑

t=1

I(εt(θ) ≤ x), x ∈ R
1.

When θ = β, the function Gn(x,β) coincides with the empirical d.f. Gn(x) of ε1, . . . , εn.
In what follows | · | denotes the Euclidean norm of a vector.
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Theorem 2.1. Let {εt} be i.i.d. r.v.’s with d.f. An(x) satisfying Conditions (i) and (ii). Then, for
any 0 ≤ Θ < ∞ and δ > 0,

P( sup
x,|τ|≤Θ

|n1/2[Gn(x,β + n−1/2τ ) − Gn(x)]| > δ) → 0, n → ∞.

Let β̂n be an estimate for β. Put

Ĝn(x) := Gn(x, β̂n).

Theorem 2.1 implies the following Corollary.

Corollary 2.1. Let the conditions of Theorem 2.1 hold. Let β̂n be an n1/2-consistent estimate of β.
Then for any δ > 0

P(sup
x

|n1/2[Ĝn(x) − Gn(x)]| > δ) → 0, n → ∞.

The proof of this Corollary is carried out in a standard manner (cf., e.g., the proof of Corollary 2.1 in
[4]) and hence is omitted.

2.2. Residual Empirical Process and Test Statistics under Local Alternatives

Theorem 2.1 is valid for any sequence of d.f.’s An(x) satisfying Conditions (i), (ii), and Corollary 2.1
holds under an additional assumption about n1/2-consistency of the estimate β̂n. Note that An(x) need
not converge to G0(x) as n → ∞. Moreover, Conditions (i), (ii) do not ensure the existence of a n1/2-
consistent estimate of β̂n.

We now turn to the sequence of local alternatives H1n as in (6) that converge to G0(x). It will
be convenient to state the requirements on the specific d.f. An(x) defined by (6) directly in terms of
G0(x) and Hn(x). We will impose on them Conditions (iii), (iv), which will imply Conditions (i), (ii)
and moreover ensure that the LSE is n1/2-consistent. Hence this will enable us to use the results of
Subsection 2.1 under the alternatives H1n.

Of course, Conditions (iii), (iv) are one of possible versions of requiremehts on An(x) as in (6) under
which the results stated below hold.

Condition (iii). The d.f.’s G0(x) and Hn(x) have zero means and variances σ2
0 and σ2

nH such that

0 < σ2
0 < ∞, σ2

nH = o(n1/2), n → ∞.

The intuitive meaning of Condition (iii) is that the tails of Hn(x) may become heavier and the variance
σ2

nH may grow with growing n. However the variance of An(x) as in (6) tends to σ2
0 as n → ∞, i.e.

Condition (iii) implies Condition (i). Moreover Condition (iii) enables us to construct an n1/2-consistent
estimate for the unknown parameter β, specifically the LSE, which will be discussed later.

Condition (iv). The d.f.’s G0(x) and Hn(x) are differentiable with derivatives satisfying the Lipschitz
condition; the Lipschitz constant for H ′

n(x) is LnH and

LnH = O(n1/2), n → ∞.

Intuitively Condition (iv) means that the density H ′
n(x) may oscillate with growing frequency of

oscillation when n grows. Nevertheless the d.f.’s An(x) as in (6) will satisfy the Lipschitz condition
with a constant independent of n, i.e. Condition (iv) implies Condition (ii).

Let β̂n be any estimate of β, which is n1/2-consistent under Conditions (iii) and (iv). For example, the
least squares estimate (LSE) β̂n,LS is well suited, which under the sole Condition (iii) is asymptotically
normal:

n1/2(β̂n,LS − β) d−→ N(0, σ2
0K

−1), n → ∞. (7)
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Here K is the p × p matrix,

K = (kij) > 0, kij = Eu0
0u

0
i−j , i, j = 1, . . . , p,

where {u0
t } is a stationary solution of (1) with innovations having the d.f. G0(x).

Relation (7) (to be proved in Section 3) means that, subject to Condition (iii), the LSE remains
asymptotically normal under H1n, n → ∞, with the same parameters as under H0.

Now, by Corollary 2.1, we obtain that under H1n, subject to Conditions (iii) and (iv),

sup
t

|v̂n(t) − vn(t)| P−→ 0, n → ∞. (8)

Relation (8) and the well-known properties of the process vn(t) under local alternatives, see [5],
Theorem 4.1, imply the following theorem.

