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Abstract—In this paper we investigate an indirect regression model characterized by the Radon
transformation. This model is useful for recovery of medical images obtained by computed tomog-
raphy scans. The indirect regression function is estimated using a series estimator motivated by
a spectral cutoff technique. Further, we investigate the empirical process of residuals from this
regression, and show that it satisfies a functional central limit theorem.
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1. INTRODUCTION

Computed tomography (CT) is a noninvasive imaging technique, which is a key method for medical
diagnoses. CT is based on measuring the intensity losses of X-rays sent through a body. From these
measurements an attenuation profile can be recovered that provides an image of the body’s (unobserv-
able) interior. The X-rays are linear and so the scanner rotates to create a two-dimensional slice. Insight
into three-dimensional structures is obtained by considering multiple slices. Our investigation is limited
to the statistical analysis of data gathered from a single slice. For this purpose we introduce the inverse
regression model

Yk = Rg(zk) + εk, k ∈ K, (1.1)

where (εk)k∈K are independent identically distributed random variables with E[εk] = 0. Here K is a
given index set, with each index k corresponding to an X-ray path and the design point zk characterizing
this path with associated response Yk. Consequently, zk can be written using coordinates 0 ≤ s ≤ 1 as
the distance from the origin and 0 ≤ φ ≤ 2π as the angle of inclination. The body’s (true) attenuation
profile along the slice is represented by g, a function supported on the unit disc. R is a linear operator
acting on g and denotes the normalized Radon transform, i.e., for 0 ≤ s ≤ 1 and 0 ≤ φ ≤ 2π,

Rg(s, φ) :=
1
2
(1 − s2)−

1
2

√
1−s2∫

−
√

1−s2

g
(
s cos(φ) − t sin(φ), s sin(φ) + t cos(φ)

)
dt. (1.2)

Details on the underlying physics and applications of CT can be found in [9].
Image reconstruction in CT is a particular case of the broad class of linear inverse problems. An

overview of the mathematical aspects of these problems and methods to solving them can be found in
the monographs [39], [21], and [22]. Other examples of linear inverse problems are the heat equation and
convolution transforms (see [35], [46], and [13], among others). Additional statistical inverse problems
include errors-in-variables models and the Berkson error model (see, for example, [5], [10], [32, 33],
[2], [26], [19], and [27]). The Radon transform is usually discussed in the contexts of positron emission
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tomograpy (PET) and CT in medical imaging. In the case of PET, lines-of-sight are observed along
which emissions have occurred. However, the positions of the emissions on these lines are unknown.
Here the aim is to reconstruct the emission density (see [25], [31], and [12], among others). In contrast
CT leads to inverse regression models such as considered in [11] and in [28, 29]. In the present paper
we contribute to this discussion by considering the model (1.1), which involves a different kind of Radon
transform. In particular we do not require the common white noise assumption. We derive uniform strong
consistency of a nonparametric estimator ĝ of the function g and a functional central limit theorem for the
empirical process of the residuals ε̂k = Yk −Rg(zk) resulting from this fit. More precisely, we investigate
the empirical process

F̂n(t) =
∑
k∈K

wk1 {ε̂k ≤ t} , t ∈ R, (1.3)

where the nonnegative weights wk sum to 1 (see Section 3). Statistical applications of results of this type
include validation of model assumptions. In the context of inverse regression models, to the best of our
knowledge only one result is available, namely, [4] studying an inverse regression model characterized
by a convolution transformation.

In direct regression problems, residual-based empirical processes arising from non- and semipara-
metric regression estimators have been considered by numerous authors (see [1], [43], [37], [16], and
[51], among others). In [20] tests are considered for a parametric form of the variance function in a
heteroscedastic nonparametric regression by comparing the empirical distribution function of standard-
ized residuals calculated under a null model to that of an alternative model. [44] works with a similar
approach to propose tests for verifying convenient forms of the regression function. In [30] a popular
distribution-free approach to addressing goodness-of-fit problems for the errors from a nonparametric
regression is introduced, which consists in providing a transformation of the empirical distribution
function of residuals that is useful for forming test statistics with convenient limit distributions. All
of these approaches to validating model assumptions crucially rely on a technical asymptotic linearity
property of the residual-based empirical distribution function. We show that the estimator (1.3) shares
this property as well, and the results of this article can be used immediately in approaches to validating
model assumptions in the inverse regression model (1.1) that are in the same spirit as the previously
mentioned works.

We have organized the remaining parts of the paper as follows. Model (1.1) is further discussed and
we introduce the estimator ĝ in Section 2. Our main results are given in Section 3. All of the proofs of
our results and additional supporting technical details may be found in the appendices.

2. ESTIMATION IN THE INDIRECT REGRESSION MODEL

In this section we give more details regarding the Radon transform model (1.1) and introduce an
estimator of the function g.

2.1. The Radon Transform

Following [25] let

B := {(r, θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π} (2.1)

denote the unit disc, which is the two-dimensional domain of the investigated attenuation profile g and
is called brain space for historical reasons. It is equipped with the uniform distribution, given in polar
coordinates by

dμ(r, θ) := π−1r drdθ. (2.2)

This means that no prior emphasis on any region of the scanned area is given. The detector space D is
defined as

D := {(s, φ) : 0 ≤ s ≤ 1, 0 ≤ φ ≤ 2π} (2.3)

with corresponding probability measure

dλ(s, φ) := 2π−2
√

1 − s2 dsdφ. (2.4)
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The domain of the transformed image Rg is D, a parametrization of all lines (X-ray paths) crossing the
unit disc. It is usually referred to as detector space. λ is a probability measure on D adapted to the
length of the line segments inside the disc. For analytic simplicity we allow the angles in B and D to be
exactly 0 and 2π. This is possible since the smoothness of g and Rg required below entails periodicity
with respect to the angular coordinates.

The Radon transform in (1.2) defines a linear operator from L2(B, μ) to L2(D, λ). Identifying
corresponding equivalence classes it can be shown that R is one-to-one, compact, and permits a
singular-value decomposition (SVD). The SVD of R is vital for our subsequent investigations. To state
it efficiently we introduce some definitions borrowed from [25] and [8]. Let

N :=
{
(l,m) : m ∈ N0, l = m,m − 2, . . . ,−m

}
be an index set and define for (l,m) ∈ N the function

ϕ(l,m)(r, θ) :=
√

m + 1 R|l|
m(r) exp(ilθ), (2.5)

where

R|l|
m(r) :=

1
2
(m−|l|)∑
j=0

(−1)j
(m − j)!

j!
(m+|l|

2 − j
)
!
(m−|l|

2 − j
)
!
rm−2j

is the so-called radial polynomial. Finally, for (l,m) ∈ N we define

ψ(l,m)(s, φ) := Um(s) exp(ilφ), (2.6)

where Um denotes the mth Chebyshev polynomial of the second kind. For convenience of notation we
also define ϕ(l,m) ≡ 0 and ψ(l,m) ≡ 0 for (l,m) /∈ N . Both collections of functions,

{ϕ(l,m) : (l,m) ∈ N} and {ψ(l,m) : (l,m) ∈ N}

form orthonormal bases of the spaces L2(B, μ) and L2(D, λ) respectively. With these notation the SVD
of R for some g ∈ L2(B, μ) is given by

Rg(s, φ) =
∞∑

m=0

m∑
l=−m

1√
m + 1

ψ(l,m)(s, φ)〈g, ϕ(l,m)〉L2(B,μ). (2.7)

In the literature the functions ϕ(l,m)(r, θ)(m + 1)−1/2 are commonly referred to as Zernike polynomi-
als, which play an important role in the analysis of optical systems, for instance, in the modeling of
refraction errors, c.f. [50] and more recently [34]. We refer to [17] for more details on the cited SVD of the
normalized Radon transform. Due to injectivity of the operator R we can immediately access its inverse
R−1 pointwise defined for some Rg ∈ R(L2(B, μ)), as

g = R−1 [Rg] (r, θ) =
∞∑

m=0

m∑
l=−m

√
m + 1 ϕ(l,m)(r, θ)〈Rg, ψ(l,m)〉L2(D,λ). (2.8)