Theorem 2.2. Let the alternative H1n as in (6) hold and Conditions (iii), (iv) be satisfied. Let
the functions

δn(t) := Hn(G−1
0 (t)) − t, t ∈ [0, 1], (9)

uniformly converge to a continuous function δ(t) as n → ∞. Then

v̂n(t) = n1/2[Ĝn(G−1
0 (t)) − t]

D[0,1]−−−−→ v(t) + δ(t), n → ∞,

where v(t) is a Brownian bridge.

Theorem 2.2 immediately implies:

Corollary 2.2. Under the conditions of Theorem 2.2 the following convergence in distribution
holds:

D̂n
d−→ sup

t
|v(t) + δ(t)|, ω̂2

n
d−→

∫ 1

0
[v(t) + δ(t)]2dt, n → ∞. (10)

Remark 2.1. Let H[0, 1] be the Hilbert space of functions on [0, 1] with the norm |x(t)|2H =
∫ 1
0 x2(t) dt.

Let the functions δn(t) as in (9) converge to δ(t) in H[0, 1] as n → ∞. By Theorem 5.1 of [5], under H1n,

vn(t) = n1/2[Gn(G−1
0 (t)) − t]

H[0,1]−−−−→ v(t) + δ(t), n → ∞.

Therefore, if (8) holds (i.e., under Conditions (iii) and (iv)), then the residual empirical process also
converges:

v̂n(t) = n1/2[Ĝn(G−1
0 (t)) − t]

H[0,1]−−−−→ v(t) + δ(t), n → ∞.

This relation implies (10) for ω̂2
n. The condition |δn(t) − δ(t)|H → 0, n → ∞, is weaker than the

assumption about uniform convergence of δn(t) in Theorem 2.2.

3. PROOF OF THEOREM 2.1.

We will present the proof for p = 1. The proof for an arbitrary p is more cumbersome, but does not
offer principal difficulties. So, setting β1 = β, we will consider the AR(1) equation

ut = βut−1 + εt, t ∈ Z. (11)

In (11), {εt} are i.i.d. r.v.’s with d.f. An(x) satisfying Conditions (i) and (ii); |β| < 1. Then the stationary
solution of (11) has the form

ut =
∑

j≥0

βjεt−j ,
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where the series converges in L2,

sup
n

Enu2
t = sup

n
Enε2

1

∑

j≥0

β2j < ∞.

Henceforth we will write E instead of En.
By (11),

εt(β + n−1/2τ) = εt − n−1/2τut−1, t = 1, . . . , n,

Gn(x, β + n−1/2τ) = n−1
n∑

t=1

I(ε ≤ x + n−1/2τut−1).

We will need the process

un(x, τ) := n−1/2
n∑

t=1

[I(εt ≤ x + n−1/2τut−1) − An(x + n−1/2τut−1)].

Consider the sigma-algebra Ft = σ{εs, s ≤ t}, then the summands in the definition of un(x, τ) form a
martingale-difference with respect to {Ft}. Since

n1/2[Gn(x, β + n−1/2τ) − Gn(x, β)]

= un(x, τ) − un(x, 0) + n−1/2
n∑

t=1

[An(x + n−1/2τut−1) − An(x)],

for the proof of the theorem it suffices to prove the following two statements:

sup
x∈R1,|τ |≤Θ

|un(x, τ) − un(x, 0)| = oP (1), (12)

sup
x∈R1,|τ |≤Θ

∣∣∣n−1/2
n∑

t=1

[An(x + n−1/2τut−1) − An(x)]
∣∣∣ = oP (1), n → ∞, (13)

where 0 < Θ < ∞ is fixed.
Let us prove (12). First of all we need a discrete approximation for

sup
x∈R1,|τ |≤Θ

|un(x, τ) − un(x, 0)|.

Split the interval [−Θn−1/2,Θn−1/2] into 3mn subintervals (mn are positive integers such that 3mn ∼
log n as n → ∞) by the points

ηs = −Θn−1/2 + 2Θn−1/23−mns, s = 0, 1, . . . , 3mn .

Let

ûts = ut[1 − 2Θn−1/23−mnη−1
s I(ut ≤ 0)],

ũts = ut[1 − 2Θn−1/23−mnη−1
s I(ut ≥ 0)].

From among the points {ηs} select the point ηj , which is nearest on the right to n−1/2τ , then

0 ≤ ηj − n−1/2τ ≤ 2Θn−1/23−mn .

These definitions immediately imply

ηj ũt−1,j ≤ n−1/2τut−1 ≤ ηj ût−1,j ,

|ûts| ≤ 3|ut|, |ũts| ≤ 3|ut|, t = 1, . . . , n. (14)

Take the points

−∞ = x0 < x1 < . . . < xNn = +∞
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so that

An(xi) = i/Nn, Nn ∼ n1/2 log n as n → ∞.

If x ∈ [xi, xi+1), then

xi + ηj ũt−1,j ≤ x + n−1/2τut−1 ≤ xi+1 + ηj ût−1,j . (15)

Define the vectors

Ûj = (û0,j , . . . , ûn−1,j), Ũj = (ũ0,j , . . . , ũn−1,j),

and let

pn(x, Ûj) := n−1/2
n∑

t=1

[I(εt ≤ x + ηj ût−1,j) − An(x + ηj ût−1,j) − I(εt ≤ x) + An(x)].

Monotonicity of I(εt ≤ y) and An(y) and inequalities (15) imply the following two inequalities:

un(x, τ) − un(x, 0) ≤ pn(xi+1, Ûj)

+ n−1/2
n∑

t=1

[I(εt ≤ xi+1) − An(xi+1) − I(εt ≤ xi) + An(xi)]

+ n−1/2
n∑

t=1

[An(xi+1) − An(xi)]

+ n−1/2
n∑

t=1

[An(xi+1 + ηjût−1,j) − An(xi + ηj ũt−1,j)]

and, similarly,

un(x, τ) − un(x, 0) ≥ pn(xi, Ũj)

− n−1/2
n∑

t=1

[I(εt ≤ xi+1) − An(xi+1) − I(εt ≤ xi) + An(xi)]

− n−1/2
n∑

t=1

[An(xi+1) − An(xi)]

− n−1/2
n∑

t=1

[An(xi+1 + ηj ût−1,j) − An(xi + ηj ũt−1,j)].

The last two inequalities imply

sup
x∈R1,|τ |≤Θ

|un(x, τ) − un(x, 0)|

≤ max
i,j

{|pn(xi+1, Ûj)| + |pn(xi, Ũj)|} (16)

+ max
i

|n−1/2
n∑

t=1

[I(εt ≤ xi+1) − An(xi+1) − I(εt ≤ xi) + An(xi)]| (17)

+ max
i

|n−1/2
n∑

t=1

[An(xi+1) − An(xi)]| (18)

+ max
i,j

n−1/2
n∑

t=1

[An(xi+1 + ηj ût−1,j) − An(xi + ηj ũt−1,j)]. (19)

The discrete approximation is completed.
We will show that expressions (16) to (19) tend to zero in probability as n → ∞.
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Lemma 3.1. Under Conditions (i) and (ii) the expression (16) is op(1) as n → ∞.

Proof. In the proof of this lemma and subsequent statements we will use boundedness of the density
an(x). Namely, by Taylor’s formula and Condition (i) we have for an intermediate point x̃ ∈ (x, x + 1)
that

An(x + 1) = An(x) + an(x̃) = An(x) + an(x) + an(x̃) − an(x),
|an(x̃) − an(x)| < L,

whence

sup
x,n

an(x) < L + 1.

Now we turn to the proof of Lemma 3.1 per se. We will show that

max
i,j

{|pn(xi+1, Ûj)|} = op(1), n → ∞,

the reasoning for the second term in (16) is quite similar. Put

Vt(i, j) := I(εt ≤ xi+1 + ηj ût−1,j)
− An(xi+1 + ηj ût−1,j) − I(εt ≤ xi+1) + An(xi+1),

Sn(i, j) :=
n∑

t=1

Vt(i, j).

Then

pn(xi+1, ηj , Ûj) = n−1/2
n∑

t=1

Vt(i, j) = n−1/2Sn(i, j).