The identities (2.7), (2.8) as well as L2-expansions in the respective spaces apply a priori almost
everywhere. However if g is sufficiently smooth they even hold uniformly. The smoothness of the function
g in the inverse regression is stated in terms of rapidly decaying L2-coefficients. In analogy to [13],
Section 2.2, we define for v, L ≥ 0 the class

O(v, L) :=
{
g ∈ L2(B, μ) | g continuous,

∞∑
m=0

m∑
l=−m

∣∣〈Rg, ψ(l,m)〉L2(D,λ)

∣∣(m + 1)v ≤ L
}

. (2.9)

We assume throughout this paper that the regression function g in model (1.1) is an element of O(v, L)
(for some v ≥ 1 and finite L). Controlling smoothness and thereby the complexity of the class of
regression functions by related conditions is common in inverse problems. This is owed to their natural
correspondence to singular value decompositions of operators and their suitability to prove minimax
optimal rates (see for example [35], [15], [6] or [7]).
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Proposition 2.1. Suppose that g ∈ O(v, L) for some v ≥ 1 and L < ∞, then the following four
identities hold everywhere:

g =
∞∑

m=0

m∑
l=−m

ϕ(l,m)〈g, ϕ(l,m)〉L2(B,μ), (2.10)

Rg =
∞∑

m=0

m∑
l=−m

ψ(l,m)〈Rg, ψ(l,m)〉L2(D,λ), (2.11)

Rg =
∞∑

m=0

m∑
l=−m

1√
m + 1

ψ(l,m)〈g, ϕ(l,m)〉L2(B,μ), (2.12)

g = R−1[Rg] =
∞∑

m=0

m∑
l=−m

√
m + 1 ϕ(l,m)〈Rg, ψ(l,m)〉L2(D,λ). (2.13)

Moreover the functions g and Rg are 
(v − 1)/2� times continuously differentiable.

The equality of g and its L2-expansion is vital when proving uniform bounds on the distance between
g and ĝ. In one-dimensional convolution type problems this is usually dealt with by the Dirichlet
conditions that directly apply to classes of smooth functions (see [41], pp. 197–198). It should also
be noted that the series condition on the function g in (2.9) implies regularity properties beyond mere
smoothness. For instance, if v ≥ 2k + 1, it also entails periodicity in the angular components of g and
its continuous derivatives up to the order k. This property follows by periodicity of the basis functions
in the angle and is an analogue to periodicity of convergent Fourier series on bounded intervals. Notice
that it fits naturally to the scanning regime, since any function transformed from Cartesian into spherical
coordinates will comply to periodicity with respect to the angle.

2.2. Design

As is common in computed tomography, we will assume a parallel scanning procedure corresponding
to a grid of design points on the detector space. It is then mathematically simple to adopt our results to
fan beam geometry, which underlies most modern scanners.

We thus define a grid on the detector space D, where for given p, q ∈ N each of the constituting
rectangles has side length 1/q in s-direction and 2π/p in φ-direction. More formally, we define an index
set

K := {(k1, k2) : 0 ≤ k1 ≤ q − 1, 0 ≤ k2 ≤ p − 1}
and decompose the detector space in rectangular boxes of the form

B(k1,k2) :=
{

(s, φ) ∈ D :
k1

q
≤ s ≤ k1 + 1

q
,
2πk2

p
≤ φ ≤ 2π(k2 + 1)

p

}
,

where k = (k1, k2) ∈ K. The design points {z(k1,k2) | (k1, k2) ∈ K} are then defined as follows. The
second coordinate of z(k1,k2) is given by

z2
k2

:= 2π
k2 + 1

2

p

and the first coordinate z1
k1

is determined as the solution of the equation
∫ (k1+1)/q

k1/q
(s − z1

k1
)
√

1 − s2 ds = 0. (2.14)

Throughout this paper we consider the inverse regression model (1.1) with these n = pq design points.
The non-uniform design in radial direction defined by (2.14) is motivated by a midpoint rule to numeri-
cally integrate over each box with respect to the measure λ in (2.4). For asymptotic considerations, we
assume that q → ∞ and that p = p(q) → ∞ depends on q as follows:
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Assumption 2.2. There exist constants C1, C2 > 0 such that C1q ≤ p(q) ≤ C2q for all q ∈ N.

Denoting the number of rows and columns in the grid of design points by q and p is common in the
literature and numerical programming. Notice that our Assumption 2.2 leaves room for the resolution
optimal choice 2πq ≈ p (see [40], p. 74). Sometimes we will use the notation n → ∞, actually meaning
that according to Assumption 2.2 q and thereby p and n diverge. Note also that the index set K depends
on the sample size n in model (1.1). Thus formally we consider a triangular array of independent,
identically distributed and centered random variables (εk)k∈K, but we do not reflect this dependence
on n in our notation.

2.3. The Spectral Cutoff Estimator

Motivated by the representation (2.13) we now define the cutoff estimator ĝ for the function g in model
(1.1) by

ĝ(r, θ) =
tn∑

m=0

m∑
l=−m

√
m + 1 ϕ(l,m)(r, θ) R̂(l,m). (2.15)

Here

R̂(l,m) :=
∑
k∈K

wkψ(l,m)(zk) Yk (2.16)

is an estimator of the inner product

R(l,m) := 〈Rg, ψ(l,m)〉L2(D,λ) (2.17)

and wk := λ(Bk) denotes the Lebesgue measure of the cell Bk. Comparing (2.13) to our estimator in
(2.15), we observe that the inner products have been replaced by the estimates (2.16). Furthermore
the series has been truncated at tn ∈ N, which represents the application of a regularized inverse. It is
common in the literature to refer to either tn or t−1

n as bandwidth, since it is used to balance between
bias and variance like the bandwidth in kernel density estimation (see [13]).

The choice of a bandwidth is a non-trivial problem. An optimal bandwidth with respect to some
criterion such as the integrated mean squared error will depend on the unknown regression function g.
Several data driven selection criteria for the choice of tn have been proposed and examined in the
literature. We refer to the monograph [49], where multiple techniques are gathered. We also note that
under the (stronger) assumption of a regression model with Gaussian white noise effective bandwidth
selection and adaptive minimax optimal estimation have been discussed in [14] and [28], respectively.
The latter authors investigate estimators with respect to various norms, providing insight into different
optimal rates. More closely related to our case is the smooth bootstrap examined by [4] in the context of
deconvolution.

Remark 2.1. It should be noticed that in practice a smooth dampening of high frequencies usually shows
a better performance than the strict spectral cutoff. We can accommodate this by introducing a smooth
version of the estimator ĝ in (2.15). For this purpose let Λ: R → [0, 1] denote a function with compact
support and define

ĝΛ(r, θ) =
∞∑

m=0

Λ(mt−1
n )

m∑
l=−m

√
m + 1ϕ(l,m)(r, θ) R̂(l,m) (2.18)

as an alternative estimator of g. Note that the estimate ĝ in (2.15) is obtained for Λ(x) = 1[0,1](x). All
results presented in this paper remain valid for the estimator (2.18). However, for the sake of brevity
and a transparent presentation the subsequent discussion is restricted to the spectral cutoff estimator in
(2.15).
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3. THE EMPIRICAL PROCESS OF RESIDUALS

In this section we investigate the asymptotic properties of the empirical process of residuals
√

n(F̂n(t) − F(t)) :=
√

n
∑
k∈K

wk

(
1 {ε̂k ≤ t} − F(t)

)
, t ∈ R,

where F denotes the distribution function of the error and

ε̂k := Yk −Rĝ(zk), k ∈ K, (3.1)

the kth residual obtained from the estimate ĝ. The weights wk are defined in Section 2.3. We begin by
showing a uniform convergence result for ĝ. For this purpose we derive uniform approximation rates for
bias and variance and subsequently balance these two, to get optimal results. The proofs of the following
results are complicated and therefore deferred to the Appendix.

Lemma 3.1. Suppose that Assumption 2.2 holds and that g ∈ O(v, L) for some v ≥ 5 and L < ∞.
Then the estimator ĝ in (2.15) satisfies

∥∥Eĝ − g
∥∥
∞ = O

(
t−(v−1)
n + t8nn−1

)
,

where ‖g‖∞ := supz∈B |g(z)|.

Lemma 3.2. Suppose that Assumption 2.2 holds and that E|ε|κ < ∞ for some κ > 3. Additionally
let the sequence (tn)n∈N satisfy tnn−1/2 = O(1). Then the estimator ĝ in (2.15) satisfies

∥∥ĝ − Eĝ
∥∥
∞ = O

(
t4n log(n)1/2n−1/2

)
a.s.

Remark 3.1. (a) The smoothness assumption v ≥ 5, i.e. two times continuous differentiability of g
can be weakened at the cost of a slower convergence rate of the bias. For instance v ≥ 3 yields the
uniform order O(t6nn−1/2 + t−(v−1)). However in this case the bias term is of larger magnitude
than the random part (see Lemma 3.2), leading to problems in the residual based analysis. We
therefore assume v ≥ 5 throughout our discussion.

(b) The moment assumption κ > 3 reflects that our measurement errors are modelled as a triangular
array. For arrays of random variables, e.g., the strong law of large numbers requires markedly
higher moment assumptions than for sequences ([45], p. 122). For an i.i.d. sequence of errors
in model (1.1) one would just require κ > 2. However this would lead to a rather unnatural
formulation of the model.

Balancing the two upper bounds in Lemmas 3.1 and 3.2 yields an optimal choice of the bandwidth.
More precisely, for v ≥ 5 the choice

tn := O
(
(log(n)−1n)

1
2(v+3)

)
(3.2)

balances the upper bound from Lemma 3.2 with the leading term O(t−(v−1)
n ) of the bias from Lemma

3.1. Combining these results yields the first part of the following theorem.

Theorem 3.3. Let Assumption 2.2 hold, suppose that g ∈ O(v, L) for some v ≥ 5 and L < ∞ and
that E|ε|κ < ∞ for some κ > 3. Additionally let tn be chosen as in (3.2). Then

‖g − ĝ‖∞ = O
(
(log(n)n−1)

v−1
2(v+3)

)
(3.3)

and for all τ ≤ v

∞∑
m=0

m∑
l=−m

mτ
∣∣〈R [g − ĝ] , ψ(l,m)〉L2(D,λ)

∣∣ = O
(
n

v−τ
2(v+3)

)
a.s. (3.4)
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Theorem 3.3 is an important tool for our subsequent work. A sufficiently fast convergence rate is
crucial for the accurate recovery of the model errors. But beyond that the particular shape of ĝ as
a truncated series estimator based on an orthonormal system is particularly suited for an asymptotic
linearization of the process

√
n(F̂n − F) in Theorem 3.5 (see Proposition A.5 in Appendix A). We also

mention that an interesting topic for future research is the investigation of an optimal rate in this context.
By the same techniques uniform bounds can be deduced for the derivatives of our estimators.

Corollary 3.4. Let the assumptions of Theorem 3.3 hold, let tn be of order o(n1/4) and suppose
v ≥ 2k + 1 for some k ∈ N0. Additionally let α, β ∈ N0 such that α + β = k. Then∥∥∥∥ ∂α

∂rα

∂β

∂θβ
g − ∂α

∂rα

∂β

∂θβ
ĝ

∥∥∥∥
∞

= O
(
(log(n)1/2n−1/2t2k+4

n + tv−(2k+1)
n )

)
a.s. (3.5)

For the next step recall the definition of the estimated residuals ε̂k in (3.1), as well as the estimate
for the residual distribution function F̂n in (1.3). In order to prove a uniform CLT for

√
n(F̂n − F) we

disentangle the dependencies of the terms in F̂n in the next result.

Theorem 3.5. Assume that g ∈ O(v, L) for some v > 5 and L < ∞, E|ε|κ < ∞ for some κ > 3,
that F admits a Hölder continuous density fε with exponent ζ > 4/(v − 1) and that Assump-
tion 2.2 holds. If the bandwidth tn satisfies (3.2), then

sup
t∈R

∣∣∣∣
∑
k∈K

wk [1{ε̂k ≤ t} − 1{εk ≤ t} − εkfε(t)]
∣∣∣∣ = oP (n−1/2). (3.6)

Note that the required smoothness of the error density is reciprocal to the smoothness of the
function g. This implies that a larger value v yields a larger class of error distributions that can be
analyzed.

Corollary 3.6. Under the assumptions of Theorem 3.5, the process{ ∑
k∈K

n1/2wk {1{ε̂k ≤ t} − F(t)}
}

t∈R

converges weakly to a mean zero Gaussian process G with covariance function

Σ(t, t̃) := 8π2

3

(
F(min(t, t̃)) − F(t)F(t̃) + fε(t)E

[
ε1{ε ≤ t̃}

]

+fε(t̃)E [ε1{ε ≤ t}] + σ2fε(t)fε(t̃)
)
, t, t̃ ∈ R.

APPENDIX A. PROOFS AND TECHNICAL DETAILS

Throughout our calculations C will denote a positive constant, which may differ from line to line. The
dependence of C on other parameters will be highlighted in the specific context.

A.1. Proof of Lemma 3.1

We begin with an auxiliary result which provides an approximation rate for Lemma 3.1 in expectation
of R̂(l,m) for R(l,m) and is proven in Appendix B (see Section B.3).

Proposition A.1. Suppose that g ∈ O(v, L) for v ≥ 5, L < ∞ and that Assumption 2.2 holds. Then
for all (l,m) ∈ N it follows that

|ER̂(l,m) − R(l,m)| ≤ Cm5n−1, (A.1)

where C > 0 is some constant depending on g and C1 (the constant from Assumption 2.2).
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We are now in a position to derive the decay rate of the bias postulated in Lemma 3.1. The decay
rate naturally splits up into two parts. One part accounts for the average approximation error of Radon
coefficients with index m smaller than tn and the other one for the error due to frequency limitation of the
estimator.

The singular value decomposition of the normalized Radon transform in (2.12) and the definition of
our estimator in (2.15) yield

‖Eĝ − g‖∞ =
∥∥∥∥

tn∑
m=0

m∑
l=−m

√
m + 1ϕ(l,m)

(
ER̂(l,m) − R(l,m)

)
−

∑
m>tn

m∑
l=−m

√
m + 1ϕ(l,m)R(l,m)

∥∥∥∥
∞

≤ A1 + A2,

where the terms A1 and A2 are given by

A1 :=
tn∑

m=0

m∑
l=−m

√
m + 1

∥∥ϕ(l,m)

∥∥
∞ |ER̂(l,m) − R(l,m)|,

A2 :=
∑

m>tn

m∑
l=−m

√
m + 1 ‖ϕ(l,m)‖∞ |R(l,m)|.

For the term A1 it follows that

A1 ≤
tn∑

m=0

m∑
l=−m

(m + 1)|ER̂(l,m) − R(l,m)| ≤
tn∑

m=0

m∑
l=−m

(m + 1)Cm5n−1 = O(t8nn−1),

where we have used Proposition B.2 in Appendix B to see that

‖ϕ(l,m)‖∞ ≤
√

m + 1. (A.2)

Similarly we have

A2 ≤
∑

m>tn

m∑
l=−m

(m + 1)|R(l,m)| ≤
∑

m>tn

m∑
l=−m

(m + 1)vt1−v
n |R(l,m)|

≤ t1−v
n

∞∑
m=0

m∑
l=−m

(m + 1)v |R(l,m)| = O(t1−v
n ).

In the last step we have used that g complies to the smoothness condition of O(v, L) (see (2.9)).

A.2. Proof of Lemma 3.2

We first rewrite ĝ − Eĝ employing (2.16) and (A.2)

‖ĝ(z) − Eĝ(z)‖∞ =
∥∥∥

tn∑
m=0

m∑
l=−m

√
m + 1ϕ(l,m)(R̂(l,m) − ER̂(l,m))

∥∥∥
∞

=
∥∥∥

tn∑
m=0

m∑
l=−m

√
m + 1ϕ(l,m)

( ∑
k∈K

ψ(l,m)(zk)wkεk

)∥∥∥
∞

≤
tn∑

m=0

m∑
l=−m

(m + 1)
∣∣∣ ∑
k∈K

ψ(l,m)(zk)wkεk

∣∣∣

=
tn∑

m=0

m∑
l=−m

(m + 1)2
∣∣∣ ∑
k∈K

ψ(l,m)(zk) (m + 1)−1wkεk

∣∣∣
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≤
tn∑

m=0

2(m + 1)3 max
(l,m)∈N
m≤tn

∣∣∣ ∑
k∈K

ψ(l,m)(zk) (m + 1)−1wkεk

∣∣∣

≤ Ct4n max
(l,m)∈N
m≤tn

∣∣∣ ∑
k∈K

ψ(l,m)(zk) (m + 1)−1wkεk

∣∣∣.