Let Ft = σ{εs, s ≤ t} be the sigma-algebra introduced before. Obviously, the sequence {Vt(i, j),Ft} is
a martingale-difference. Therefore the sequence {Sn(i, j),Fn}, n ≥ 1, is a martingale. By Rosenthal’s
inequality (see [6], p. 23)

ES4
n(i, j) ≤ c

{
E
[ n∑

t=1

E(V 2
t (i, j) | Ft−1)

]2
+

n∑

t=1

EV 4
t (i, j)

}
.

The constants c here and c1, c2, . . . henceforth do not depend on n, t, i, j. Obviously,

EV 4
t (i, j) ≤ c1,

n∑

t=1

EV 4
t (i, j) ≤ c1n.

Next we use the well-known inequality: for x1, x2 ∈ R
1,

E|I(ε1 ≤ x1) − An(x1) − I(ε1 ≤ x2) + An(x2)|2 ≤ |An(x1) − An(x2)|.
In view of this inequality and (14), we have almost sure

E(V 2
t (i, j) | Ft−1) ≤ |An(xi+1 + ηj ût−1,j) − An(xi+1)|

≤ sup
x,n

an(x) | ηj ût−1,j | ≤ c2n
−1/2|ut−1|.

Hence by the Cauchy–Bunyakovskii inequality

E
[ n∑

t=1

E(V 2
t (i, j)) | Ft−1

]2
≤ c3E

( n∑

t=1

n−1/2|ut−1|
)2

≤ c3

n∑

t=1

Eu2
t−1 ≤ c4n.
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Therefore

ES4
n(i, j) ≤ c5n.

Using this and Chebyshev’s inequalities we obtain

P(max
i,j

{|pn(xi+1, ηj , Ûj)|} > δ) ≤
∑

i,j

P(|pn(xi+1, ηj , Ûj)| > δ)

≤
∑

i,j

δ−4n−2ES4
n(i, j) ≤ c5δ

−4(Nn + 1)(3mn + 1)n−1

= O(n−1/2 log2 n) = o(1), n → ∞,

due to the choice of the sequences {Nn}, {mn}. The proof of Lemma 3.1 is completed.

Lemma 3.2. Under Condition (ii) the expression (17) is op(1) as n → ∞.

Proof. Let

νt(i) := I(εt ≤ xi+1) − An(xi+1) − I(εt ≤ xi) + An(xi),

qn(i) :=
n∑

t=1

νt(i).

Obviously, {νt(i)} are a sequence of i.i.d. r.v.’s with Eν1(i) = 0, |νt(i)| ≤ 2, and

Eν2
1 (i) ≤ |An(xi+1) − An(xi)| ≤ N−1

n ≤ cn−1/2.

Then

Eq4
n(i) = nEν4

1(i) +
∑

t�=s

Eν2
t (i)Eν2

s (i) ≤ c1n.

According to this and Chebyshev’s inequalities,

P(max
i

{|n−1/2qn(i)|} > δ) ≤
∑

i

P(|n−1/2qn(i)| > δ)

≤
∑

i

δ−4n−2Eq4
n(i) ≤ c1δ

−4(Nn + 1)n−1 = o(1), n → ∞,

due to the choice of the sequence {Nn}. This proves Lemma 3.2.

The expression (18) is o(1) as n → ∞ due to the choice of the sequence {Nn}.

Lemma 3.3. Under Conditions (i) and (ii) expression (19) is op(1) as n → ∞.

Proof. By means of Taylor’s formula we rewrite the expression under the maximum sign in (19) as
follows:

n−1/2
n∑

t=1

[An(xi+1) − An(xi)] (20)

+ n−1/2ηj

n∑

t=1

an(x̂t)ût−1,j − n−1/2ηj

n∑

t=1

an(x̃t)ũt−1,j , (21)

where x̂t, x̃t are intermediate points.

The expression (20) is n1/2N−1
n = o(1) as n → ∞.

Rewrite the first sum in (21) as follows:

n−1/2ηj

n∑

t=1

an(x̂t)ût−1,j
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= n−1/2ηj

n∑

t=1

an(xi+1)ût−1,j + n−1/2ηj

n∑

t=1

[an(x̂t) − an(xi+1)]ût−1,j . (22)

In view of Condition (i) and inequality (14) the second sum in (22) is no greater than

9LΘ2n−3/2
n∑

t=1

u2
t−1 = oP (1), n → ∞

in absolute value. The absolute value of the first sum in (22) is no greater than

Θ sup
x,n

an(x)
∣∣∣n−1

n∑

t=1

ut−1

∣∣∣ + 2Θ sup
x,n

an(x)3−mnn−1
n∑

t=1

|ut−1| = oP (1), n → ∞.