We proceed with deriving an upper bound for the maximum. For this purpose we introduce a truncation
parameter dn := n1/2 log(n)−1/2 and define the truncated error

εdn
k := 1

{
|εk| ≤ dn

}
εk. (A.3)

We will now show that all of the errors εk with k ∈ K eventually equal their truncated versions εdn
k

almost surely. Via Markov’s inequality we conclude that

P(|εk| > dn) ≤ E[ |ε|κ ]d−κ
n

and therewith it follows that∑
n=pq

P
(
∃k ∈ K : εdn

k �= εk

)
=

∑
n=pq

P
(
∃k ∈ K : |εk| > dn

)
≤

∑
n=pq

nd−κ
n E[ |ε|κ ].

Recalling that n = pq and that there exists some C2 > 0 such that p ≤ C2q by Assumption 2.2, we
derive

C
∑
n=pq

nd−κ
n = C

∑
n=pq

n1−κ/2 log(n)κ/2 ≤ C
∑
q≥1

q2−κ log(C2q
2)κ/2 < ∞.

Summability is entailed by 2−κ < −1. The Borel–Cantelli Lemma implies that almost surely eventually
all measurement errors and their truncated versions are equal. Thus we can confine ourselves to the
maximum

max
(l,m)∈N
m≤tn

∣∣∣ ∑
k∈K

ψ(l,m)(zk) (m + 1)−1wkεdn
k

∣∣∣ ≤ B1 + B2, (A.4)

where B1 and B2 are defined by

B1 := max
(l,m)∈N

m≤tn

∣∣∣ ∑
k∈K

ψ(l,m)(zk) (m + 1)−1wk[ εdn
k − Eεdn

k ]
∣∣∣,

B2 :=
∑
k∈K

|ψ(l,m)(zk)| (m + 1)−1wk|Eεdn
k |.

Using the inequality

‖ψ(l,m)‖∞ ≤ m + 1, (A.5)

which is a consequence of Proposition B.2, it follows that

B2 ≤ |Eεdn |
∑
k∈K

wk = o(n−1/2),

where we exploit the decay rate
∣∣Eεdn

∣∣ = o(n−1/2) in the last estimate . For the proof of this fact we recall
the notation (A.3) and note that the condition Eε = 0 implies

|Eεdn | =
∣∣E[ε1{|ε| > dn}]

∣∣ ≤
∫ ∞

dn

P(|ε| > s) ds ≤ E[|ε|κ](κ − 1)−1d1−κ
n = o(n−1/2).

For the term B1 we note that for a fixed constant C	

P
(
|B1| > log(n)1/2n−1/2C	

)
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≤ t2n max
(l,m)∈N
m≤tn

P

(∣∣∣ ∑
k∈K

ψ(l,m)(zk) (m + 1)−1wk[εdn
k − Eεdn

k ]
∣∣∣ > log(n)1/2n−1/2C	

)
. (A.6)

Due to truncation |εdn
k − Eεdn

k | is bounded by 2dn and its variance by σ2. Furthermore the weights are
uniformly of order O(n−1), since

max
k∈K

wk = 2π−2 max
k∈K

∫ 2π(k2+1)/q

2πk2/q

∫ (k1+1)/p

k1/p

√
1 − s2ds dφ ≤ 4(πpq)−1 = 4(πn)−1.

Consequently the Bernstein inequality yields for the right side of (A.6) the upper bound

t2n exp
(
− CC	 log(n)/n

n−1 + log(n)
1
2 dn/n

3
2

)
≤ t2n exp (−CC	 log(n)) ≤ t2nn−CC�

,

which is summable for sufficiently large C	. The Borel–Cantelli Lemma therefore implies that

max
(l,m)∈N
m≤tn

∣∣∣ ∑
k∈K

ψ(l,m)(zk) (m + 1)−1wk

[
εdn
k − Eεdn

k

]∣∣∣ = O(log(n)1/2n−1/2) a.s.

Combining these estimates we see that the left side of (A.4) is almost surely of order O(log(n)1/2n−1/2).
Consequently the right side of (A.3) is of order O(t4n log(n)1/2n−1/2) almost surely, which proves the
assertion.

A.3. Proof of Theorem 3.3
Combining Lemmas 3.1 and 3.2 yields the first part of Theorem 3.3 when the truncation parameter is

chosen as in (3.2). For the proof of the second property we note the identity

〈R [g − ĝ] , ψ(l,m)〉L2(D,λ) = R(l,m) − R̂(l,m)1{m ≤ tn},
which gives for the left-hand side of (3.4)

∞∑
m=0

m∑
l=−m

mτ
∣∣〈R[g − ĝ], ψ(l,m)〉L2(D,λ)

∣∣ =
∞∑

m=0

m∑
l=−m

mτ |R(l,m) − R̂(l,m)1{m ≤ tn}|

≤ D1 + D2 + D3. (A.7)

The terms D1, D2, and D3 are defined as follows:

D1 :=
tn∑

m=0

m∑
l=−m

mτ |R(l,m) − ER̂(l,m)|,

D2 :=
tn∑

m=0

m∑
l=−m

mτ |R̂(l,m) − ER̂(l,m)|,

D3 :=
∑

m>tn

m∑
l=−m

mτ |R(l,m)|.

By Proposition A.1 we obtain the upper bound

D1 ≤
tn∑

m=0

m∑
l=−m

Cmτ+5n−1 = O(tτ+7
n n−1).

For the second sum on right of (A.7) we use the bound

D2 =
tn∑

m=0

m∑
l=−m

mτ (m + 1)[ (m + 1)−1|R̂(l,m) − ER̂(l,m)| ]
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≤ Ctτ+3
n max

(l,m)∈N
m≤tn

{
(m + 1)−1|R̂(l,m) − ER̂(l,m)|

}
= O(n−1/2 log(n)1/2tτ+3

n ) a.s.

In the last equality we have used the following bound established in the proof of Lemma 3.2:

max
(l,m)∈N
m≤tn

{(m + 1)−1|R̂(l,m) − ER̂(l,m)|}

= max
(l,m)∈N
m≤tn

∣∣∣(m + 1)−1
∑
k∈K

ψ(l,m)(zk)wkεk

∣∣∣ = O(n−1/2 log(n)1/2) a.s.

The third term in (A.7) can be bounded by

D3 ≤
∑

m>tn

m∑
l=−m

(mtn)v−τmτ |R(l,m)| = tv−τ
n

∑
m>tn

m∑
l=−m

mv|R(l,m)|.

Due to the smoothness condition in (2.9) the double sum is finite. Since tn → ∞ it follows that the series
converges to 0 for n → ∞. Consequently

tv−τ
n

∑
m>tn

m∑
l=−m

mv |R(l,m)| = o(tv−τ
n )

and the definition of tn in (3.2) yield the desired result.

A.4. Proof of Theorem 3.5
The proof of Theorem 3.5 relies on an equicontinuity argument, which requires an investigation of the

smoothness class O(v, L). To access its complexity we introduce two measures of entropy:

Definition A.2. (i) Let F := {f : Θ → R} be a class of continuous functions defined on Θ ⊂ R
p. For

two continuous functions gL, gU : Θ → R with ‖gL − gU‖∞ ≤ ε, we call

[gL, gU ] := {f ∈ F : gL ≤ f ≤ gU}
an ε-bracket. The maximum bracketing number J = N[](ε,F , ‖ · ‖∞) of F is the minimum number of
ε-brackets [gL

1 , gU
1 ], . . . , [gL

J , gU
J ] such that

F ⊂
J⋃

j=1

= [gL
j , gU

j ].

Notice that the functions gL
j , gU

j do not have to be elements of F .
(ii) Let Z1,n, . . . , Zn,n be stochastic processes indexed in F and ε > 0. The Ln

2-bracketing number

of F , denoted by N
Ln

2

[] (ε,F), is the minimal number Nε of sets Fn
ε,j in a partition of F =

⋃Nε
j=1 Fn

ε,j such
that for each j

n∑
i=1

E

[
sup

f,f̃∈Fn
ε,j

(Zi,n(f) − Zi,n(f̃))2
]
≤ ε2. (A.8)

As we know from Proposition 2.1, the series condition
∞∑

m=0

m∑
l=−m

(m + 1)τ
∣∣〈Rh, ψ(l,m)〉L2(D,λ)

∣∣ ≤ 1

entails that a function h ∈ L2(B, μ) is smooth to a degree determined by τ . This implies that a finite-
dimensional representation can be used as an adequate approximation of h, in our case a truncated
L2-expansion. We employ this considerations to derive the following result about the complexity of the
class O(τ, 1), which is of independent interest and is proven in Appendix B (see Section B.4).
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Proposition A.3. Let τ > 3, then for any t ∈ (3, τ) and sufficiently small ε > 0

log(N[](ε,O(τ, 1), ‖ · ‖∞)) ≤ C
(1

ε

) 2
τ−t

. (A.9)

Here N[](ε,O(τ, 1), ‖ · ‖∞) denotes the minimal number of ε-brackets with respect to ‖ · ‖∞ needed
to cover the smoothness class O(τ, 1).

Lemma A.4. Define

Mn(t) :=
∣∣∣ ∑
k∈K

wk

{
1{ε̂k ≤ t} − 1{εk ≤ t} + F(t) − P (ε̂k ≤ t)

}∣∣∣. (A.10)

Then, under the assumptions of Theorem 3.5, it follows that supt∈R |MN (t)| = oP (n−1/2).

Proof of Lemma A.4. Using the definition of the estimated residuals in (3.1) we have

1{ε̂k ≤ t} − 1{εk ≤ t} + F(t) − P (ε̂k ≤ t)

= 1
{
εk ≤ t + R[ĝ − g](zk)

}
− 1{εk ≤ t} + P(ε ≤ t) − P

(
εk ≤ t + R[ĝ − g](zk)

)
.

As we have seen in Theorem 3.3, the random function Δn := R[g − ĝ] is eventually included in the
smoothness class R(O(τ, 1)) for every τ < v. Since v > 5 by assumption, we can also choose a τ > 5.
Since Δn is a complicated object, depending on all residuals, we replace it by general functions in
R(O(τ, 1)) and prove a uniform result over O(τ, 1). We thus define the stochastic processes

Zn,k(t, d) := n1/2wk (1 {εk ≤ t + d(zk)} − 1{εk ≤ t}) ,

indexed in the space F := R ×R(O(τ, 1)), equipped with the semi-metric

ρ((t, d), (t̃, d̃)) := max
{

sup
x∈[−1,1]

{
|F(t + x) − F(t̃ + x)|, ‖d − d̃‖∞

}}
. (A.11)

Notice that for ρ to be a semi-metric, the error density fε must have support R, which is assumed at this
point for the sake of simplicity. Furthermore recall the uniform order of the product n1/2wk = O(n−1/2).
To prove equicontinuity, we have to show that for every sequence δn ↓ 0 and every ε > 0

P

(
sup

(t,d),(t̃,d̃)∈F
ρ((t,d),(t̃,d̃))<δn

∣∣∣ ∑
k∈K

(
Zn,k(t, d) − EZn,k(t, d) − Zn,k(t̃, d̃) + EZn,k(t̃, d̃)

)∣∣∣ > ε
)
→ 0. (A.12)

If (A.12) holds, then the assertion of Lemma A.4 can be shown as follows: Firstly note that we can derive
a lower bound for the probability on the left-hand side of (A.12) by

P

({
sup
t∈R

∣∣∣ ∑
k∈K

Zn,k(t,Δn) − EZn,k(t,Δn) − Zn,k(t, 0) + EZn,k(t, 0)
∣∣∣ > ε

}

∩
{
Δn ∈ R(O(τ, 1))

}
∩

{
sup
t∈R

ρ
(
(t, 0), (t,Δn)

)
< δn

})

=P

({
sup
t∈R

n1/2Mn(t)| > ε
}
∩

{
Δn ∈ R(O(τ, 1))

}
∩

{
sup
t∈R

ρ
(
(t, 0), (t,Δn)

)
< δn

})
. (A.13)

By the second part of Theorem 3.3 we know that

P
(
Δn ∈ R(O(τ, 1))

)
→ 1

for τ < v. Furthermore we notice that ‖Rd‖∞ ≤ ‖d‖∞ for any continuous function d, which follows
immediately from the definition of the Radon transform in (1.2). Combining this with the upper bound

‖g − ĝ‖∞ = O
(( log(n)

n

) v−1
2(v+3)

)
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from the first part of Theorem 3.3 yields

ρ
(
(t, 0), (t,Δn)

)
= ‖R[ĝ − g]‖∞ ≤ ‖ĝ − g‖∞ = O

(( log(n)
n

) v−1
2(v+3)

)
a.s.,

so that for a sequence δn ↓ 0, say e.g. δn = log(n)−1,

P
(
sup
t∈R

ρ
(
(t, 0), (t,Δn)

)
< δn

)
→ 1.

Combining these considerations with the right-hand side of (A.13) implies that n1/2Mn(t) = oP (1)
uniformly in t, proving the Lemma provided that (A.12) holds.

This statement is a consequence of Lemma A.19 in [42], which requires four regularity properties of
the process under consideration. The rest of the proof consists in verifying these properties.

(1) For all η > 0 we have to show:∑
k∈K

E
(

sup
(t,d)∈F

|Zn,k(t, d)|1{|Zn,k(t, d)| > η}
)
→ 0.

This is easy to see, since |Zn,k| ≤ Cn−1/2 (recall that maxk wk ≤ Cn−1) and so the sum is equal to 0
for all n larger than some n0.

(2) For every sequence δn ↓ 0

sup
ρ((t,d),(t̃,d̃))<δn

∣∣∣ ∑
k∈K

E
[(

Zn,k(t, d) − Zn,k(t̃, d̃)
)2]∣∣∣ → 0. (A.14)

Consider the expectation for some fixed but arbitrary k ∈ K which can be bounded uniformly as follows:

E
[(

Zn,k(t, d) − Zn,k(t̃, d̃)
)2]

≤ Cn−1
[
|F(t + d(zk)) − F(t̃ + d̃(zk))| + |F(t) − F(t̃)|

]

≤ Cn−1
[
|F(t + d(zk)) − F(t̃ + d̃(zk))| + δn

]

≤ Cn−1
[
|F(t + d(zk)) − F(t + d̃(zk))| + |F(t + d̃(zk)) − F(t̃ + d̃(zk))| + δn

]
.

All three terms inside the square brackets are uniformly of order o(1). This can be shown as follows: An
application of the mean-value theorem demonstrates that the first term is a null sequence:∣∣F(t + d(zk)) − F(t + d̃(zk))

∣∣ ≤ ‖fε‖∞ ‖d − d̃‖∞ ≤ Cδn → 0.

The middle term is bounded by δn by the definition of our semi-metric ρ in (A.11), when we consider that
d̃ ∈ R(O(τ, 1)) and therefore ‖d̃‖∞ ≤ 1. Consequently it is o(1), as well as the last term by assumption.

(3) Denoting the Ln
2 -bracketing number, as given in Definition A.2 (ii), by N

Ln
2

[] (ε,F), the condition
we have to check next is that for every sequence δn ↓ 0

∫ δn

0

√
log

(
N

Ln
2

[] (ε,F)
)
dε → 0. (A.15)

For the construction of an adequate partition of F satisfying (A.8), consider ε2-brackets [gL
j , gU

j ],
j = 1, . . . , J = O(exp(ε4/(τ−t))), of O(τ, 1) (see Definition A.2 (i)), where t > 3 is such that τ − t > 2.
Recall that τ > 5 by assumption. Such brackets exist according to Proposition A.3. The images of
these brackets under R are simply [RgL

j ,RgU
j ] due to monotonicity of the integral and they are still

ε2-brackets, since R reduces ‖ · ‖∞-distance. As a consequence we obtain ε2-brackets [RgL
j ,RgU

j ] of
the whole class R(O(τ, 1)).
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Additionally choose yL
i < yU

i with i = 1, . . . , I = O(ε−2) such that the intervals [yL
i , yU

i ] form a
partition of the real line (for infinite values we take the intervals to be half open) and such that each
interval has probability mass ≤ ε2. Then the sets

Fn
i,j,ε := [yL

i , yU
i ] × [RgL

j ,RgU
j ] (A.16)

form a partition of F . Their number is of order O(exp(ε4/(τ−t)), where we might have to slightly shrink t
so that still t > 3 and τ − t > 2 hold. Now we have to show that (A.8) holds, that is in the present case
for an arbitrary Fn

i,j,ε ∑
k∈K

E
[

sup
(t,d),(t̃,d̃)∈Fn

i,j,ε

(Zn,k(t, d) − Zn,k(t̃, d̃))2
]
≤ ε2.