For obtaining the last bound we used the following two facts: first, it follows from the autoregression
equation that

n−1
n∑

t=1

ut−1 = (1 − β)n−1
n∑

t=1

εt = oP (1), n → ∞,

and secondly, we employed the definition of {ût−1,j}.
The arguments for the second sum in (21) are quite similar.
Since all the above bounds are uniform in i, j, the proof of Lemma 3.3 is completed.

It remains to justify (13). We apply the Taylor expansion to the expression under the supremum sign
in (13):

n−1/2
n∑

t=1

[An(x + n−1/2τut−1) − An(x)] = τn−1
n∑

t=1

an(xt)ut−1

= τn−1
n∑

t=1

an(x)ut−1 + τn−1
n∑

t=1

[an(xt) − an(x)]ut−1, (23)

where xt is an intermediate point between x and x + n−1/2τut−1.
The first sum in (23) is no greater in absolute value than

Θ sup
x.n

an(x)|n−1
n∑

t=1

ut−1| = op(1), n → ∞,

and the absolute value of the second sum is no greater than

LΘ2n−3/2
n∑

t=1

u2
t−1 = op(1), n → ∞.

This proves Theorem 2.1.

Proof of (7). We will prove (7) for p = 1. The proof for an arbitrary p is cumbersome, but presents no
principal differences. So, we will consider the AR(1) equation (11).

The LSE β̂n,LS in autoregression (11), properly normalized, is representable as

n1/2(β̂n,LS − β) =
n−1/2

∑n
t=1 εtut−1

n−1
∑n

t=1 u2
t−1

.

Let us introduce three mutually independent sequences of i.i.d. r.v.’s: {ε0
t } with d.f. G0(x), {ft} with

Bernoulli distribution Bern(n−1/2), and {ht} with d.f. Hn(x). Then the r.v.’s

ε̃t = (1 − ft)ε0
t + ftht, t ∈ Z,
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have the d.f. An(x) as in (6), i.e., the sequences {εt} under H!n and {ε̃t} have the same distribution.
Therefore the sequences

{
ut =

∑

j≥0

βjεt−j

}
and

{
ũt :=

∑

j≥0

βj ε̃t−j

}
.

are also equally distributed.

Let β̃n,LS be the LSE based on ũ0, . . . , ũn. In view of the above statement the r.v.’s β̂n,LS under H1n

and β̃n,LS have the same distribution for any n ≥ 2.
Now it is not difficult to find the limiting distribution of

n1/2(β̃n,LS − β) =
n−1/2

∑n
t=1 ε̃tũt−1

n−1
∑n

t=1 ũ2
t−1

.

To this end, consider the LSE β0
n,LS based on u0

0, . . . , u
0
n, where u0

t =
∑

j≥0 βjε0
t−j . Then, see [1],

Chap. 5,

n1/2(β0
n,LS − β) =

n−1/2
∑n

t=1 ε0
t u

0
t−1

n−1
∑n

t=1(u
0
t−1)2

d−→ N(0, 1 − β2), n → ∞,

i.e., the asymptotic relation (7) holds. But

n1/2(β̃n,LS − β) − n1/2(β0
n,LS − β)

=
n−1/2

∑n
t=1 ε̃tũt−1

n−1
∑n

t=1 ũ2
t−1

−
n−1/2

∑n
t=1 ε0

t u
0
t−1

n−1
∑n

t=1(u
0
t−1)2

= oP (1), n → ∞,

since

E
∣∣∣n−1/2

n∑

t=1

ε̃tũt−1 − n−1/2
n∑

t=1

ε0
t u

0
t−1

∣∣∣
2
→ 0, (24)

E
∣∣∣n−1

n∑

t=1

ũ2
t−1 − n−1

n∑

t=1

(u0
t−1)

2
∣∣∣ → 0, n → ∞. (25)

We omit the elementary proofs of (24), (25), which follow directly from the definitions of the r.v.’s ε̃t, ũt−1,
ε0
t , u0

t−1. Thus the proof of (7) is completed.
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