In the subsequent calculation we define the expressions F(±∞) and fε(±∞) by taking the respective
limits. The left-hand side of the above inequality is bounded by

Cn−1
∑
k∈K

E

[
sup

(t,d)(t̃,d̃)∈Fn
i,j,ε

(
|1{εk ≤ t + d(zk)} − 1{εk ≤ t̃ + d̃(zk)}|

+ |1{εk ≤ t} − 1{εk ≤ t̃}|
)2]

≤ Cn−1
∑
k∈K

E

[
|1{εk ≤ yU

i + RgU
j (zk)} − 1{εk ≤ yL

i + RgL
j (zk)}|

+ |1{εk ≤ yU
i } − 1{εk ≤ yL

i }|
]

≤ Cn−1
∑
k∈K

[
|F(yU

i + RgU
j (zk)) − F(yL

i + RgL
j (zk))| + C|F(yU

i ) − F(yL
i )|

]

≤ Cn−1
∑
k∈K

|F(yU
i + RgU

j (zk)) − F(yL
i + RgL

j (zk))| + Cε2

≤ Cn−1
∑
k∈K

{|F(yU
i + RgU

j (zk)) − F(yL
i + RgU

j (zk))|

+ |F(yL
i + RgU

j (zk)) − F(yL
i + RgL

j (zk))|} + Cε2

≤ C
(
ε2 + ‖fε(y)‖∞ ‖RgU

j −RgL
j ‖∞ + ε2

)
≤ Cε2.

Replacing ε by εC−1/2 yields the desired result without changing the rate of the upper bound
O(exp(ε4/(τ−t))) of the Ln

2 -bracketing number. Thus the integral in (A.15) converges, since τ − t > 2.

(4) Finally we have to prove that (F , ρ) is totally bounded. By definition, ρ is a maximum semi-metric
defined on the product space R ×R(O(τ, 1)). Hence it suffices to show that each of the spaces (R, ρ1),
(R(O(τ, 1)), ρ2) is totally bounded, where we define for t, t̃ ∈ R and d1, d2 ∈ R(O(τ, 1))

ρ1(t, t̃) := sup
x∈[−1,1]

|F(t + x) − F(t̃ + x)|, ρ2(d1, d2) := ‖d1 − d2‖∞.

We start with ρ1 and demonstrate that for every ε > 0 we can find a finite number of t1, . . . , tJ ∈ R such
that for every t ∈ R there exists a tj such that

sup
x∈[−1,1]

|F(t + x) − F(tj + x)| ≤ ε. (A.17)

Let M := maxt∈R |fε(t)| and I be a closed interval with probability mass larger than 1 − ε. Take an
equidistant grid with maximal width ε/M of points tj for j = 1, . . . , J across I (including the boundary

MATHEMATICAL METHODS OF STATISTICS Vol. 28 No. 2 2019



118 KUTTA et al.

points) and now let, for an arbitrary t ∈ R say tj , be one of the closest points to t of this grid. If t /∈ I we
choose a boundary point of I and the result is immediate. If t ∈ I, we get by the mean-value theorem:

|F(t + x) − F(tj + x)| ≤ ε‖fε‖∞M−1 = ε.

For ρ2 we recall that by our above observations for every ε > 0 the maximum-bracketing number of
R(O(τ, 1)) with respect to the norm ‖ · ‖∞ is finite and thus in particular we have total boundedness.

Having established these regularity properties, by Neumeyer’s Lemma A.19 (see [42]) equicontinuity
follows, which completes the proof of Lemma A.4.

Besides Lemma A.4 we require some additional approximation results for the proof of Theorem 3.5.

Proposition A.5. Under the assumptions of Theorem 3.5 we have
∑
k∈K

wkP (ε̂k ≤ t) −
∫
D

F (t + R[ĝ − g](z)) dλ(z) = oP (n−1/2), (A.18)

∫
D

F(t + R[ĝ − g](z)) dλ(z) − F(t) − fε(t)
∫
D
R[ĝ − g](z) dλ(z) = oP (n−1/2), (A.19)

∫
D
R[ĝ − g](z) dλ(z) −

∑
k∈K

εkwk = oP (n−1/2). (A.20)

Proof of Proposition A.5. Recalling the definitions of the estimated residuals ε̂k := εk −R[ĝ − g](zk)
and the weights wk := λ(Bk), we begin by rewriting the left-hand side of (A.18)

∑
k∈K

∫
Bk

F
(
t + R[ĝ − g](zk)

)
− F

(
t + R[ĝ − g](z)

)
dλ(z).

According to the mean-value theorem the absolute value of this term is bounded by
∑
k∈K

∫
Bk

∣∣{R[ĝ − g](zk) −R[ĝ − g](z)}fε(tz)
∣∣ dλ(z),

where tz is some suitable point between t + R[ĝ − g](z) and t + R[ĝ − g](zk). Since the density is
bounded, it suffices to show that

sup
z∈Bk

|R[ĝ − g](zk) −R[ĝ − g](z)| = oP (n−1/2).

An application of Cauchy–Schwarz yields

sup
z∈Bk

|R[ĝ − g](zk) −R[ĝ − g](z)| ≤ 2‖∇R[ĝ − g]‖∞‖z − zk‖2.

By Assumption 2.2 ‖z − zk‖2 = O(1/
√

n). Moreover by Corollary 3.6 the gradient ∇R[ĝ− g] converges
uniformly to 0. Thus we get the desired result. The estimate (A.19) follows by similar arguments,
while (A.20) is based on two observations. Firstly, since ψ(0,0) = 1, we can rewrite the integral∫

D
R[ĝ − g](z) dλ(z) = 〈R[ĝ − g], ψ(0,0)〉L2(D,λ) = R̂(0, 0) − R(0, 0).

Secondly, as the errors are centered,∑
k∈K

wkεk = R̂(0, 0) − E[R̂(0, 0)].

Combining these results yields the representation E[R̂(0, 0)] − R(0, 0) for the left-hand side of (A.20).
By Proposition A.1 this difference is of order O(n−1).

Equipped with our observations in Lemma A.4 and Proposition A.5 Theorem 3.5 is easily deduced:
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Proof of Theorem 3.5. We apply the triangle inequality to arrive at the following decomposition:

sup
t∈R

∣∣∣ ∑
k∈K

wk[1{ε̂k ≤ t} − 1{εk ≤ t} − εkfε(t)]
∣∣∣

≤ sup
t∈R

∣∣∣ ∑
k∈K

wk[1{ε̂k ≤ t} − 1{εk ≤ t} + F(t) − P(ε̂k ≤ t)]
∣∣∣

+ sup
t∈R

∣∣∣ ∑
k∈K

wkP(ε̂k ≤ t) −
∫
D

F(t + R[ĝ − g](z)) dλ(z)
∣∣∣

+ sup
t∈R

∣∣∣
∫
D

F(t + R[ĝ − g](z)) dλ(z) − F(t) − fε(t)
∫
D
R[ĝ − g](z) dλ(z)

∣∣∣

+ sup
t∈R

∣∣∣fε(t)
∫
D
R[ĝ − g](z) dλ(z) −

∑
k∈K

wkεkfε(t)
∣∣∣.

Each of the terms on the right-hand side is of order oP (n−1/2), the first one by Lemma A.4 and the other
ones by Proposition A.5.

A.5. Proof of Corollary 3.6

This is a consequence of Theorem 3.5, as we can represent the process
√

n(F − F̂n) as a sum of
independent stochastic processes and a negligible term:

√
n(F − F̂n) =

∑
k∈K

√
nwk {1{ε̂k ≤ t} − F(t)}

=
∑
k∈K

√
nwk {1{εk ≤ t} − F(t) + εkfε(t)} + oP (1).

The sum on the right-hand side converges to a Gaussian process by an application of Lemma A.19 in
[42].

APPENDIX B. AUXILIARY RESULTS
B.1. Uniform Bounds

We begin with stating some frequently used properties of the radial polynomials which are taken from
[8] and [24].

Proposition B.1. (1) For all (l,m) ∈ N

sup
0≤r≤1

|R|l|
m(r)| = 1. (B.1)

(2) For all (l,m), (l,m′) ∈ N∫ 1

0

√
2(m + 1)R|l|

m(r)
√

2(m′ + 1)R|l|
m′(r)r dr = δm,m′ . (B.2)

(3) For all (l,m) ∈ N the derivative of the corresponding radial polynomial has the following
structure:

d

dr
R|l|

m(r) =

1
2
(m−1−|l−1|)∑

j=0

(m − 2j)R|l−1|
m−1−2j(r)

+

1
2
(m−1−|l+1|)∑

j=0

(m − 2j)R|l+1|
m−1−2j(r). (B.3)
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Next we provide upper bounds on the ‖ · ‖∞-norm of the derivatives of the Chebyshev and radial
polynomials. The bounds on the radial polynomials follow by the above Proposition and the bounds for
Chebyshev’s by identities from [36].

Proposition B.2. Let k ∈ N0 and (l,m) ∈ N , then

sup
0≤r≤1

∣∣∣∣ dk

drk
R|l|

m(r)
∣∣∣∣ ≤ m2k

and

sup
0≤s≤1

∣∣∣∣ dk

dsk
Um(s)

∣∣∣∣ ≤ (m + 1)m2k.

Proof of Proposition B.2. In order to show the first statement, we apply the identities (B.1) and (B.3)
from Proposition B.1 and use an induction argument. The initial step is given by (B.1) and the induction
hypothesis is

sup
0≤r≤1

∣∣∣∣ dk

drk
R|l|

m(r)
∣∣∣∣ ≤ m2k.

By virtue of (B.3) we have

∣∣∣∣ dk+1

drk+1
R|l|

m(r)
∣∣∣∣ =

∣∣∣∣
1
2
(m−1−|l−1|)∑

j=0

(m − 2j)
dk

drk
R

|l−1|
m−1−2j(r) +

1
2
(m−1−|l+1|)∑

j=0

(m − 2j)
dk

drk
R

|l+1|
m−1−2j(r)

∣∣∣∣

≤ 2

1
2
(m−1−|l−1|)∑

j=0

(m − 2j)m2k ≤ m2k+2,

where we have used the induction hypothesis to bound the derivatives of R
|l|
m.

The case of the Chebyshev polynomials is similar. In order to prove the second identity in Proposition
B.2 we cite a few well-known facts about Chebyshev polynomials from [36]:

(1) For all m ∈ N, Um is uniformly bounded by m + 1.

(2) Let Tm denote the Chebyshev polynomial of the first kind, which satisfies the differential equation

d

ds
Tm(s) = Um−1(s)m.

For all m ∈ N, Tm is uniformly bounded by 1.

(3) For all m ∈ N the representation

d

ds
Um(s) =

•m−2∑
j=0

(m2 − j2)m
m + 1

Tj(s)

holds, where • indicates that we only sum over such terms where m − j is even.

The proof now follows by induction, analogously to that of the first part.
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B.2. Proof of Proposition 2.1

We employ these bounds to sketch a proof of Proposition 2.1. The techniques are borrowed from
the theory of Fourier series. It is well known that a continuous function f on a compact interval with
absolutely summable Fourier coefficients is identical to its Fourier series f∞. This is most easily proven
by observing that f and f∞ are identical in mean and that by uniform convergence f∞ is also continuous.
We proceed analogously for the proof of (2.10)–(2.13). The differentiability is an immediate consequence
of this argument. To avoid redundancy we confine our investigation to equation (2.10).

Firstly we define the function on the right side of (2.10) by g̃. Obviously∫
B
(g − g̃)2 dμ = 0. (B.4)

As μ is absolutely continuous with respect to the Lebesgue measure the set {g = g̃} has Lebesgue
measure 0 and thus (2.10) follows if we can establish continuity of g̃ (recall that g is continuous by
assumption). Continuity of g̃ follows from the uniform convergence of the sequence of continuous
functions

( N∑
m=0

m∑
l=−m

ϕ(l,m)〈g, ϕ(l,m)〉L2(B,μ)

)
N∈N

(B.5)

to g̃ for N → ∞. To see this we consider the difference

∥∥∥g̃ −
N∑

m=0

m∑
l=−m

ϕ(l,m)〈g, ϕ(l,m)〉L2(B,μ)

∥∥∥
∞

=
∥∥∥

∞∑
m=N

m∑
l=−m

ϕ(l,m)〈g, ϕ(l,m)〉L2(B,μ)

∥∥∥
∞

≤
∞∑

m=N

m∑
l=−m

‖ϕ(l,m)‖∞|〈g, ϕ(l,m)〉L2(B,μ)| ≤
∞∑

m=N

m∑
l=−m

√
m + 1

∣∣〈g, ϕ(l,m)〉L2(B,μ)

∣∣,

where we used (A.2) in the last step. Plugging the identity (2.13) (recall that we already know it in an
L2-sense from equation (2.8)) into the inner products yields

∞∑
m=N

m∑
l=−m

√
m + 1

∣∣〈g, ϕ(l,m)〉L2(B,μ)

∣∣ =
∞∑

m=N

m∑
l=−m

(m + 1)
∣∣〈Rg, ψ(l,m)〉L2(D,λ)

∣∣. (B.6)

By the series condition in (2.9), the right and thus the left side converge to 0, which proves continuity of
g̃. Consequently, it follows from (B.4) that g = g̃.

To establish differentiability of g and Rg we use their L2-representations (2.10) and (2.11). Dif-
ferentiability and summation may be interchanged by uniformity arguments, using the bounds from
Proposition B.2. Continuity of the derivatives is then derived as in the above argumentation.

B.3. Proof of Proposition A.1

By definition of R̂(l,m) in (2.16) and the weights wk = λ(Bk) we obtain:

∣∣R(l,m) − ER̂(l,m)
∣∣ ≤

∑
k∈K

∣∣∣∣
∫

Bk

ψ(l,m)(z)Rg(z) − ψ(l,m)(zk)Rg(zk) dλ(z)
∣∣∣∣

≤
∑
k∈K

∣∣∣∣
∫

Bk

Re(ψ(l,m)(z))Rg(z) − Re(ψ(l,m)(zk))Rg(zk) dλ(z)
∣∣∣∣

+
∑
k∈K

∣∣∣∣
∫

Bk

Im(ψ(l,m)(z))Rg(z) − Im(ψ(l,m)(zk))Rg(zk) dλ(z)
∣∣∣∣ .
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By Proposition 2.1 the function Rg is twice continuously differentiable. Recalling the definition of ψ(l,m),
we observe that the real part

Re(ψ(l,m)(s, φ)) = Um(s) cos(φl) (B.7)

and the imaginary part

Im(ψ(l,m)(s, φ)) = Um(s) sin(φl) (B.8)

are infinitely often differentiable. By Proposition B.2 it is now easy to see that all second order derivatives
of these functions are uniformly bounded by 2m5. We now use a Taylor expansion and obtain for any
k = (k1, k2)

R(k) :=
∫

Bk

Re(ψ(l,m)(z))Rg(z) − Re(ψ(l,m)(zk))Rg(zk) dλ(z)

=
∫ (k1+1)/d

k1/d

∫ 2π(k2+1)/n

2πk2/n
(s − zk1)

d

ds
[Re(ψ(l,m))Rg](zk)2π−1

√
1 − s2 dφ ds

+
∫ (k1+1)/d

k1/d

∫ 2π(k2+1)/n

2πk2/n
(φ − zk2)

d

dφ
[Re(ψ(l,m))Rg](zk)2π−1

√
1 − s2 dφ ds

+
∫ (k1+1)/d

k1/d

∫ 2π(k2+1)/n

2πk2/n
(s − zk1)(φ − zk2)

d

dφ

d

ds
[Re(ψ(l,m))Rg](ξ1)2π−1

√
1 − s2 dφ ds

+
∫ (k1+1)/d

k1/d

∫ 2π(k2+1)/n

2πk2/n
2−1(s − zk1)

2 d2

ds2
[Re(ψ(l,m))Rg](ξ2)2π−1

√
1 − s2 dφ ds

+
∫ (k1+1)/d

k1/d

∫ 2π(k2+1)/n

2πk2/n
2−1(φ − zk2)

2 d2

dφ2
[Re(ψ(l,m))Rg](ξ3)2π−1

√
1 − s2 dφ ds.

Here ξ1, ξ2, ξ3 denote points dependent on s, φ and zk, which are located inside Bk because of its
convexity. The first two integrals vanish because of the choice of our design points. Moreover |s − zk1 |
and |φ − zk2 | are bounded by Cn−1/2 by Assumption 1. The second order derivatives of Rg are bounded
(because they are continuous) and those of Re(ψ(l,m)) are bounded by 2m5, as we have noted above.
Thus the term R(k) is of order O(m5n−1). Treating the integrals in the sum over the imaginary parts in
same fashion yields the result.

B.4. Proof of Proposition A.3

We begin by rewriting the series condition (2.9) as

1 ≥
∞∑

m=0

m∑
l=−m

(m + 1)τ |R(l,m)| =
∞∑

m=0

m∑
l=−m

(m + 1)τ̃ |〈g, ϕ(l,m)〉L2(B,μ)|, (B.9)

where we define τ̃ := τ − 1/2 for convenience of notation. The reason for this modification is that all
conditions are now expressed directly by g instead of its Radon transform.

Our proof rests upon an observation found in the monograph [48]. If we can find suitable functions
g1, . . . , gL with finite ‖ · ‖∞-norm such that the class O(τ, 1) is included in the union of the ‖ · ‖∞-balls
with radius ε, i.e.

O(τ, 1) ⊂ U‖·‖∞
ε (g1) ∪ · · · ∪ U‖·‖∞

ε (gL), (B.10)

then the maximum-bracketing number of O(τ, 1) for 2ε is upper bounded by L. The corresponding
brackets are then simply given by [gl − ε, gl + ε] for all l ∈ {1, . . . , L}. We will thus confine ourselves
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to showing that the covering number of O(τ, 1) for some arbitrary but fixed ε > 0 is upper bounded by
L = L(ε) ≤ exp(Cε−2/(τ̃−t̃)), where t̃ := t − 1/2.

The rest of the proof consists of the construction of such a class of functions, breaking up O(τ, 1) in
ε-balls and verifying that their number is bounded in the desired way. We begin by relating closeness of
Radon coefficients to closeness in ‖ · ‖∞-norm.

Invoking Proposition 2.1, we observe that every function g ∈ O(τ, 1) is identical to its L2-expansion

g =
∞∑

m=0

m∑
l=−m

ϕ(l,m)〈g, ϕ(l,m)〉L2(B,μ).

Because of (B.9) and ‖g‖∞ ≤ 1 we get for each g ∈ O(τ, 1)
∣∣〈g, ϕ(l,m)〉L2(B,μ)

∣∣ ≤ 1
(m + 1)τ̃

∀(l,m) ∈ N . (B.11)

We will now investigate the distance between two functions g, g̃ in O(τ, 1) which have similar Radon
coefficients in the sense that∣∣〈g, ϕ(l,m)〉L2(B,μ) − 〈g̃, ϕ(l,m)〉L2(B,μ)

∣∣ ≤ ε

C(m + 1)t̃
∀(l,m) ∈ N , (B.12)

for some ε > 0. For sufficiently large C > 0, depending on t̃ only, the maximal distance between g and g̃
can be bounded via

‖g − g̃‖∞ ≤
∞∑

m=0

m∑
l=−m

∣∣〈g, ϕ(l,m)〉L2(B,μ) − 〈g̃, ϕ(l,m)〉L2(B,μ)

∣∣ ‖ϕ(l,m)‖∞

≤
∞∑

m=0

m∑
l=−m

√
m + 1

∣∣〈g, ϕ(l,m)〉L2(B,μ) − 〈g̃, ϕ(l,m)〉L2(B,μ)

∣∣

≤ ε

C
+

∞∑
m=1

(m + 1)3/2 ε

C(m + 1)t̃
≤ ε

C

(
1 +

∞∑
m=1

(m + 1)3/2−t̃
)

< ε. (B.13)

In the second inequality we used (A.2) and in the last step t̃ > 5/2 in order to guarantee the convergence
of the series.

We now construct a covering of O(τ, 1) as in (B.10). First we note that for any fixed but arbitrary
function g ∈ O(τ, 1) the estimate (B.11) already entails

∣∣〈g, ϕ(l,m)〉L2(B,μ) − 0
∣∣ =

∣∣〈g, ϕ(l,m)〉L2(B,μ)

∣∣ ≤ ε

C(m + 1)t̃

for all m > (C/ε)1/(τ̃−t̃). For (l,m) ∈ N with m ≤ �(C/ε)1/(τ̃−t̃)�, (B.11) implies that

〈g, ϕ(l,m)〉L2(B,μ) ∈
[
−(m + 1)−τ̃ , (m + 1)−τ̃

]
×

[
−i(m + 1)−τ̃ , i(m + 1)−τ̃

]
.

We can introduce �4C(m + 1)τ̃−t̃/ε�2 grid points to this cube such that any two of them have maximal
distance ε/(C(m + 1)t̃). The set of grid points for each cube will be called G(l,m). It then follows for any

(l,m) ∈ N with m ≤ �(C/ε)1/(τ̃−t̃)� that there exists an a(l,m) ∈ G(l,m) such that
∣∣〈g, ϕ(l,m)〉L2(B,μ) − a(l,m)

∣∣ ≤ ε

C(m + 1)t̃
.

Setting al,m = 0 for m − l odd, we define the function

g̃ =
	(C/ε)1/(τ̃−t̃)
∑

m=0

m∑
l=−m

ϕ(l,m)a(l,m),
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which by construction fulfills (B.12) and hence by (B.13) complies to the inequality

‖g − g̃‖∞ ≤ ε.

Since g ∈ O(τ, 1) was arbitrary, the collection of functions g̃ that satisfy

〈g̃, ϕ(l,m)〉L2(B,μ) ∈ G(l,m)

for m ≤ �(C/ε)1/(τ̃−t̃)� and

〈g̃, ϕ(l,m)〉L2(B,μ) = 0

for m > �(C/ε)1/(τ̃−t̃)� fulfills (B.10).
The cardinality of this function class consequently upper bounds the covering number of O(τ, 1). To

calculate the number of possible g̃ we count all possible combinations of coefficients a(l,m). Let • in the
product denote multiplication only with those factors, where m − l is even. Then

∣∣ 	(C/ε)1/(τ̃−t̃)
∏
m=0

•m∏
l=−m

G(l,m)

∣∣ = |G(0,0)|
	(C/ε)1/(τ̃−t̃)
∏

m=1

•m∏
l=−m

|G(l,m)|

≤
⌈4C

ε

⌉2
	(C/ε)1/(τ̃−t̃)
∏

m=1

⌈(4Cmt̃−τ̃

ε

)⌉2(m+1)
≤

⌈4C
ε

⌉2
	(C/ε)1/(τ̃−t̃)
∏

m=1

⌈(4C
ε

)⌉2(m+1)

=
⌈C

ε

⌉2
∑�(C/ε)1/(τ̃−t̃)�+1

m=1 m
≤

⌈C

ε

⌉8(C/ε)2/(τ̃−t̃)

≤ exp
{

log
(C

ε

)(C

ε

)2/(τ̃−t̃)}
. (B.14)

To achieve the desired rate we repeat our above argumentation for a shrunk version of t, say t − δ which
is still larger than 3, i.e. with t̃ − δ still larger than 5/2. For sufficiently small ε > 0 it follows that

exp
{

log
(C

ε

)(C

ε

)2/(τ̃−t̃+δ)}
≤ exp

{(C

ε

)2/(τ̃−t̃)}
.

By our auxiliary considerations the bracketing number is thus bounded in the desired way.
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